SUMMARIZE
In conclusion, this manuscript explains how lipids and oxidative stress-induced immune cell metabolism is reorganized and changed in atherosclerosis, as well as traditional Chinese medicines, compounds, and active ingredients that interfere with this process in the long-term medical practice of traditional Chinese medicine, to discover and identify immunometabolic markers/targets for the prevention and treatment of atherosclerosis. In terms of lipids, the retention of lipoproteins in the vascular wall of arteries is an important factor in triggering atherosclerosis. In the pathology of atherosclerosis caused by oxidative stress, glycolysis is a vital part of the response of macrophages and T cells. Changes in the metabolism of these immune cells affect the growth and stability of plaques. Even though these results look good, there is insufficient research on how immune cell metabolism responds to pathological changes in vivo. Putting any therapies mentioned above into practice in the real world is still hard. More early research funding and large-scale randomized clinical trials will help find new ways to prevent and treat this disease.
  1. Aghasafari, P., George, U., and Pidaparti, R. (2019). A review of inflammatory mechanism in airway diseases. Inflamm. Res. 68, 59–74. doi: 10.1007/s00011-018-1191-2.
  2. Andrejeva, G., and Rathmell, J. C. (2017). Similarities and distinctions of cancer and immune metabolism in inflammation and tumors. Cell Metab. 26, 49–70. doi: 10.1016/j.cmet.2017.06.004.
  3. Baardman, J., Licht, I., de Winther, M. P. J., and Van den Bossche, J. (2015). Metabolic-epigenetic crosstalk in macrophage activation.Epigenomics 7, 1155–1164. doi: 10.2217/epi.15.71.
  4. Baardman, J., and Lutgens, E. (2020). Regulatory T cell metabolism in atherosclerosis. Metabolites 10, 279. doi: 10.3390/metabo10070279.
  5. Banaszak, L. J., and Ranatunga, W. K. (2008). The assembly of apoB-containing lipoproteins: a structural biology point of view.Ann. Med. 40, 253–267. doi: 10.1080/07853890701813070.
  6. Bao, X.-Y., Deng, L.-H., Huang, Z.-J., Daror, A. S., Wang, Z.-H., Jin, W.-J., et al. (2021). Buyang Huanwu decoction enhances revascularization via Akt/GSK3β/NRF2 pathway in diabetic hindlimb ischemia. Oxid. Med. Cell. Longev. 2021, 1470829. doi: 10.1155/2021/1470829.
  7. Baragetti, A., Bonacina, F., Catapano, A. L., and Norata, G. D. (2021). Effect of lipids and lipoproteins on hematopoietic cell metabolism and commitment in atherosclerosis. Immunometabolism3, e210014. doi: 10.20900/immunometab20210014.
  8. Becker, M., Levings, M. K., and Daniel, C. (2017). Adipose-tissue regulatory T cells: Critical players in adipose-immune crosstalk.Eur. J. Immunol. 47, 1867–1874. doi: 10.1002/eji.201646739.
  9. Bo, J., and Zhishan, D. (2017). Flavonoids from Carya cathayensis Sarg. leaves inhibit carotid artery lesion formation induced by low blood flow. Biomed. Pharmacother. 94, 88–92. doi: 10.1016/j.biopha.2017.07.076.
  10. Buck, M. D., O’Sullivan, D., and Pearce, E. L. (2015). T cell metabolism drives immunity. J. Cell Biol. 210, 2104OIA169. doi: 10.1083/jcb.2104oia169.
  11. Cáceres, L., Paz, M. L., Garcés, M., Calabró, V., Magnani, N. D., Martinefski, M., et al. (2020). NADPH oxidase and mitochondria are relevant sources of superoxide anion in the oxinflammatory response of macrophages exposed to airborne particulate matter. Ecotoxicol. Environ. Saf. 205, 111186. doi: 10.1016/j.ecoenv.2020.111186.
  12. Chang, C.-H., Curtis, J. D., Maggi, L. B., Jr, Faubert, B., Villarino, A. V., O’Sullivan, D., et al. (2013). Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251. doi: 10.1016/j.cell.2013.05.016.
  13. Chen, W., Li, X., Guo, S., Song, N., Wang, J., Jia, L., et al. (2019). Tanshinone IIA harmonizes the crosstalk of autophagy and polarization in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis.Int. Immunopharmacol. 70, 486–497. doi: 10.1016/j.intimp.2019.02.054.
  14. Cholesterol Treatment Trialists’ (CTT) Collaborators (2012). The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590. doi: 10.1016/s0140-6736(12)60367-5.
  15. Cochain, C., Vafadarnejad, E., Arampatzi, P., Pelisek, J., Winkels, H., Ley, K., et al. (2018). Single-cell RNA-seq reveals the transcriptional landscape and heterogeneity of aortic macrophages in Murine atherosclerosis. Circ. Res. 122, 1661–1674. doi: 10.1161/CIRCRESAHA.117.312509.
  16. Cole, J. E., Astola, N., Cribbs, A. P., Goddard, M. E., Park, I., Green, P., et al. (2015). Indoleamine 2,3-dioxygenase-1 is protective in atherosclerosis and its metabolites provide new opportunities for drug development. Proc. Natl. Acad. Sci. U. S. A. 112, 13033–13038. doi: 10.1073/pnas.1517820112.
  17. Cole, J. E., Park, I., Ahern, D. J., Kassiteridi, C., Danso Abeam, D., Goddard, M. E., et al. (2018). Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc. Res. 114, 1360–1371. doi: 10.1093/cvr/cvy109.
  18. Correction to: Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness (2018). Arterioscler. Thromb. Vasc. Biol. 38, e135. doi: 10.1161/ATV.0000000000000071.
  19. De Geest, B., Zhao, Z., Collen, D., and Holvoet, P. (1997). Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo E-deficient mice.Circulation 96, 4349–4356. doi: 10.1161/01.cir.96.12.4349.
  20. de Graaf, J., Hak-Lemmers, H. L., Hectors, M. P., Demacker, P. N., Hendriks, J. C., and Stalenhoef, A. F. (1991). Enhanced susceptibility to in vitro oxidation of the dense low density lipoprotein subfraction in healthy subjects. Arterioscler. Thromb. 11, 298–306. doi: 10.1161/01.atv.11.2.298.
  21. De Rosa, V., Galgani, M., Porcellini, A., Colamatteo, A., Santopaolo, M., Zuchegna, C., et al. (2015). Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants. Nat. Immunol. 16, 1174–1184. doi: 10.1038/ni.3269.
  22. De Waele, J. J., Cheatham, M. L., Malbrain, M. L. N. G., Kirkpatrick, A. W., Sugrue, M., Balogh, Z., et al. (2009). Recommendations for research from the international conference of experts on intra-abdominal hypertension and Abdominal Compartment Syndrome.Acta Clin. Belg. 64, 203–209. doi: 10.1179/acb.2009.036.
  23. Duan, J., Chen, C., Li, H., Ju, G., Gao, A., Sun, Y., et al. (2022). Multifaceted protective effects of hesperidin by aromatic hydrocarbon receptor in endothelial cell injury induced by Benzo[a]pyrene.Nutrients 14, 574. doi: 10.3390/nu14030574.
  24. Early, J. O., Menon, D., Wyse, C. A., Cervantes-Silva, M. P., Zaslona, Z., Carroll, R. G., et al. (2018). Circadian clock protein BMAL1 regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci. U. S. A. 115, E8460–E8468. doi: 10.1073/pnas.1800431115.
  25. Enas, E. A., Varkey, B., Dharmarajan, T. S., Pare, G., and Bahl, V. K. (2019). Lipoprotein(a): An independent, genetic, and causal factor for cardiovascular disease and acute myocardial infarction. Indian Heart J. 71, 99–112. doi: 10.1016/j.ihj.2019.03.004.
  26. Feinberg, M. W., and Jain, M. K. (2005). Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Panminerva Med. 47, 169–186. Available at: https://www.ncbi.nlm.nih.gov/pubmed/16462725.
  27. Folco, E. J., and Sukhova, G. K. (2014). Quillard T & Libby P Moderate hypoxia potentiates interleukin-1beta production in activated human macrophages. Circ Res 115, 875–883. doi: 10.1161/CIRCRESAHA.115.304437.
  28. Font-Burgada, J., Sun, B., and Karin, M. (2016). Obesity and Cancer: The Oil that Feeds the Flame. Cell Metab. 23, 48–62. doi: 10.1016/j.cmet.2015.12.015.
  29. Forteza, M. J., Polyzos, K. A., Baumgartner, R., Suur, B. E., Mussbacher, M., Johansson, D. K., et al. (2018). Activation of the regulatory T-cell/indoleamine 2,3-dioxygenase axis reduces vascular inflammation and atherosclerosis in hyperlipidemic mice. Front. Immunol. 9. doi: 10.3389/fimmu.2018.00950.
  30. Gaddis, D. E., Padgett, L. E., Wu, R., McSkimming, C., Romines, V., Taylor, A. M., et al. (2018). Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat. Commun. 9. doi: 10.1038/s41467-018-03493-5.
  31. Gao, L.-N., Zhou, X., Lu, Y.-R., Li, K., Gao, S., Yu, C.-Q., et al. (2018). Dan-Lou prescription inhibits foam cell formation induced by ox-LDL via the TLR4/NF-κB and PPARγ signaling pathways. Front. Physiol. 9. doi: 10.3389/fphys.2018.00590.
  32. Gao, W., Li, X., Liu, Z., Fu, W., Sun, Y., Cao, W., et al. (2019). A redox-responsive self-assembled nanoprobe for photoacoustic inflammation imaging to assess atherosclerotic plaque vulnerability.Anal. Chem. 91, 1150–1156. doi: 10.1021/acs.analchem.8b04912.
  33. Georgiev, P., Charbonnier, L.-M., and Chatila, T. A. (2019). Regulatory T cells: The many faces of Foxp3. J. Clin. Immunol.39, 623–640. doi: 10.1007/s10875-019-00684-7.
  34. Gerriets, V. A., Danzaki, K., Kishton, R. J., Eisner, W., Nichols, A. G., Saucillo, D. C., et al. (2016). Leptin directly promotes T-cell glycolytic metabolism to drive effector T-cell differentiation in a mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983. doi: 10.1002/eji.201545861.
  35. Gerriets, V. A., Kishton, R. J., Nichols, A. G., Macintyre, A. N., Inoue, M., Ilkayeva, O., et al. (2015). Metabolic programming and PDHK1 control CD4þ T cell subsets and inflammation. J Clin Invest 125, 194–207.
  36. Getz, G. S., and Reardon, C. A. (2018). Apoprotein E and reverse cholesterol transport. Int. J. Mol. Sci. 19, 3479. doi: 10.3390/ijms19113479.
  37. Groh, L., Keating, S. T., Joosten, L. A. B., Netea, M. G., and Riksen, N. P. (2018). Monocyte and macrophage immunometabolism in atherosclerosis. Semin. Immunopathol. 40, 203–214. doi: 10.1007/s00281-017-0656-7.
  38. Guan, S., Sun, J., Jiareke, T., and Ge, X. (2018). Evaluation of TurboHawk plaque rotation system in treatment of superficial femoral atherosclerosis. Med. Sci. Monit. 24, 9026–9031. doi: 10.12659/MSM.912142.
  39. Guo, H., Callaway, J. B., and Ting, J. P.-Y. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687. doi: 10.1038/nm.3893.
  40. Guo, H., Chen, L., Li, C., Wang, D., Luo, Y., Sun, G., et al. (2021). Anti-hyperlipidemic effects of the compound Danshen tablet: roles of antioxidation, anti-inflammation, anticoagulation, and anti-apoptosis.Ann. Transl. Med. 9, 744. doi: 10.21037/atm-20-7915.
  41. He, L., Liu, Y.-Y., Wang, K., Li, C., Zhang, W., Li, Z.-Z., et al. (2021). Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem. Biophys. Res. Commun. 575, 1–7. doi: 10.1016/j.bbrc.2021.08.067.
  42. Hotamisligil, G. S. (2017). Foundations of immunometabolism and implications for metabolic health and disease. Immunity 47, 406–420. doi: 10.1016/j.immuni.2017.08.009.
  43. Hsu, T.-S., and Lai, M.-Z. (2018). Hypoxia-inducible factor 1α plays a predominantly negative role in regulatory T cell functions. J. Leukoc. Biol. 104, 911–918. doi: 10.1002/jlb.mr1217-481r.
  44. Hu, Y., Li, H., Li, R., Wu, Z., Yang, W., and Qu, W. (2020). Puerarin protects vascular smooth muscle cells from oxidized low-density lipoprotein-induced reductions in viability via inhibition of the p38 MAPK and JNK signaling pathways. Exp. Ther. Med. 20, 270. doi: 10.3892/etm.2020.9400.
  45. Huang, Z., Tian, G., Cheng, S., Zhao, D., Zhang, Y., Jia, Y., et al. (2018). Polydatin attenuates atherosclerosis in ApoE -∕- mice through PBEF mediated reduction of cholesterol deposition. Am. J. Chin. Med. 46, 1841–1859. doi: 10.1142/S0192415X18500921.
  46. Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S., and Medzhitov, R. (2017). Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Science 356, 513–519. doi: 10.1126/science.aal3535.
  47. Jha, A. K., Huang, S. C.-C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., et al. (2015). Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430. doi: 10.1016/j.immuni.2015.02.005.
  48. Jones, W. S., Mulder, H., Wruck, L. M., Pencina, M. J., Kripalani, S., Muñoz, D., et al. (2021). Comparative effectiveness of aspirin dosing in cardiovascular disease. N. Engl. J. Med. 384, 1981–1990. doi: 10.1056/NEJMoa2102137.
  49. Kälin, S., Becker, M., Ott, V. B., Serr, I., Hosp, F., Mollah, M. M. H., et al. (2017). A Stat6/pten axis links regulatory T cells with adipose tissue function. Cell Metab. 26, 475-492.e7. doi: 10.1016/j.cmet.2017.08.008.
  50. Ketelhuth, D. F. J., and Hansson, G. K. (2016). Adaptive response of T and B cells in atherosclerosis. Circ. Res. 118, 668–678. doi: 10.1161/CIRCRESAHA.115.306427.
  51. Ketelhuth, D. F. J., Lutgens, E., Bäck, M., Binder, C. J., Van den Bossche, J., Daniel, C., et al. (2019). Immunometabolism and atherosclerosis: perspectives and clinical significance: a position paper from the Working Group on Atherosclerosis and Vascular Biology of the European Society of Cardiology. Cardiovasc. Res. 115, 1385–1392. doi: 10.1093/cvr/cvz166.
  52. Koelwyn, G. J., Corr, E. M., Erbay, E., and Moore, K. J. (2018). Regulation of macrophage immunometabolism in atherosclerosis.Nat. Immunol. 19, 526–537. doi: 10.1038/s41590-018-0113-3.
  53. Ku, C.-W., Ho, T.-J., Huang, C.-Y., Chu, P.-M., Ou, H.-C., and Hsieh, P.-L. (2021). Cordycepin attenuates palmitic acid-induced inflammation and apoptosis of vascular endothelial cells through mediating PI3K/Akt/eNOS signaling pathway. Am. J. Chin. Med. 49, 1703–1722. doi: 10.1142/S0192415X21500804.
  54. L i, C.-S., Qu, Z.-Q., Wang, S.-S., Hao, X.-W., Zhang, X.-Q., Guan, J., et al. (2011). Effects of suxiao jiuxin pill (see test) on oxidative stress and inflammatory response in rats with experimental atherosclerosis. J. Tradit. Chin. Med. 31, 107–111. doi: 10.1016/s0254-6272(11)60022-8.
  55. Laccotripe, M., Zanni, E. E., Makrides, S. C., Jonas, A., and Zannis, V. I. (1997). 1.P.12 Hydrophobic residues between aminoacids 211–229 of apoA-I play an important role in binding to lipids and lipoproteins. Atherosclerosis 134, 19. doi: 10.1016/s0021-9150(97)88193-2.
  56. Lachmandas, E., Boutens, L., Ratter, J. M., Hijmans, A., Hooiveld, G. J., Joosten, L. A. B., et al. (2016). Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nat. Microbiol. 2, 16246. doi: 10.1038/nmicrobiol.2016.246.
  57. Lee, S. E., Jeong, S. I., Yang, H., Jeong, S. H., Jang, Y. P., Park, C.-S., et al. (2012). Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages. J. Ethnopharmacol. 139, 541–548. doi: 10.1016/j.jep.2011.11.046.
  58. Legein, B., Janssen, E. M., Theelen, T. L., Gijbels, M. J., Walraven, J., Klarquist, J. S., et al. (2015). Ablation of CD8a(þ) dendritic cell mediated crosspresentation does not impact atherosclerosis in hyperlipidemic mice. Sci Rep 5.
  59. Li, F., Zhang, T., He, Y., Gu, W., Yang, X., Zhao, R., et al. (2020). Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE-/- mice. J. Ethnopharmacol. 247, 112232. doi: 10.1016/j.jep.2019.112232.
  60. Li, W., Jin, C., Vaidya, A., Wu, Y., Rexrode, K., Zheng, X., et al. (2017). Blood pressure trajectories and the risk of intracerebral hemorrhage and cerebral infarction: A prospective study.Hypertension 70, 508–514. doi: 10.1161/HYPERTENSIONAHA.117.09479.
  61. Li, Y., Zhang, L., Ren, P., Yang, Y., Li, S., Qin, X., et al. (2021c). Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting macrophage lipid accumulation and inflammatory response via TLR4/MyD88/NF-κB pathway regulation. Phytomedicine 93, 153812. doi: 10.1016/j.phymed.2021.153812.
  62. Linton, M. F., Yancey, P. G., Davies, S. S., Jerome, W. G., Linton, E. F., Song, W. L., et al. (2000). The Role of Lipids and Lipoproteins in Atherosclerosis . Dartmouth (MA: MDText.com, Inc Available at: https://www.ncbi.nlm.nih.gov/pubmed/26844337.
  63. Littlewood-Evans, A., Sarret, S., Apfel, V., Loesle, P., Dawson, J., Zhang, J., et al. (2016). GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis. J. Exp. Med. 213, 1655–1662. doi: 10.1084/jem.20160061.
  64. Liu, B., Song, Z., Yu, J., Li, P., Tang, Y., and Ge, J. (2020a). The atherosclerosis-ameliorating effects and molecular mechanisms of BuYangHuanWu decoction. Biomed. Pharmacother. 123, 109664. doi: 10.1016/j.biopha.2019.109664.
  65. Liu, X., Wu, X.-P., Zhu, X.-L., Li, T., and Liu, Y. (2017). IRG1 increases MHC class I level in macrophages through STAT-TAP1 axis depending on NADPH oxidase mediated reactive oxygen species.Int. Immunopharmacol. 48, 76–83. doi: 10.1016/j.intimp.2017.04.012.
  66. Lu, J., Chen, X., Xu, X., Liu, J., Zhang, Z., Wang, M., et al. (2019a). Active polypeptides from Hirudo inhibit endothelial cell inflammation and macrophage foam cell formation by regulating the LOX-1/LXR-α/ABCA1 pathway. Biomed. Pharmacother. 115, 108840. doi: 10.1016/j.biopha.2019.108840.
  67. Lu, L., Qin, Y., Zhang, X., Chen, C., Xu, X., Yu, C., et al. (2019b). Shexiang Baoxin Pill alleviates the atherosclerotic lesions in mice via improving inflammation response and inhibiting lipid accumulation in the arterial wall. Mediators Inflamm. 2019, 6710759. doi: 10.1155/2019/6710759.
  68. Lü, S.-L., Dang, G.-H., Deng, J.-C., Liu, H.-Y., Liu, B., Yang, J., et al. (2020). Shikonin attenuates hyperhomocysteinemia-induced CD4+ T cell inflammatory activation and atherosclerosis in ApoE-/- mice by metabolic suppression. Acta Pharmacol. Sin. 41, 47–55. doi: 10.1038/s41401-019-0308-7.
  69. Ma, Y., Temkin, S. M., Hawkridge, A. M., Guo, C., Wang, W., Wang, X.-Y., et al. (2018). Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett. 435, 92–100. doi: 10.1016/j.canlet.2018.08.006.
  70. Mailer, R. K. W., Gisterå, A., Polyzos, K. A., Ketelhuth, D. F. J., and Hansson, G. K. (2017). Hypercholesterolemia enhances T cell receptor signaling and increases the regulatory T cell population.Sci. Rep. 7, 15655. doi: 10.1038/s41598-017-15546-8.
  71. Malekmohammad, K., Bezsonov, E. E., and Rafieian-Kopaei, M. (2021). Role of lipid accumulation and inflammation in atherosclerosis: Focus on molecular and cellular mechanisms. Front. Cardiovasc. Med.8, 707529. doi: 10.3389/fcvm.2021.707529.
  72. Mao M.-J., Hu J.-P., Wang C., Zhang Y.-Y., and Liu P. (2012). Effects of Chinese herbal medicine Guanxinkang on expression of PPARγ-LXRα-ABCA1 pathway in ApoE-knockout mice with atherosclerosis.Zhong Xi Yi Jie He Xue Bao 10, 814–820. doi: 10.3736/jcim20120713.
  73. Marsch, E., Sluimer, J. C., and Daemen, M. J. A. P. (2013). Hypoxia in atherosclerosis and inflammation. Curr. Opin. Lipidol. 24, 393–400. doi: 10.1097/MOL.0b013e32836484a4.
  74. Marsch, E., Theelen, T. L., Demandt, J. A. F., Jeurissen, M., van Gink, M., Verjans, R., et al. (2014). Reversal of hypoxia in murine atherosclerosis prevents necrotic core expansion by enhancing efferocytosis. Arterioscler. Thromb. Vasc. Biol. 34, 2545–2553. doi: 10.1161/ATVBAHA.114.304023.
  75. Mattmiller, S. A., Corl, C. M., Gandy, J. C., Loor, J. J., and Sordillo, L. M. (2011). Glucose transporter and hypoxia-associated gene expression in the mammary gland of transition dairy cattle.J. Dairy Sci. 94, 2912–2922. doi: 10.3168/jds.2010-3936.
  76. McCulloch, L., Allan, S. M., Emsley, H. C., Smith, C. J., and McColl, B. W. (2019). Interleukin-1 receptor antagonist treatment in acute ischaemic stroke does not alter systemic markers of anti-microbial defence. F1000Res. 8, 1039. doi: 10.12688/f1000research.19308.2.
  77. McIvor, N. P., Willinsky, R. A., TerBrugge, K. G., Rutka, J. A., and Freeman, J. L. (1994). Validity of test occlusion studies prior to internal carotid artery sacrifice. Head Neck 16, 11–16. doi: 10.1002/hed.2880160104.
  78. Mills, E. L., Kelly, B., and O’Neill, L. A. J. (2017). Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488–498. doi: 10.1038/ni.3704.
  79. Mills, E. L., Ryan, D. G., Prag, H. A., Dikovskaya, D., Menon, D., Zaslona, Z., et al. (2018). Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature556, 113–117. doi: 10.1038/nature25986.
  80. Miska, J., Lee-Chang, C., Rashidi, A., Muroski, M. E., Chang, A. L., Lopez-Rosas, A., et al. (2022). HIF-1α is a metabolic switch between glycolytic-driven migration and oxidative phosphorylation-driven immunosuppression of tregs in glioblastoma. Cell Rep. 39, 110934. doi: 10.1016/j.celrep.2022.110934.
  81. Mo, J., Yang, R., Li, F., Zhang, X., He, B., Zhang, Y., et al. (2018). Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine 42, 66–74. doi: 10.1016/j.phymed.2018.03.021.
  82. Montaño, A., Hanley, D. F., and Hemphill, J. C., III (2021). “Hemorrhagic stroke,” in Interventional NeuroradiologyHandbook of clinical neurology. (Elsevier), 229–248. doi: 10.1016/b978-0-444-64034-5.00019-5.
  83. Moore, K. J., Sheedy, F. J., and Fisher, E. A. (2013). Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721. doi: 10.1038/nri3520.
  84. Nakashima, Y., Wight, T. N., and Sueishi, K. (2008). Early atherosclerosis in humans: role of diffuse intimal thickening and extracellular matrix proteoglycans. Cardiovasc. Res. 79, 14–23. doi: 10.1093/cvr/cvn099.
  85. Neupane, R., Jin, X., Sasaki, T., Li, X., Murohara, T., and Cheng, X. W. (2019). Immune disorder in atherosclerotic cardiovascular disease - clinical implications of using circulating T-cell subsets as biomarkers. Circ. J. 83, 1431–1438. doi: 10.1253/circj.CJ-19-0114.
  86. Newton, R., Priyadharshini, B., and Turka, L. A. (2016). Immunometabolism of regulatory T cells. Nat. Immunol. 17, 618–625. doi: 10.1038/ni.3466.
  87. Nomura, M., Liu, J., Rovira, I. I., Gonzalez-Hurtado, E., Lee, J., Wolfgang, M. J., et al. (2016). Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217. doi: 10.1038/ni.3366.
  88. Olsen, R. K. J., Cornelius, N., and Gregersen, N. (2013). Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects? Mol. Genet. Metab. 110 Suppl, S31-9. doi: 10.1016/j.ymgme.2013.10.007.
  89. O’Neill, L. A. J., Kishton, R. J., and Rathmell, J. (2016). A guide to immunometabolism for immunologists. Nat. Rev. Immunol. 16, 553–565. doi: 10.1038/nri.2016.70.
  90. Pacella, I., and Piconese, S. (2019). Immunometabolic checkpoints of Treg dynamics: Adaptation to microenvironmental opportunities and challenges. Front. Immunol. 10, 1889. doi: 10.3389/fimmu.2019.01889.
  91. Pai, P.-Y., Chou, W.-C., Chan, S.-H., Wu, S.-Y., Chen, H.-I., Li, C.-W., et al. (2021). Epigallocatechin gallate reduces homocysteine-caused oxidative damages through modulation SIRT1/AMPK pathway in endothelial cells. Am. J. Chin. Med. 49, 113–129. doi: 10.1142/S0192415X21500063.
  92. Paiva, C. N., and Bozza, M. T. (2014). Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 20, 1000–1037. doi: 10.1089/ars.2013.5447.
  93. Polyzos, K. A., Ovchinnikova, O., Berg, M., Baumgartner, R., Agardh, H., Pirault, J., et al. (2015). Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoe-/- mice. Cardiovasc. Res. 106, 295–302. doi: 10.1093/cvr/cvv100.
  94. Raud, B., Roy, D. G., Divakaruni, A. S., Tarasenko, T. N., Franke, R., Ma, E. H., et al. (2018). Etomoxir actions on regulatory and memory T cells are independent of Cpt1a-mediated fatty acid oxidation.Cell Metab. doi: 10.1016/j.cmet.2018.06.002.
  95. Ridker, P. M., Everett, B. M., Pradhan, A., MacFadyen, J. G., Solomon, D. H., Zaharris, E., et al. (2019). Low-dose methotrexate for the prevention of atherosclerotic events. N. Engl. J. Med. 380, 752–762. doi: 10.1056/NEJMoa1809798.
  96. Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131. doi: 10.1056/nejmoa1707914.
  97. Robbins, C. S., Hilgendorf, I., Weber, G. F., Theurl, I., Iwamoto, Y., Figueiredo, J.-L., et al. (2013). Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med.19, 1166–1172. doi: 10.1038/nm.3258.
  98. Russell, D. G., Huang, L., and VanderVen, B. C. (2019). Immunometabolism at the interface between macrophages and pathogens.Nat. Rev. Immunol. 19, 291–304. doi: 10.1038/s41577-019-0124-9.
  99. Saigusa, R., Winkels, H., and Ley, K. (2020). T cell subsets and functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401. doi: 10.1038/s41569-020-0352-5.
  100. Sakaguchi, S., Mikami, N., Wing, J. B., Tanaka, A., Ichiyama, K., and Ohkura, N. (2020). Regulatory T cells and human disease. Annu. Rev. Immunol. 38, 541–566. doi: 10.1146/annurev-immunol-042718-041717.
  101. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases.J. Immunol. 155, 1151–1164. Available at: https://www.ncbi.nlm.nih.gov/pubmed/7636184.
  102. Santos, M. G. dos, Pegoraro, M., Sandrini, F., and Macuco, E. C. (2008). Risk factors for the development of atherosclerosis in childhood and adolescence. Arq. Bras. Cardiol. 90, 276–283. doi: 10.1590/s0066-782x2008000400012.
  103. Sergin, I., Evans, T. D., Bhattacharya, S., and Razani, B. (2014). Hypoxia in plaque macrophages: a new danger signal for interleukin-1beta activation? Circ Res 115, 817–820. doi: 10.1161/CIRCRESAHA.114.305197.
  104. Shah, P. K. (2014). Biomarkers of plaque instability. Curr. Cardiol. Rep. 16. doi: 10.1007/s11886-014-0547-7.
  105. Shirai, T., Nazarewicz, R. R., Wallis, B. B., Yanes, R. E., Watanabe, R., Hilhorst, M., et al. (2016). The glycolytic enzyme PKM2 bridges metabolic and inflammatory dysfunction in coronary artery disease.J. Exp. Med. 213, 337–354. doi: 10.1084/jem.20150900.
  106. Sniderman, A. D., Thanassoulis, G., Glavinovic, T., Navar, A. M., Pencina, M., Catapano, A., et al. (2019). Apolipoprotein B particles and cardiovascular disease: A narrative review. JAMA Cardiol.4, 1287–1295. doi: 10.1001/jamacardio.2019.3780.
  107. Stacpoole, P. W. (2017). Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J. Natl. Cancer Inst. 109. doi: 10.1093/jnci/djx071.
  108. Stienstra, R., Netea-Maier, R. T., Riksen, N. P., Joosten, L. A. B., and Netea, M. G. (2017). Specific and complex reprogramming of cellular metabolism in myeloid cells during innate immune responses.Cell Metab. 26, 142–156. doi: 10.1016/j.cmet.2017.06.001.
  109. Su, X., Wellen, K. E., and Rabinowitz, J. D. (2016). Metabolic control of methylation and acetylation. Curr. Opin. Chem. Biol. 30, 52–60. doi: 10.1016/j.cbpa.2015.10.030.
  110. Sun, B., Yang, D., Yin, Y.-Z., and Xiao, J. (2020). Estrogenic and anti-inflammatory effects of pseudoprotodioscin in atherosclerosis-prone mice: Insights into endothelial cells and perivascular adipose tissues. Eur. J. Pharmacol. 869, 172887. doi: 10.1016/j.ejphar.2019.172887.
  111. Sun, G.-B., Qin, M., Ye, J.-X., Pan, R.-L., Meng, X.-B., Wang, M., et al. (2013). Inhibitory effects of myricitrin on oxidative stress-induced endothelial damage and early atherosclerosis in ApoE-/- mice. Toxicol. Appl. Pharmacol. 271, 114–126. doi: 10.1016/j.taap.2013.04.015.
  112. Tabas, I., and Bornfeldt, K. E. (2016). Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res.118, 653–667. doi: 10.1161/CIRCRESAHA.115.306256.
  113. Tabas, I., and Bornfeldt, K. E. (2020). Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ. Res. 126, 1209–1227. doi: 10.1161/CIRCRESAHA.119.315939.
  114. Tabas, I., and Glass, C. K. (2013). Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science 339, 166–172. doi: 10.1126/science.1230720.
  115. Tabas, I., and Lichtman, A. H. (2017). Monocyte-macrophages and T cells in atherosclerosis. Immunity 47, 621–634. doi: 10.1016/j.immuni.2017.09.008.
  116. Tan, Z., Xie, N., Cui, H., Moellering, D. R., Abraham, E., Thannickal, V. J., et al. (2015). Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082–6089. doi: 10.4049/jimmunol.1402469.
  117. Tirunavalli, S. K., Gourishetti, K., Kotipalli, R. S. S., Kuncha, M., Kathirvel, M., Kaur, R., et al. (2021). Dehydrozingerone ameliorates Lipopolysaccharide induced acute respiratory distress syndrome by inhibiting cytokine storm, oxidative stress via modulating the MAPK/NF-κB pathway. Phytomedicine 92, 153729. doi: 10.1016/j.phymed.2021.153729.
  118. Tokgozoglu, L., and Kayikcioglu, M. (2021). Familial hypercholesterolemia: Global burden and approaches. Curr. Cardiol. Rep. 23, 151. doi: 10.1007/s11886-021-01565-5.
  119. Tomas, L., Edsfeldt, A., Mollet, I. G., Perisic Matic, L., Prehn, C., Adamski, J., et al. (2018). Altered metabolism distinguishes high-risk from stable carotid atherosclerotic plaques. Eur. Heart J. 39, 2301–2310. doi: 10.1093/eurheartj/ehy124.
  120. Van den Bossche, J., Baardman, J., Otto, N. A., van der Velden, S., Neele, A. E., van den Berg, S. M., et al. (2016). Mitochondrial dysfunction prevents repolarization of inflammatory macrophages.Cell Rep. 17, 684–696. doi: 10.1016/j.celrep.2016.09.008.
  121. Van den Bossche, J., O’Neill, L. A., and Menon, D. (2017). Macrophage immunometabolism: Where are we (going)? Trends Immunol. 38, 395–406. doi: 10.1016/j.it.2017.03.001.
  122. van Tuijl, J., Joosten, L. A. B., Netea, M. G., Bekkering, S., and Riksen, N. P. (2019). Immunometabolism orchestrates training of innate immunity in atherosclerosis. Cardiovasc. Res. 115, 1416–1424. doi: 10.1093/cvr/cvz107.
  123. Wan, Q., Liu, Z.-Y., Yang, Y.-P., and Liu, S.-M. (2016). Effect of curcumin on inhibiting atherogenesis by down-regulating lipocalin-2 expression in apolipoprotein E knockout mice. Biomed. Mater. Eng. 27, 577–587. doi: 10.3233/BME-161610.
  124. Wang, F., Beck-García, K., Zorzin, C., Schamel, W. W. A., and Davis, M. M. (2016). Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol.Nat. Immunol. 17, 844–850. doi: 10.1038/ni.3462.
  125. West, A. P., Khoury-Hanold, W., Staron, M., Tal, M. C., Pineda, C. M., Lang, S. M., et al. (2015). Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557. doi: 10.1038/nature14156.
  126. Winkels, H., Ehinger, E., Vassallo, M., Buscher, K., Dinh, H. Q., Kobiyama, K., et al. (2018). Atlas of the immune cell repertoire in mouse atherosclerosis defined by single-cell RNA-sequencing and mass cytometry. Circ. Res. 122, 1675–1688. doi: 10.1161/CIRCRESAHA.117.312513.
  127. Wu, H., Wang, X., Gao, S., Dai, L., Tong, H., Gao, H., et al. (2019). Yiqi-Huoxue granule (YQHX) downregulates prothrombotic factors by modulating KLF2 and NF-κB in HUVECs following LPS stimulation.Oxid. Med. Cell. Longev. 2019, 9425183. doi: 10.1155/2019/9425183.
  128. Wu, R., Chen, F., Wang, N., Tang, D., and Kang, R. (2020). ACOD1 in immunometabolism and disease. Cell. Mol. Immunol. 17, 822–833. doi: 10.1038/s41423-020-0489-5.
  129. Xiang, D., Li, Y., Cao, Y., Huang, Y., Zhou, L., Lin, X., et al. (2021). Different effects of endothelial extracellular vesicles and LPS-induced endothelial extracellular vesicles on vascular smooth muscle cells: Role of curcumin and its derivatives. Front. Cardiovasc. Med. 8, 649352. doi: 10.3389/fcvm.2021.649352.
  130. Xiong, M., Jia, C., Cui, J., Wang, P., Du, X., Yang, Q., et al. (2015). Shexiang Tongxin dropping pill attenuates atherosclerotic lesions in ApoE deficient mouse model. J. Ethnopharmacol. 159, 84–92. doi: 10.1016/j.jep.2014.11.013.
  131. Yanik, A., Yetkin, E., Senen, K., Atak, R., Ileri, M., Kural, T., et al. (2000). Value of dobutamine stress echocardiography for diagnosis of coronary artery disease in patients with left bundle branch blockage. Coron. Artery Dis. 11, 545–548. doi: 10.1097/00019501-200010000-00005.
  132. Ying, M., You, D., Zhu, X., Cai, L., Zeng, S., and Hu, X. (2021). Lactate and glutamine support NADPH generation in cancer cells under glucose deprived conditions. Redox Biol. 46, 102065. doi: 10.1016/j.redox.2021.102065.
  133. Yuan, H.-X., Feng, X.-E., Liu, E.-L., Ge, R., Zhang, Y.-L., Xiao, B.-G., et al. (2019a). 5,2’-dibromo-2,4’,5’-trihydroxydiphenylmethanone attenuates LPS-induced inflammation and ROS production in EA.hy926 cells via HMBOX1 induction. J. Cell. Mol. Med. 23, 453–463. doi: 10.1111/jcmm.13948.
  134. Yuan, L., Li, Q., Zhang, Z., Liu, Q., Wang, X., and Fan, L. (2020). Tanshinone IIA inhibits the adipogenesis and inflammatory response in ox-LDL-challenged human monocyte-derived macrophages via regulating miR-130b/WNT5A. J. Cell. Biochem. 121, 1400–1408. doi: 10.1002/jcb.29375.
  135. Yuan, X., Chang, C.-Y., You, R., Shan, M., Gu, B. H., Madison, M. C., et al. (2019b). Cigarette smoke-induced reduction of C1q promotes emphysema. JCI Insight 5. doi: 10.1172/jci.insight.124317.
  136. Zha, Y., Liu, H., Lin, X., Yu, L., Gao, P., Li, Y., et al. (2022). Immune deviation in the decidua during term and preterm labor.Front. Immunol. 13, 877314. doi: 10.3389/fimmu.2022.877314.
  137. Zhang, S., Jin, S., Zhang, S., Li, Y.-Y., Wang, H., Chen, Y., et al. (2022a). Vitexin protects against high glucose-induced endothelial cell apoptosis and oxidative stress via Wnt/β-catenin and Nrf2 signalling pathway. Arch. Physiol. Biochem. , 1–10. doi: 10.1080/13813455.2022.2028845.
  138. Zhang, X., Liu, J., Pang, X., Zhao, J., and Xu, S. (2020). Curcumin suppresses aldosterone-induced CRP generation in rat vascular smooth muscle cells via interfering with the ROS-ERK1/2 signaling pathway.Evid. Based. Complement. Alternat. Med. 2020, 3245653. doi: 10.1155/2020/3245653.
  139. Zhao, D., Tong, L., Zhang, L., Li, H., Wan, Y., and Zhang, T. (2016a). Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE signaling and NF-κB activation in apolipoprotein-E-deficient mice.Mol. Med. Rep. 14, 4983–4990. doi: 10.3892/mmr.2016.5916.
  140. Zhao, L., Luo, R., Yu, H., Li, S., Yu, Q., Wang, W., et al. (2021a). Curcumin protects human umbilical vein endothelial cells against high oxidized low density lipoprotein-induced lipotoxicity and modulates autophagy. Iran. J. Basic Med. Sci. 24, 1734–1742. doi: 10.22038/IJBMS.2021.59969.13297.
  141. Zhao, W., Li, C., Gao, H., Wu, Q., Shi, J., and Chen, X. (2016b). Dihydrotanshinone I attenuates atherosclerosis in ApoE-deficient mice: Role of NOX4/NF-κB mediated lectin-like oxidized LDL receptor-1 (LOX-1) of the endothelium. Front. Pharmacol. 7, 418. doi: 10.3389/fphar.2016.00418.
  142. Zhao, W., Li, C., Zhang, H., Zhou, Q., Chen, X., Han, Y., et al. (2021b). Dihydrotanshinone I attenuates plaque vulnerability in apolipoprotein E-deficient mice: Role of receptor-interacting protein 3. Antioxid. Redox Signal. 34, 351–363. doi: 10.1089/ars.2019.7796.
  143. Zhu, J., Xu, Y., Ren, G., Hu, X., Wang, C., Yang, Z., et al. (2017). Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol. 815, 427–436. doi: 10.1016/j.ejphar.2017.09.047.
  144. Tan VP, Chung A, Yan BP, Gibson PR. Venous and arterial disease in inflammatory bowel disease. J Gastroenterol Hepatol. 2013 Jul;28(7):1095-113. doi: 10.1111/jgh.12260. PMID: 23662785.
  145. Liu H, Zhang Y, Sun S, Wang S. Efficacy of Terpenoid in Attenuating Aortic Atherosclerosis in Apolipoprotein-E Deficient Mice: A Meta-Analysis of Animal Studies. Biomed Res Int. 2019 Jul 17;2019:2931831. doi: 10.1155/2019/2931831. PMID: 31392210; PMCID: PMC6662500.
  146. Zhang M, Liu Y, Xu M, Zhang L, Liu Y, Liu X, Zhao Y, Zhu F, Xu R, Ou Z, Wang Y, Liu Q, Ma S, Wang T, He M, Lu Q, Li H, Huang J, Zhang Y. Carotid artery plaque intervention with Tongxinluo capsule (CAPITAL): A multicenter randomized double-blind parallel-group placebo-controlled study. Sci Rep. 2019 Mar 14;9(1):4545. doi: 10.1038/s41598-019-41118-z. PMID: 30872737; PMCID: PMC6418108.
  147. Brunner-La Rocca HP, Schindler R, Schlumpf M, Saller R, Suter M. Effects of the Tibetan herbal preparation PADMA 28 on blood lipids and lipid oxidisability in subjects with mild hypercholesterolaemia. Vasa. 2005 Feb;34(1):11-7. doi: 10.1024/0301-1526.34.1.11. PMID: 15786932.
  148. Shen X, Zou S, Jin J, Liu Y, Wu J, Qu L. Dengzhan Shengmai capsule versus Aspirin in the treatment of carotid atherosclerotic plaque: A single-centre, non-inferiority, prospective, randomised controlled trial. Phytomedicine. 2022 Nov;106:154408. doi: 10.1016/j.phymed.2022.154408. Epub 2022 Aug 19. PMID: 36029646.
  149. Wu J, Zhao L, Lin K, Lu L, Luo C. Chinese Herbal Medicines for Restenosis After Percutaneous Coronary Intervention: A Meta-Analysis of Randomized Controlled Trials. J Altern Complement Med. 2019 Oct;25(10):983-992. doi: 10.1089/acm.2018.0516. Epub 2019 Aug 29. PMID: 31464515.