SUMMARIZE
In conclusion, this manuscript explains how lipids and oxidative
stress-induced immune cell metabolism is reorganized and changed in
atherosclerosis, as well as traditional Chinese medicines, compounds,
and active ingredients that interfere with this process in the long-term
medical practice of traditional Chinese medicine, to discover and
identify immunometabolic markers/targets for the prevention and
treatment of atherosclerosis. In terms of lipids, the retention of
lipoproteins in the vascular wall of arteries is an important factor in
triggering atherosclerosis. In the pathology of atherosclerosis caused
by oxidative stress, glycolysis is a vital part of the response of
macrophages and T cells. Changes in the metabolism of these immune cells
affect the growth and stability of plaques. Even though these results
look good, there is insufficient research on how immune cell metabolism
responds to pathological changes in vivo. Putting any therapies
mentioned above into practice in the real world is still hard. More
early research funding and large-scale randomized clinical trials will
help find new ways to prevent and treat this disease.
- Aghasafari, P., George, U., and Pidaparti, R. (2019). A review of
inflammatory mechanism in airway diseases. Inflamm. Res. 68,
59–74. doi: 10.1007/s00011-018-1191-2.
- Andrejeva, G., and Rathmell, J. C. (2017). Similarities and
distinctions of cancer and immune metabolism in inflammation and
tumors. Cell Metab. 26, 49–70. doi:
10.1016/j.cmet.2017.06.004.
- Baardman, J., Licht, I., de Winther, M. P. J., and Van den Bossche, J.
(2015). Metabolic-epigenetic crosstalk in macrophage activation.Epigenomics 7, 1155–1164. doi: 10.2217/epi.15.71.
- Baardman, J., and Lutgens, E. (2020). Regulatory T cell metabolism in
atherosclerosis. Metabolites 10, 279. doi:
10.3390/metabo10070279.
- Banaszak, L. J., and Ranatunga, W. K. (2008). The assembly of
apoB-containing lipoproteins: a structural biology point of view.Ann. Med. 40, 253–267. doi: 10.1080/07853890701813070.
- Bao, X.-Y., Deng, L.-H., Huang, Z.-J., Daror, A. S., Wang, Z.-H., Jin,
W.-J., et al. (2021). Buyang Huanwu decoction enhances
revascularization via Akt/GSK3β/NRF2 pathway in diabetic hindlimb
ischemia. Oxid. Med. Cell. Longev. 2021, 1470829. doi:
10.1155/2021/1470829.
- Baragetti, A., Bonacina, F., Catapano, A. L., and Norata, G. D.
(2021). Effect of lipids and lipoproteins on hematopoietic cell
metabolism and commitment in atherosclerosis. Immunometabolism3, e210014. doi: 10.20900/immunometab20210014.
- Becker, M., Levings, M. K., and Daniel, C. (2017). Adipose-tissue
regulatory T cells: Critical players in adipose-immune crosstalk.Eur. J. Immunol. 47, 1867–1874. doi: 10.1002/eji.201646739.
- Bo, J., and Zhishan, D. (2017). Flavonoids from Carya cathayensis
Sarg. leaves inhibit carotid artery lesion formation induced by low
blood flow. Biomed. Pharmacother. 94, 88–92. doi:
10.1016/j.biopha.2017.07.076.
- Buck, M. D., O’Sullivan, D., and Pearce, E. L. (2015). T cell
metabolism drives immunity. J. Cell Biol. 210, 2104OIA169. doi:
10.1083/jcb.2104oia169.
- Cáceres, L., Paz, M. L., Garcés, M., Calabró, V., Magnani, N. D.,
Martinefski, M., et al. (2020). NADPH oxidase and mitochondria are
relevant sources of superoxide anion in the oxinflammatory response of
macrophages exposed to airborne particulate matter. Ecotoxicol.
Environ. Saf. 205, 111186. doi: 10.1016/j.ecoenv.2020.111186.
- Chang, C.-H., Curtis, J. D., Maggi, L. B., Jr, Faubert, B., Villarino,
A. V., O’Sullivan, D., et al. (2013). Posttranscriptional control of T
cell effector function by aerobic glycolysis. Cell 153,
1239–1251. doi: 10.1016/j.cell.2013.05.016.
- Chen, W., Li, X., Guo, S., Song, N., Wang, J., Jia, L., et al. (2019).
Tanshinone IIA harmonizes the crosstalk of autophagy and polarization
in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis.Int. Immunopharmacol. 70, 486–497. doi:
10.1016/j.intimp.2019.02.054.
- Cholesterol Treatment Trialists’ (CTT) Collaborators (2012). The
effects of lowering LDL cholesterol with statin therapy in people at
low risk of vascular disease: meta-analysis of individual data from 27
randomised trials. Lancet 380, 581–590. doi:
10.1016/s0140-6736(12)60367-5.
- Cochain, C., Vafadarnejad, E., Arampatzi, P., Pelisek, J., Winkels,
H., Ley, K., et al. (2018). Single-cell RNA-seq reveals the
transcriptional landscape and heterogeneity of aortic macrophages in
Murine atherosclerosis. Circ. Res. 122, 1661–1674. doi:
10.1161/CIRCRESAHA.117.312509.
- Cole, J. E., Astola, N., Cribbs, A. P., Goddard, M. E., Park, I.,
Green, P., et al. (2015). Indoleamine 2,3-dioxygenase-1 is protective
in atherosclerosis and its metabolites provide new opportunities for
drug development. Proc. Natl. Acad. Sci. U. S. A. 112,
13033–13038. doi: 10.1073/pnas.1517820112.
- Cole, J. E., Park, I., Ahern, D. J., Kassiteridi, C., Danso Abeam, D.,
Goddard, M. E., et al. (2018). Immune cell census in murine
atherosclerosis: cytometry by time of flight illuminates vascular
myeloid cell diversity. Cardiovasc. Res. 114, 1360–1371. doi:
10.1093/cvr/cvy109.
- Correction to: Mitochondrial respiration is reduced in
atherosclerosis, promoting necrotic core formation and reducing
relative fibrous cap thickness (2018). Arterioscler. Thromb.
Vasc. Biol. 38, e135. doi: 10.1161/ATV.0000000000000071.
- De Geest, B., Zhao, Z., Collen, D., and Holvoet, P. (1997). Effects of
adenovirus-mediated human apo A-I gene transfer on neointima formation
after endothelial denudation in apo E-deficient mice.Circulation 96, 4349–4356. doi: 10.1161/01.cir.96.12.4349.
- de Graaf, J., Hak-Lemmers, H. L., Hectors, M. P., Demacker, P. N.,
Hendriks, J. C., and Stalenhoef, A. F. (1991). Enhanced susceptibility
to in vitro oxidation of the dense low density lipoprotein subfraction
in healthy subjects. Arterioscler. Thromb. 11, 298–306. doi:
10.1161/01.atv.11.2.298.
- De Rosa, V., Galgani, M., Porcellini, A., Colamatteo, A., Santopaolo,
M., Zuchegna, C., et al. (2015). Glycolysis controls the induction of
human regulatory T cells by modulating the expression of FOXP3 exon 2
splicing variants. Nat. Immunol. 16, 1174–1184. doi:
10.1038/ni.3269.
- De Waele, J. J., Cheatham, M. L., Malbrain, M. L. N. G., Kirkpatrick,
A. W., Sugrue, M., Balogh, Z., et al. (2009). Recommendations for
research from the international conference of experts on
intra-abdominal hypertension and Abdominal Compartment Syndrome.Acta Clin. Belg. 64, 203–209. doi: 10.1179/acb.2009.036.
- Duan, J., Chen, C., Li, H., Ju, G., Gao, A., Sun, Y., et al. (2022).
Multifaceted protective effects of hesperidin by aromatic hydrocarbon
receptor in endothelial cell injury induced by Benzo[a]pyrene.Nutrients 14, 574. doi: 10.3390/nu14030574.
- Early, J. O., Menon, D., Wyse, C. A., Cervantes-Silva, M. P., Zaslona,
Z., Carroll, R. G., et al. (2018). Circadian clock protein BMAL1
regulates IL-1β in macrophages via NRF2. Proc. Natl. Acad. Sci.
U. S. A. 115, E8460–E8468. doi: 10.1073/pnas.1800431115.
- Enas, E. A., Varkey, B., Dharmarajan, T. S., Pare, G., and Bahl, V. K.
(2019). Lipoprotein(a): An independent, genetic, and causal factor for
cardiovascular disease and acute myocardial infarction. Indian
Heart J. 71, 99–112. doi: 10.1016/j.ihj.2019.03.004.
- Feinberg, M. W., and Jain, M. K. (2005). Role of transforming growth
factor-beta1/Smads in regulating vascular inflammation and
atherogenesis. Panminerva Med. 47, 169–186. Available at:
https://www.ncbi.nlm.nih.gov/pubmed/16462725.
- Folco, E. J., and Sukhova, G. K. (2014). Quillard T & Libby P
Moderate hypoxia potentiates interleukin-1beta production in activated
human macrophages. Circ Res 115, 875–883. doi:
10.1161/CIRCRESAHA.115.304437.
- Font-Burgada, J., Sun, B., and Karin, M. (2016). Obesity and Cancer:
The Oil that Feeds the Flame. Cell Metab. 23, 48–62. doi:
10.1016/j.cmet.2015.12.015.
- Forteza, M. J., Polyzos, K. A., Baumgartner, R., Suur, B. E.,
Mussbacher, M., Johansson, D. K., et al. (2018). Activation of the
regulatory T-cell/indoleamine 2,3-dioxygenase axis reduces vascular
inflammation and atherosclerosis in hyperlipidemic mice. Front.
Immunol. 9. doi: 10.3389/fimmu.2018.00950.
- Gaddis, D. E., Padgett, L. E., Wu, R., McSkimming, C., Romines, V.,
Taylor, A. M., et al. (2018). Apolipoprotein AI prevents regulatory to
follicular helper T cell switching during atherosclerosis. Nat.
Commun. 9. doi: 10.1038/s41467-018-03493-5.
- Gao, L.-N., Zhou, X., Lu, Y.-R., Li, K., Gao, S., Yu, C.-Q., et al.
(2018). Dan-Lou prescription inhibits foam cell formation induced by
ox-LDL via the TLR4/NF-κB and PPARγ signaling pathways. Front.
Physiol. 9. doi: 10.3389/fphys.2018.00590.
- Gao, W., Li, X., Liu, Z., Fu, W., Sun, Y., Cao, W., et al. (2019). A
redox-responsive self-assembled nanoprobe for photoacoustic
inflammation imaging to assess atherosclerotic plaque vulnerability.Anal. Chem. 91, 1150–1156. doi: 10.1021/acs.analchem.8b04912.
- Georgiev, P., Charbonnier, L.-M., and Chatila, T. A. (2019).
Regulatory T cells: The many faces of Foxp3. J. Clin. Immunol.39, 623–640. doi: 10.1007/s10875-019-00684-7.
- Gerriets, V. A., Danzaki, K., Kishton, R. J., Eisner, W., Nichols, A.
G., Saucillo, D. C., et al. (2016). Leptin directly promotes T-cell
glycolytic metabolism to drive effector T-cell differentiation in a
mouse model of autoimmunity. Eur. J. Immunol. 46, 1970–1983.
doi: 10.1002/eji.201545861.
- Gerriets, V. A., Kishton, R. J., Nichols, A. G., Macintyre, A. N.,
Inoue, M., Ilkayeva, O., et al. (2015). Metabolic programming and
PDHK1 control CD4þ T cell subsets and inflammation. J Clin
Invest 125, 194–207.
- Getz, G. S., and Reardon, C. A. (2018). Apoprotein E and reverse
cholesterol transport. Int. J. Mol. Sci. 19, 3479. doi:
10.3390/ijms19113479.
- Groh, L., Keating, S. T., Joosten, L. A. B., Netea, M. G., and Riksen,
N. P. (2018). Monocyte and macrophage immunometabolism in
atherosclerosis. Semin. Immunopathol. 40, 203–214. doi:
10.1007/s00281-017-0656-7.
- Guan, S., Sun, J., Jiareke, T., and Ge, X. (2018). Evaluation of
TurboHawk plaque rotation system in treatment of superficial femoral
atherosclerosis. Med. Sci. Monit. 24, 9026–9031. doi:
10.12659/MSM.912142.
- Guo, H., Callaway, J. B., and Ting, J. P.-Y. (2015). Inflammasomes:
mechanism of action, role in disease, and therapeutics. Nat.
Med. 21, 677–687. doi: 10.1038/nm.3893.
- Guo, H., Chen, L., Li, C., Wang, D., Luo, Y., Sun, G., et al. (2021).
Anti-hyperlipidemic effects of the compound Danshen tablet: roles of
antioxidation, anti-inflammation, anticoagulation, and anti-apoptosis.Ann. Transl. Med. 9, 744. doi: 10.21037/atm-20-7915.
- He, L., Liu, Y.-Y., Wang, K., Li, C., Zhang, W., Li, Z.-Z., et al.
(2021). Tanshinone IIA protects human coronary artery endothelial
cells from ferroptosis by activating the NRF2 pathway. Biochem.
Biophys. Res. Commun. 575, 1–7. doi: 10.1016/j.bbrc.2021.08.067.
- Hotamisligil, G. S. (2017). Foundations of immunometabolism and
implications for metabolic health and disease. Immunity 47,
406–420. doi: 10.1016/j.immuni.2017.08.009.
- Hsu, T.-S., and Lai, M.-Z. (2018). Hypoxia-inducible factor 1α plays a
predominantly negative role in regulatory T cell functions. J.
Leukoc. Biol. 104, 911–918. doi: 10.1002/jlb.mr1217-481r.
- Hu, Y., Li, H., Li, R., Wu, Z., Yang, W., and Qu, W. (2020). Puerarin
protects vascular smooth muscle cells from oxidized low-density
lipoprotein-induced reductions in viability via inhibition of the p38
MAPK and JNK signaling pathways. Exp. Ther. Med. 20, 270. doi:
10.3892/etm.2020.9400.
- Huang, Z., Tian, G., Cheng, S., Zhao, D., Zhang, Y., Jia, Y., et al.
(2018). Polydatin attenuates atherosclerosis in ApoE -∕- mice through
PBEF mediated reduction of cholesterol deposition. Am. J. Chin.
Med. 46, 1841–1859. doi: 10.1142/S0192415X18500921.
- Ip, W. K. E., Hoshi, N., Shouval, D. S., Snapper, S., and Medzhitov,
R. (2017). Anti-inflammatory effect of IL-10 mediated by metabolic
reprogramming of macrophages. Science 356, 513–519. doi:
10.1126/science.aal3535.
- Jha, A. K., Huang, S. C.-C., Sergushichev, A., Lampropoulou, V.,
Ivanova, Y., Loginicheva, E., et al. (2015). Network integration of
parallel metabolic and transcriptional data reveals metabolic modules
that regulate macrophage polarization. Immunity 42, 419–430.
doi: 10.1016/j.immuni.2015.02.005.
- Jones, W. S., Mulder, H., Wruck, L. M., Pencina, M. J., Kripalani, S.,
Muñoz, D., et al. (2021). Comparative effectiveness of aspirin dosing
in cardiovascular disease. N. Engl. J. Med. 384, 1981–1990.
doi: 10.1056/NEJMoa2102137.
- Kälin, S., Becker, M., Ott, V. B., Serr, I., Hosp, F., Mollah, M. M.
H., et al. (2017). A Stat6/pten axis links regulatory T cells with
adipose tissue function. Cell Metab. 26, 475-492.e7. doi:
10.1016/j.cmet.2017.08.008.
- Ketelhuth, D. F. J., and Hansson, G. K. (2016). Adaptive response of T
and B cells in atherosclerosis. Circ. Res. 118, 668–678. doi:
10.1161/CIRCRESAHA.115.306427.
- Ketelhuth, D. F. J., Lutgens, E., Bäck, M., Binder, C. J., Van den
Bossche, J., Daniel, C., et al. (2019). Immunometabolism and
atherosclerosis: perspectives and clinical significance: a position
paper from the Working Group on Atherosclerosis and Vascular Biology
of the European Society of Cardiology. Cardiovasc. Res. 115,
1385–1392. doi: 10.1093/cvr/cvz166.
- Koelwyn, G. J., Corr, E. M., Erbay, E., and Moore, K. J. (2018).
Regulation of macrophage immunometabolism in atherosclerosis.Nat. Immunol. 19, 526–537. doi: 10.1038/s41590-018-0113-3.
- Ku, C.-W., Ho, T.-J., Huang, C.-Y., Chu, P.-M., Ou, H.-C., and Hsieh,
P.-L. (2021). Cordycepin attenuates palmitic acid-induced inflammation
and apoptosis of vascular endothelial cells through mediating
PI3K/Akt/eNOS signaling pathway. Am. J. Chin. Med. 49,
1703–1722. doi: 10.1142/S0192415X21500804.
- L i, C.-S., Qu, Z.-Q., Wang, S.-S., Hao, X.-W., Zhang, X.-Q., Guan,
J., et al. (2011). Effects of suxiao jiuxin pill (see test) on
oxidative stress and inflammatory response in rats with experimental
atherosclerosis. J. Tradit. Chin. Med. 31, 107–111. doi:
10.1016/s0254-6272(11)60022-8.
- Laccotripe, M., Zanni, E. E., Makrides, S. C., Jonas, A., and Zannis,
V. I. (1997). 1.P.12 Hydrophobic residues between aminoacids 211–229
of apoA-I play an important role in binding to lipids and
lipoproteins. Atherosclerosis 134, 19. doi:
10.1016/s0021-9150(97)88193-2.
- Lachmandas, E., Boutens, L., Ratter, J. M., Hijmans, A., Hooiveld, G.
J., Joosten, L. A. B., et al. (2016). Microbial stimulation of
different Toll-like receptor signalling pathways induces diverse
metabolic programmes in human monocytes. Nat. Microbiol. 2,
16246. doi: 10.1038/nmicrobiol.2016.246.
- Lee, S. E., Jeong, S. I., Yang, H., Jeong, S. H., Jang, Y. P., Park,
C.-S., et al. (2012). Extract of Salvia miltiorrhiza (Danshen) induces
Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action
in RAW 264.7 macrophages. J. Ethnopharmacol. 139, 541–548.
doi: 10.1016/j.jep.2011.11.046.
- Legein, B., Janssen, E. M., Theelen, T. L., Gijbels, M. J., Walraven,
J., Klarquist, J. S., et al. (2015). Ablation of CD8a(þ) dendritic
cell mediated crosspresentation does not impact atherosclerosis in
hyperlipidemic mice. Sci Rep 5.
- Li, F., Zhang, T., He, Y., Gu, W., Yang, X., Zhao, R., et al. (2020).
Inflammation inhibition and gut microbiota regulation by TSG to combat
atherosclerosis in ApoE-/- mice. J. Ethnopharmacol. 247,
112232. doi: 10.1016/j.jep.2019.112232.
- Li, W., Jin, C., Vaidya, A., Wu, Y., Rexrode, K., Zheng, X., et al.
(2017). Blood pressure trajectories and the risk of intracerebral
hemorrhage and cerebral infarction: A prospective study.Hypertension 70, 508–514. doi:
10.1161/HYPERTENSIONAHA.117.09479.
- Li, Y., Zhang, L., Ren, P., Yang, Y., Li, S., Qin, X., et al. (2021c).
Qing-Xue-Xiao-Zhi formula attenuates atherosclerosis by inhibiting
macrophage lipid accumulation and inflammatory response via
TLR4/MyD88/NF-κB pathway regulation. Phytomedicine 93, 153812.
doi: 10.1016/j.phymed.2021.153812.
- Linton, M. F., Yancey, P. G., Davies, S. S., Jerome, W. G., Linton, E.
F., Song, W. L., et al. (2000). The Role of Lipids and
Lipoproteins in Atherosclerosis . Dartmouth (MA: MDText.com, Inc
Available at: https://www.ncbi.nlm.nih.gov/pubmed/26844337.
- Littlewood-Evans, A., Sarret, S., Apfel, V., Loesle, P., Dawson, J.,
Zhang, J., et al. (2016). GPR91 senses extracellular succinate
released from inflammatory macrophages and exacerbates rheumatoid
arthritis. J. Exp. Med. 213, 1655–1662. doi:
10.1084/jem.20160061.
- Liu, B., Song, Z., Yu, J., Li, P., Tang, Y., and Ge, J. (2020a). The
atherosclerosis-ameliorating effects and molecular mechanisms of
BuYangHuanWu decoction. Biomed. Pharmacother. 123, 109664. doi:
10.1016/j.biopha.2019.109664.
- Liu, X., Wu, X.-P., Zhu, X.-L., Li, T., and Liu, Y. (2017). IRG1
increases MHC class I level in macrophages through STAT-TAP1 axis
depending on NADPH oxidase mediated reactive oxygen species.Int. Immunopharmacol. 48, 76–83. doi:
10.1016/j.intimp.2017.04.012.
- Lu, J., Chen, X., Xu, X., Liu, J., Zhang, Z., Wang, M., et al.
(2019a). Active polypeptides from Hirudo inhibit endothelial cell
inflammation and macrophage foam cell formation by regulating the
LOX-1/LXR-α/ABCA1 pathway. Biomed. Pharmacother. 115, 108840.
doi: 10.1016/j.biopha.2019.108840.
- Lu, L., Qin, Y., Zhang, X., Chen, C., Xu, X., Yu, C., et al. (2019b).
Shexiang Baoxin Pill alleviates the atherosclerotic lesions in mice
via improving inflammation response and inhibiting lipid accumulation
in the arterial wall. Mediators Inflamm. 2019, 6710759. doi:
10.1155/2019/6710759.
- Lü, S.-L., Dang, G.-H., Deng, J.-C., Liu, H.-Y., Liu, B., Yang, J., et
al. (2020). Shikonin attenuates hyperhomocysteinemia-induced CD4+ T
cell inflammatory activation and atherosclerosis in ApoE-/- mice by
metabolic suppression. Acta Pharmacol. Sin. 41, 47–55. doi:
10.1038/s41401-019-0308-7.
- Ma, Y., Temkin, S. M., Hawkridge, A. M., Guo, C., Wang, W., Wang,
X.-Y., et al. (2018). Fatty acid oxidation: An emerging facet of
metabolic transformation in cancer. Cancer Lett. 435, 92–100.
doi: 10.1016/j.canlet.2018.08.006.
- Mailer, R. K. W., Gisterå, A., Polyzos, K. A., Ketelhuth, D. F. J.,
and Hansson, G. K. (2017). Hypercholesterolemia enhances T cell
receptor signaling and increases the regulatory T cell population.Sci. Rep. 7, 15655. doi: 10.1038/s41598-017-15546-8.
- Malekmohammad, K., Bezsonov, E. E., and Rafieian-Kopaei, M. (2021).
Role of lipid accumulation and inflammation in atherosclerosis: Focus
on molecular and cellular mechanisms. Front. Cardiovasc. Med.8, 707529. doi: 10.3389/fcvm.2021.707529.
- Mao M.-J., Hu J.-P., Wang C., Zhang Y.-Y., and Liu P. (2012). Effects
of Chinese herbal medicine Guanxinkang on expression of
PPARγ-LXRα-ABCA1 pathway in ApoE-knockout mice with atherosclerosis.Zhong Xi Yi Jie He Xue Bao 10, 814–820. doi:
10.3736/jcim20120713.
- Marsch, E., Sluimer, J. C., and Daemen, M. J. A. P. (2013). Hypoxia in
atherosclerosis and inflammation. Curr. Opin. Lipidol. 24,
393–400. doi: 10.1097/MOL.0b013e32836484a4.
- Marsch, E., Theelen, T. L., Demandt, J. A. F., Jeurissen, M., van
Gink, M., Verjans, R., et al. (2014). Reversal of hypoxia in murine
atherosclerosis prevents necrotic core expansion by enhancing
efferocytosis. Arterioscler. Thromb. Vasc. Biol. 34,
2545–2553. doi: 10.1161/ATVBAHA.114.304023.
- Mattmiller, S. A., Corl, C. M., Gandy, J. C., Loor, J. J., and
Sordillo, L. M. (2011). Glucose transporter and hypoxia-associated
gene expression in the mammary gland of transition dairy cattle.J. Dairy Sci. 94, 2912–2922. doi: 10.3168/jds.2010-3936.
- McCulloch, L., Allan, S. M., Emsley, H. C., Smith, C. J., and McColl,
B. W. (2019). Interleukin-1 receptor antagonist treatment in acute
ischaemic stroke does not alter systemic markers of anti-microbial
defence. F1000Res. 8, 1039. doi:
10.12688/f1000research.19308.2.
- McIvor, N. P., Willinsky, R. A., TerBrugge, K. G., Rutka, J. A., and
Freeman, J. L. (1994). Validity of test occlusion studies prior to
internal carotid artery sacrifice. Head Neck 16, 11–16. doi:
10.1002/hed.2880160104.
- Mills, E. L., Kelly, B., and O’Neill, L. A. J. (2017). Mitochondria
are the powerhouses of immunity. Nat. Immunol. 18, 488–498.
doi: 10.1038/ni.3704.
- Mills, E. L., Ryan, D. G., Prag, H. A., Dikovskaya, D., Menon, D.,
Zaslona, Z., et al. (2018). Itaconate is an anti-inflammatory
metabolite that activates Nrf2 via alkylation of KEAP1. Nature556, 113–117. doi: 10.1038/nature25986.
- Miska, J., Lee-Chang, C., Rashidi, A., Muroski, M. E., Chang, A. L.,
Lopez-Rosas, A., et al. (2022). HIF-1α is a metabolic switch between
glycolytic-driven migration and oxidative phosphorylation-driven
immunosuppression of tregs in glioblastoma. Cell Rep. 39,
110934. doi: 10.1016/j.celrep.2022.110934.
- Mo, J., Yang, R., Li, F., Zhang, X., He, B., Zhang, Y., et al. (2018).
Scutellarin protects against vascular endothelial dysfunction and
prevents atherosclerosis via antioxidation. Phytomedicine 42,
66–74. doi: 10.1016/j.phymed.2018.03.021.
- Montaño, A., Hanley, D. F., and Hemphill, J. C., III (2021).
“Hemorrhagic stroke,” in Interventional NeuroradiologyHandbook of clinical neurology. (Elsevier), 229–248. doi:
10.1016/b978-0-444-64034-5.00019-5.
- Moore, K. J., Sheedy, F. J., and Fisher, E. A. (2013). Macrophages in
atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13,
709–721. doi: 10.1038/nri3520.
- Nakashima, Y., Wight, T. N., and Sueishi, K. (2008). Early
atherosclerosis in humans: role of diffuse intimal thickening and
extracellular matrix proteoglycans. Cardiovasc. Res. 79,
14–23. doi: 10.1093/cvr/cvn099.
- Neupane, R., Jin, X., Sasaki, T., Li, X., Murohara, T., and Cheng, X.
W. (2019). Immune disorder in atherosclerotic cardiovascular disease -
clinical implications of using circulating T-cell subsets as
biomarkers. Circ. J. 83, 1431–1438. doi:
10.1253/circj.CJ-19-0114.
- Newton, R., Priyadharshini, B., and Turka, L. A. (2016).
Immunometabolism of regulatory T cells. Nat. Immunol. 17,
618–625. doi: 10.1038/ni.3466.
- Nomura, M., Liu, J., Rovira, I. I., Gonzalez-Hurtado, E., Lee, J.,
Wolfgang, M. J., et al. (2016). Fatty acid oxidation in macrophage
polarization. Nat. Immunol. 17, 216–217. doi: 10.1038/ni.3366.
- Olsen, R. K. J., Cornelius, N., and Gregersen, N. (2013). Genetic and
cellular modifiers of oxidative stress: what can we learn from fatty
acid oxidation defects? Mol. Genet. Metab. 110 Suppl, S31-9.
doi: 10.1016/j.ymgme.2013.10.007.
- O’Neill, L. A. J., Kishton, R. J., and Rathmell, J. (2016). A guide to
immunometabolism for immunologists. Nat. Rev. Immunol. 16,
553–565. doi: 10.1038/nri.2016.70.
- Pacella, I., and Piconese, S. (2019). Immunometabolic checkpoints of
Treg dynamics: Adaptation to microenvironmental opportunities and
challenges. Front. Immunol. 10, 1889. doi:
10.3389/fimmu.2019.01889.
- Pai, P.-Y., Chou, W.-C., Chan, S.-H., Wu, S.-Y., Chen, H.-I., Li,
C.-W., et al. (2021). Epigallocatechin gallate reduces
homocysteine-caused oxidative damages through modulation SIRT1/AMPK
pathway in endothelial cells. Am. J. Chin. Med. 49, 113–129.
doi: 10.1142/S0192415X21500063.
- Paiva, C. N., and Bozza, M. T. (2014). Are reactive oxygen species
always detrimental to pathogens? Antioxid. Redox Signal. 20,
1000–1037. doi: 10.1089/ars.2013.5447.
- Polyzos, K. A., Ovchinnikova, O., Berg, M., Baumgartner, R., Agardh,
H., Pirault, J., et al. (2015). Inhibition of indoleamine
2,3-dioxygenase promotes vascular inflammation and increases
atherosclerosis in Apoe-/- mice. Cardiovasc. Res. 106,
295–302. doi: 10.1093/cvr/cvv100.
- Raud, B., Roy, D. G., Divakaruni, A. S., Tarasenko, T. N., Franke, R.,
Ma, E. H., et al. (2018). Etomoxir actions on regulatory and memory T
cells are independent of Cpt1a-mediated fatty acid oxidation.Cell Metab. doi: 10.1016/j.cmet.2018.06.002.
- Ridker, P. M., Everett, B. M., Pradhan, A., MacFadyen, J. G., Solomon,
D. H., Zaharris, E., et al. (2019). Low-dose methotrexate for the
prevention of atherosclerotic events. N. Engl. J. Med. 380,
752–762. doi: 10.1056/NEJMoa1809798.
- Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W.
H., Ballantyne, C., et al. (2017). Antiinflammatory therapy with
canakinumab for atherosclerotic disease. N. Engl. J. Med. 377,
1119–1131. doi: 10.1056/nejmoa1707914.
- Robbins, C. S., Hilgendorf, I., Weber, G. F., Theurl, I., Iwamoto, Y.,
Figueiredo, J.-L., et al. (2013). Local proliferation dominates
lesional macrophage accumulation in atherosclerosis. Nat. Med.19, 1166–1172. doi: 10.1038/nm.3258.
- Russell, D. G., Huang, L., and VanderVen, B. C. (2019).
Immunometabolism at the interface between macrophages and pathogens.Nat. Rev. Immunol. 19, 291–304. doi:
10.1038/s41577-019-0124-9.
- Saigusa, R., Winkels, H., and Ley, K. (2020). T cell subsets and
functions in atherosclerosis. Nat. Rev. Cardiol. 17, 387–401.
doi: 10.1038/s41569-020-0352-5.
- Sakaguchi, S., Mikami, N., Wing, J. B., Tanaka, A., Ichiyama, K., and
Ohkura, N. (2020). Regulatory T cells and human disease. Annu.
Rev. Immunol. 38, 541–566. doi:
10.1146/annurev-immunol-042718-041717.
- Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M.
(1995). Immunologic self-tolerance maintained by activated T cells
expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single
mechanism of self-tolerance causes various autoimmune diseases.J. Immunol. 155, 1151–1164. Available at:
https://www.ncbi.nlm.nih.gov/pubmed/7636184.
- Santos, M. G. dos, Pegoraro, M., Sandrini, F., and Macuco, E. C.
(2008). Risk factors for the development of atherosclerosis in
childhood and adolescence. Arq. Bras. Cardiol. 90, 276–283.
doi: 10.1590/s0066-782x2008000400012.
- Sergin, I., Evans, T. D., Bhattacharya, S., and Razani, B. (2014).
Hypoxia in plaque macrophages: a new danger signal for
interleukin-1beta activation? Circ Res 115, 817–820. doi:
10.1161/CIRCRESAHA.114.305197.
- Shah, P. K. (2014). Biomarkers of plaque instability. Curr.
Cardiol. Rep. 16. doi: 10.1007/s11886-014-0547-7.
- Shirai, T., Nazarewicz, R. R., Wallis, B. B., Yanes, R. E., Watanabe,
R., Hilhorst, M., et al. (2016). The glycolytic enzyme PKM2 bridges
metabolic and inflammatory dysfunction in coronary artery disease.J. Exp. Med. 213, 337–354. doi: 10.1084/jem.20150900.
- Sniderman, A. D., Thanassoulis, G., Glavinovic, T., Navar, A. M.,
Pencina, M., Catapano, A., et al. (2019). Apolipoprotein B particles
and cardiovascular disease: A narrative review. JAMA Cardiol.4, 1287–1295. doi: 10.1001/jamacardio.2019.3780.
- Stacpoole, P. W. (2017). Therapeutic targeting of the pyruvate
dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in
cancer. J. Natl. Cancer Inst. 109. doi: 10.1093/jnci/djx071.
- Stienstra, R., Netea-Maier, R. T., Riksen, N. P., Joosten, L. A. B.,
and Netea, M. G. (2017). Specific and complex reprogramming of
cellular metabolism in myeloid cells during innate immune responses.Cell Metab. 26, 142–156. doi: 10.1016/j.cmet.2017.06.001.
- Su, X., Wellen, K. E., and Rabinowitz, J. D. (2016). Metabolic control
of methylation and acetylation. Curr. Opin. Chem. Biol. 30,
52–60. doi: 10.1016/j.cbpa.2015.10.030.
- Sun, B., Yang, D., Yin, Y.-Z., and Xiao, J. (2020). Estrogenic and
anti-inflammatory effects of pseudoprotodioscin in
atherosclerosis-prone mice: Insights into endothelial cells and
perivascular adipose tissues. Eur. J. Pharmacol. 869, 172887.
doi: 10.1016/j.ejphar.2019.172887.
- Sun, G.-B., Qin, M., Ye, J.-X., Pan, R.-L., Meng, X.-B., Wang, M., et
al. (2013). Inhibitory effects of myricitrin on oxidative
stress-induced endothelial damage and early atherosclerosis in ApoE-/-
mice. Toxicol. Appl. Pharmacol. 271, 114–126. doi:
10.1016/j.taap.2013.04.015.
- Tabas, I., and Bornfeldt, K. E. (2016). Macrophage phenotype and
function in different stages of atherosclerosis. Circ. Res.118, 653–667. doi: 10.1161/CIRCRESAHA.115.306256.
- Tabas, I., and Bornfeldt, K. E. (2020). Intracellular and
intercellular aspects of macrophage immunometabolism in
atherosclerosis. Circ. Res. 126, 1209–1227. doi:
10.1161/CIRCRESAHA.119.315939.
- Tabas, I., and Glass, C. K. (2013). Anti-inflammatory therapy in
chronic disease: challenges and opportunities. Science 339,
166–172. doi: 10.1126/science.1230720.
- Tabas, I., and Lichtman, A. H. (2017). Monocyte-macrophages and T
cells in atherosclerosis. Immunity 47, 621–634. doi:
10.1016/j.immuni.2017.09.008.
- Tan, Z., Xie, N., Cui, H., Moellering, D. R., Abraham, E., Thannickal,
V. J., et al. (2015). Pyruvate dehydrogenase kinase 1 participates in
macrophage polarization via regulating glucose metabolism. J.
Immunol. 194, 6082–6089. doi: 10.4049/jimmunol.1402469.
- Tirunavalli, S. K., Gourishetti, K., Kotipalli, R. S. S., Kuncha, M.,
Kathirvel, M., Kaur, R., et al. (2021). Dehydrozingerone ameliorates
Lipopolysaccharide induced acute respiratory distress syndrome by
inhibiting cytokine storm, oxidative stress via modulating the
MAPK/NF-κB pathway. Phytomedicine 92, 153729. doi:
10.1016/j.phymed.2021.153729.
- Tokgozoglu, L., and Kayikcioglu, M. (2021). Familial
hypercholesterolemia: Global burden and approaches. Curr.
Cardiol. Rep. 23, 151. doi: 10.1007/s11886-021-01565-5.
- Tomas, L., Edsfeldt, A., Mollet, I. G., Perisic Matic, L., Prehn, C.,
Adamski, J., et al. (2018). Altered metabolism distinguishes high-risk
from stable carotid atherosclerotic plaques. Eur. Heart J. 39,
2301–2310. doi: 10.1093/eurheartj/ehy124.
- Van den Bossche, J., Baardman, J., Otto, N. A., van der Velden, S.,
Neele, A. E., van den Berg, S. M., et al. (2016). Mitochondrial
dysfunction prevents repolarization of inflammatory macrophages.Cell Rep. 17, 684–696. doi: 10.1016/j.celrep.2016.09.008.
- Van den Bossche, J., O’Neill, L. A., and Menon, D. (2017). Macrophage
immunometabolism: Where are we (going)? Trends Immunol. 38,
395–406. doi: 10.1016/j.it.2017.03.001.
- van Tuijl, J., Joosten, L. A. B., Netea, M. G., Bekkering, S., and
Riksen, N. P. (2019). Immunometabolism orchestrates training of innate
immunity in atherosclerosis. Cardiovasc. Res. 115, 1416–1424.
doi: 10.1093/cvr/cvz107.
- Wan, Q., Liu, Z.-Y., Yang, Y.-P., and Liu, S.-M. (2016). Effect of
curcumin on inhibiting atherogenesis by down-regulating lipocalin-2
expression in apolipoprotein E knockout mice. Biomed. Mater.
Eng. 27, 577–587. doi: 10.3233/BME-161610.
- Wang, F., Beck-García, K., Zorzin, C., Schamel, W. W. A., and Davis,
M. M. (2016). Inhibition of T cell receptor signaling by cholesterol
sulfate, a naturally occurring derivative of membrane cholesterol.Nat. Immunol. 17, 844–850. doi: 10.1038/ni.3462.
- West, A. P., Khoury-Hanold, W., Staron, M., Tal, M. C., Pineda, C. M.,
Lang, S. M., et al. (2015). Mitochondrial DNA stress primes the
antiviral innate immune response. Nature 520, 553–557. doi:
10.1038/nature14156.
- Winkels, H., Ehinger, E., Vassallo, M., Buscher, K., Dinh, H. Q.,
Kobiyama, K., et al. (2018). Atlas of the immune cell repertoire in
mouse atherosclerosis defined by single-cell RNA-sequencing and mass
cytometry. Circ. Res. 122, 1675–1688. doi:
10.1161/CIRCRESAHA.117.312513.
- Wu, H., Wang, X., Gao, S., Dai, L., Tong, H., Gao, H., et al. (2019).
Yiqi-Huoxue granule (YQHX) downregulates prothrombotic factors by
modulating KLF2 and NF-κB in HUVECs following LPS stimulation.Oxid. Med. Cell. Longev. 2019, 9425183. doi:
10.1155/2019/9425183.
- Wu, R., Chen, F., Wang, N., Tang, D., and Kang, R. (2020). ACOD1 in
immunometabolism and disease. Cell. Mol. Immunol. 17, 822–833.
doi: 10.1038/s41423-020-0489-5.
- Xiang, D., Li, Y., Cao, Y., Huang, Y., Zhou, L., Lin, X., et al.
(2021). Different effects of endothelial extracellular vesicles and
LPS-induced endothelial extracellular vesicles on vascular smooth
muscle cells: Role of curcumin and its derivatives. Front.
Cardiovasc. Med. 8, 649352. doi: 10.3389/fcvm.2021.649352.
- Xiong, M., Jia, C., Cui, J., Wang, P., Du, X., Yang, Q., et al.
(2015). Shexiang Tongxin dropping pill attenuates atherosclerotic
lesions in ApoE deficient mouse model. J. Ethnopharmacol. 159,
84–92. doi: 10.1016/j.jep.2014.11.013.
- Yanik, A., Yetkin, E., Senen, K., Atak, R., Ileri, M., Kural, T., et
al. (2000). Value of dobutamine stress echocardiography for diagnosis
of coronary artery disease in patients with left bundle branch
blockage. Coron. Artery Dis. 11, 545–548. doi:
10.1097/00019501-200010000-00005.
- Ying, M., You, D., Zhu, X., Cai, L., Zeng, S., and Hu, X. (2021).
Lactate and glutamine support NADPH generation in cancer cells under
glucose deprived conditions. Redox Biol. 46, 102065. doi:
10.1016/j.redox.2021.102065.
- Yuan, H.-X., Feng, X.-E., Liu, E.-L., Ge, R., Zhang, Y.-L., Xiao,
B.-G., et al. (2019a).
5,2’-dibromo-2,4’,5’-trihydroxydiphenylmethanone attenuates
LPS-induced inflammation and ROS production in EA.hy926 cells via
HMBOX1 induction. J. Cell. Mol. Med. 23, 453–463. doi:
10.1111/jcmm.13948.
- Yuan, L., Li, Q., Zhang, Z., Liu, Q., Wang, X., and Fan, L. (2020).
Tanshinone IIA inhibits the adipogenesis and inflammatory response in
ox-LDL-challenged human monocyte-derived macrophages via regulating
miR-130b/WNT5A. J. Cell. Biochem. 121, 1400–1408. doi:
10.1002/jcb.29375.
- Yuan, X., Chang, C.-Y., You, R., Shan, M., Gu, B. H., Madison, M. C.,
et al. (2019b). Cigarette smoke-induced reduction of C1q promotes
emphysema. JCI Insight 5. doi: 10.1172/jci.insight.124317.
- Zha, Y., Liu, H., Lin, X., Yu, L., Gao, P., Li, Y., et al. (2022).
Immune deviation in the decidua during term and preterm labor.Front. Immunol. 13, 877314. doi: 10.3389/fimmu.2022.877314.
- Zhang, S., Jin, S., Zhang, S., Li, Y.-Y., Wang, H., Chen, Y., et al.
(2022a). Vitexin protects against high glucose-induced endothelial
cell apoptosis and oxidative stress via Wnt/β-catenin and Nrf2
signalling pathway. Arch. Physiol. Biochem. , 1–10. doi:
10.1080/13813455.2022.2028845.
- Zhang, X., Liu, J., Pang, X., Zhao, J., and Xu, S. (2020). Curcumin
suppresses aldosterone-induced CRP generation in rat vascular smooth
muscle cells via interfering with the ROS-ERK1/2 signaling pathway.Evid. Based. Complement. Alternat. Med. 2020, 3245653. doi:
10.1155/2020/3245653.
- Zhao, D., Tong, L., Zhang, L., Li, H., Wan, Y., and Zhang, T. (2016a).
Tanshinone II A stabilizes vulnerable plaques by suppressing RAGE
signaling and NF-κB activation in apolipoprotein-E-deficient mice.Mol. Med. Rep. 14, 4983–4990. doi: 10.3892/mmr.2016.5916.
- Zhao, L., Luo, R., Yu, H., Li, S., Yu, Q., Wang, W., et al. (2021a).
Curcumin protects human umbilical vein endothelial cells against high
oxidized low density lipoprotein-induced lipotoxicity and modulates
autophagy. Iran. J. Basic Med. Sci. 24, 1734–1742. doi:
10.22038/IJBMS.2021.59969.13297.
- Zhao, W., Li, C., Gao, H., Wu, Q., Shi, J., and Chen, X. (2016b).
Dihydrotanshinone I attenuates atherosclerosis in ApoE-deficient mice:
Role of NOX4/NF-κB mediated lectin-like oxidized LDL receptor-1
(LOX-1) of the endothelium. Front. Pharmacol. 7, 418. doi:
10.3389/fphar.2016.00418.
- Zhao, W., Li, C., Zhang, H., Zhou, Q., Chen, X., Han, Y., et al.
(2021b). Dihydrotanshinone I attenuates plaque vulnerability in
apolipoprotein E-deficient mice: Role of receptor-interacting protein
3. Antioxid. Redox Signal. 34, 351–363. doi:
10.1089/ars.2019.7796.
- Zhu, J., Xu, Y., Ren, G., Hu, X., Wang, C., Yang, Z., et al. (2017).
Tanshinone IIA Sodium sulfonate regulates antioxidant system,
inflammation, and endothelial dysfunction in atherosclerosis by
downregulation of CLIC1. Eur. J. Pharmacol. 815, 427–436. doi:
10.1016/j.ejphar.2017.09.047.
- Tan VP, Chung A, Yan BP, Gibson PR. Venous and arterial disease in
inflammatory bowel disease. J Gastroenterol Hepatol. 2013
Jul;28(7):1095-113. doi: 10.1111/jgh.12260. PMID: 23662785.
- Liu H, Zhang Y, Sun S, Wang S. Efficacy of Terpenoid in Attenuating
Aortic Atherosclerosis in Apolipoprotein-E Deficient Mice: A
Meta-Analysis of Animal Studies. Biomed Res Int. 2019 Jul
17;2019:2931831. doi: 10.1155/2019/2931831. PMID: 31392210; PMCID:
PMC6662500.
- Zhang M, Liu Y, Xu M, Zhang L, Liu Y, Liu X, Zhao Y, Zhu F, Xu R, Ou
Z, Wang Y, Liu Q, Ma S, Wang T, He M, Lu Q, Li H, Huang J, Zhang Y.
Carotid artery plaque intervention with Tongxinluo capsule (CAPITAL):
A multicenter randomized double-blind parallel-group
placebo-controlled study. Sci Rep. 2019 Mar 14;9(1):4545. doi:
10.1038/s41598-019-41118-z. PMID: 30872737; PMCID: PMC6418108.
- Brunner-La Rocca HP, Schindler R, Schlumpf M, Saller R, Suter M.
Effects of the Tibetan herbal preparation PADMA 28 on blood lipids and
lipid oxidisability in subjects with mild hypercholesterolaemia. Vasa.
2005 Feb;34(1):11-7. doi: 10.1024/0301-1526.34.1.11. PMID: 15786932.
- Shen X, Zou S, Jin J, Liu Y, Wu J, Qu L. Dengzhan Shengmai capsule
versus Aspirin in the treatment of carotid atherosclerotic plaque: A
single-centre, non-inferiority, prospective, randomised controlled
trial. Phytomedicine. 2022 Nov;106:154408. doi:
10.1016/j.phymed.2022.154408. Epub 2022 Aug 19. PMID: 36029646.
- Wu J, Zhao L, Lin K, Lu L, Luo C. Chinese Herbal Medicines for
Restenosis After Percutaneous Coronary Intervention: A Meta-Analysis
of Randomized Controlled Trials. J Altern Complement Med. 2019
Oct;25(10):983-992. doi: 10.1089/acm.2018.0516. Epub 2019 Aug 29.
PMID: 31464515.