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Abstract6

The variability in spatial resolution of seismic velocity models obtained via tomographic7

methodologies is attributed to many factors, including inversion strategies, ray path coverage,8

and data integrity. Integration of such models, with distinct resolutions, is crucial during the9

refinement of community models, thereby enhancing the precision of ground motion simu-10

lations. Toward this goal, we introduce the Probability Graphical Model (PGM), combining11

velocity models with heterogeneous resolutions and non-uniform data point distributions. The12

PGM integrates data relations across varying-resolution subdomains, enhancing detail within13

low-resolution domains by utilizing information and prior knowledge from high-resolution14

subdomains through a maximum posterior (MAP) problem. Assessment of efficacy, utilizing15

both 2D and 3D velocity models—consisting of synthetic checkerboard models and a fault16

zone model from Ridgecrest, CA—demonstrates noteworthy improvements in accuracy, com-17

pared to state-of-the-art fusion techniques. Specifically, we find reductions of 30% and 44%18

in computed travel-time residuals for 2D and 3D models, respectively, as compared to con-19

ventional smoothing techniques. Unlike conventional methods, the PGM’s adaptive weight se-20

lection facilitates preserving and learning details from complex, non-uniform high-resolution21

models and applies the enhancements to the low-resolution background domain.22
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Introduction23

The integration of tomography velocity models with different resolutions is important for refining24

community models, especially in applications such as ground motion estimation or dynamic rup-25

ture modeling, where varying scales are imperative (e.g., Ajala and Persaud, 2022; Yeh and Olsen,26

2023).27

The fusion of high-resolution (HR) and low-resolution (LR) models poses challenges due to28

the potential emergence of sharp boundaries and misaligned patterns. Apart from being physically29

unrealistic, such patterns can result in artifacts in ground motion simulations.30

To address the velocity model fusion problem, several notable techniques have been developed.31

The Gaussian kernel filter (Ghosh, 2018), a widely used method in image and signal processing,32

applies a Gaussian kernel to data for smoothing, with the degree of smoothing determined by the33

kernel’s bandwidth or standard deviation. This technique is effective in enhancing the clarity of34

the data and requires precise parameter tuning to avoid data distortion. The cosine taper window35

interpolation, as discussed in Ajala and Persaud (2021) and Ajala et al. (2022), is another method36

focusing on noise reduction. It employs a cosine taper to reduce signal amplitude at the sequence37

ends, thereby merging the two velocity models effectively while preserving their overall character-38

istics. Finally, Dictionary Learning Smoothing, explored in studies by Yang et al. (2012), Bianco39

and Gerstoft (2018), and Zhang and Ben-Zion (2023), offers an advanced approach for smoothing40

signals or images. This technique involves creating a sparse representation of data through dictio-41

nary learning, enabling effective noise removal while maintaining the data’s underlying structure,42

albeit with high computational demands and extensive training data requirements.43

Inspired by advancements in image super-resolution (Cheung et al., 2018) and image editing44

(Dhamo et al., 2020; Zhang et al., 2018), we present a method to fuse seismic tomography models45

employing Probability Graphical Models (PGMs). Our proposed fusion technique not only accen-46

tuates the local HR structure but also safeguards global smoothness in the resulting model, a step47

forward in addressing the complexities in 3D tomography model fusion.48

The problem of combining multiscale models appears across various geophysical fields, re-49
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vealing the scale-dependent nature of anisotropy and introducing substantial implications for our50

understanding of Earth’s structure (Van Houtte et al., 2006). Notably, the problem of synthesizing51

models becomes more complicated when considering the powerful spatial and directional depen-52

dency of tomographic resolution, which might induce direction-oriented smoothing (Dhamo et al.,53

2020). While conventional Gaussian kernel smoothing (Ghosh, 2018) has shown good efficacy in54

simple cases, their capacity to capture the intricate nuances of Earth’s structure might be limited55

for complex models.56

Due to the inherent characteristics of graphical methods, our proposed approach embodies57

the property of invariance under rotations or angular transformations. Furthermore, it easily ac-58

commodates the extension of larger neighboring patch sizes, facilitating the adaptation to varying59

volumes of training data and allowing for the accommodation of varying data quantities during60

training. Finally, our approach enables more inclusive, adaptive, and precision-enhanced modeling61

of Earth’s subsurface structures, showing promise for the PGM in the fusion of 3D tomographic62

models spanning varied resolutions.63

PGMs, capable of processing complex structures due to their ability to discern inherent re-64

lations among images (Ortega et al., 2018; Shuman et al., 2013), represent a promising tool for65

seismic analysis, including the study of reflection and seismic attributes surrounding low-velocity66

zones. Expanding beyond standard graphs, PGMs have been extended to higher-dimensional67

spaces, such as multilayer graphs (Das and Ortega, 2020) and hypergraphs (Zhang et al., 2022),68

and have been used in several seismic applications (e.g., Mu and Yuen, 2016; Zhang et al., 2023;69

Zhao et al., 2022).70

Within all the PGMs, Markov Random Field (MRF) is a prevalent and highly effective ap-71

proach for tackling supervised structure learning tasks that encompass the intricate mapping of72

complex geometric structures, as articulated by Murphy (2001). MRFs have been instrumental in73

the area of image restoration and edition, which was initially conceived by Geman and Graffigne74

(1986). This approach is rooted in Bayesian inference principles, applied to a spatially stochastic75

model. In stark contrast to convolution-based methods, the MRF procedure has been empirically76
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validated to yield optimal and mathematically tractable results in the context of image processing,77

as substantiated by Blake et al. (2011).78

To combine realistic tomography velocity models with unevenly distributed patterns, we pro-79

pose a PGM that captures the relations between subdomains with different resolutions. Our focus80

is on models that distinctly segregate high-resolution (HR) and low-resolution (LR) areas. By81

learning information from the HR subdomain, we aim to enhance the details within the LR re-82

gions. This enhancement is achieved through a maximum likelihood formulation, incorporating83

prior knowledge from the HR areas.84

Tests are performed on both a checkerboard and a fault zone model derived from the 201985

Ridgecrest, CA, region to demonstrate its efficacy. Generally, a lower travel time misfit indicates86

a more accurate velocity model of the Earth’s subsurface, which in turn leads to more precise87

ground motion simulations (Edwards and Fäh, 2013). Our model is evaluated by the misfit between88

observed and calculated travel times and demonstrates that our PGM is generally superior to widely89

used conventional methods (see Experiments section).90

The contributions of this article are two-fold: we introduce (1) a PGM for combining 3D91

tomography models with various resolutions, and (2) an anisotropic mechanism as a guide for the92

graph learning process.93

Fundamental Model Setup94

For two partially observed velocity fields ALR and AHR, the task is to estimate the true velocity95

field A. Here, we let AHR represent a high-resolution velocity field on pixels inside the low-96

resolution ALR velocity field. In this paper, we focus on optimally merging borders between ALR97

and AHR, as illustrated in Fig 1 using an excerpt from the Statewide California Earthquake Center98

(SCEC) Community Velocity Model (CVM) version S-4.26 as well as a HR fault zone model99

from the Ridgecrest, CA, area. We illustrate our method using 6 labels, a choice that will later100

be shown to be optimal in the trade-off between model complexity and computational cost (see101

4



Section Experiments).102

In our graphical model, a discrete class label map helps tie the spatial velocity field together.103

The label maps represent different geological structures, defined by their association with certain104

velocity intervals. The label map is initialized from the continuous velocity map A (Fig. 2, left),105

where we define a 6-cluster discrete label map X (Fig. 2, right) containing 6 velocity intervals106

(labeled 1–6), which is obtained from the continuous velocity maps A.107

In 3D models, the pixels are described by (i, j,k) coordinates and contain both a label Xi, j,k and108

a velocity Ai, j,k. The velocity Ai, j,k with the label Xi, j,k = n (n represents the labels, an example109

is shown in Fig. 2, right) follows a Gaussian distribution N (µn,σ
2
n ) with mean µn and variance110

σ2
n . Velocities at different pixels but with the same labels follow the same distribution. Thus, in111

a graph, the velocities A are on top of the labels X (Fig. 3). d denotes the set of all possible112

labels of Xi, j,k (here, n = {1, . . . ,6}), and D represents the set of all possible combinations of labels113

X for the entire map. The whole map is tied together via the class labels X that depend on the114

neighboring class labels indicated by the graphical grid structure in Fig. 3. For each point (i, j,k)115

the neighboring class Ni, j,k is defined by its four immediate points. Note that we use the points at116

certain regions V , i.e., at the border between the low- and high-resolution maps.117

Markov Random Field Models (MRFs)118

Bayesian Estimation119

Given the prior probabilities P(X) of label X and the likelihood densities P(A | X) of the ob-120

served velocity A, the posterior probability can be formulated through Bayes’ theorem as:121

P(X |A) =
P(A |X)P(X)

P(A)
∝ P(A |X)P(X). (1)

Here, the probability density function (PDF) P(A) of A is a fixed probability distribution (for122

given A) and does not affect the maximum a posteriori (MAP) estimation solution. The Bayesian123
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labeling problem requires finding the MAP configuration. The MAP of labeling for observation A124

is given by:125

X∗ = arg max
X∈D

P(X |A), (2)

where D denotes a set of possible candidates of the discrete labels X , and A represents the obser-126

vation of the continuous velocities (Dudik et al., 2004). To derive the MAP solution, both the prior127

probability and the likelihood function are needed. The likelihood function P(A | X) captures128

the conditional relation between the observation (refers to the continuous velocity in our research)129

and the hidden states (the variable, which corresponds to the discrete labels, cannot be directly130

observed here).131

MRF Prior and Posterior Energy132

A model can be considered a valid MRF if and only if the probability distribution P(X) of its133

configurations adheres to an exponential distribution with appropriate normalization, described in134

the subsequent form135

P(X) =
1
Z1

e−Uprior(X), (3)

where Z1 is a normalizing constant, and Uprior(X) is the prior energy (Section 4.2 in Koller and136

Friedman, 2009). The prior energy Uprior(X) can be expressed as the sum of neighboring poten-137

tials.138

Uprior(X) = ∑
n∈N

θn(X) = ∑
{(i, j,k)}∈N 0

i, j,k

θ0
(
Xi, j,k

)
+ ∑

{(i′, j′,k′)}∈N 1
i, j,k

θ1
(
Xi, j,k,Xi′, j′,k′

)
+ · · · , (4)

where N denotes the complete set of potential neighboring systems. The 0th- and 1st-order neigh-139

boring systems are represented as N 0
i, j,k and N 1

i, j,k, respectively, with the corresponding potentials140

given by θ0 and θ1. The 0th-order neighboring system is defined by considering every possible in-141

dex (i, j,k). The 1st-order neighboring system is defined by considering every index (i′, j′,k′) with142

a grid (Manhattan) distance 1, see Fig. 4. For the sake of brevity, only the 0th-order and 1st-order143
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neighboring potentials are retained, while the higher-order potentials are truncated in Eq. (4).144

Given the assumption that the velocities A associated with specific labels X adhere to Gaussian145

distributions, it is possible to represent the likelihood function in the exponential format146

P(A |X) =
1
Z2

e−Ulike(A|X), (5)

where Ulike(A |X) is the likelihood energy. Invoking the Bayes rule as presented in Eq. (1), it can147

be easily inferred that the posterior probability follows an exponential distribution148

P(X |A) =
1
Z3

e−Upost(X|A), (6)

where Z2 and Z3 are normalization constants, and Upost is the posterior energy. Taking the negative149

logarithm in Eqs. (5)–(6) gives the posterior energy150

Upost(X |A) =Uprior(X)+Ulike(A |X)+C, (7)

where C is a constant associated with the normalization constants Z1, Z2, and Z3 and Uprior is the151

prior energy. Consequently, for a group of given A,X is defined as an MRF depending on d with152

a space of all the possible states N . The MAP solution is determined equivalently by153

X∗ = arg min
X∈D

Uprior(X |A), (8)

which minimizes a negative log-likelihood problem in Eq. (8).154

In summary, the methodology for MRF modeling is delineated in the following sequential155

steps:156

1. Specification of a neighborhood system, represented as N .157

2. Definition of prior potentials, denoted as θ0 and θ1.158

3. Derivation of the likelihood energy, given by Ulike(A|X).159
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4. Computation of the posterior energy, E(X), which can be expressed as a summation of neigh-160

boring potential functions.161

From Eqs. (5)–(8), the posterior probability P(X|A) can be decomposed into the prior en-162

ergy Uprior(X), that can be quantified via multiple potentials and the likelihood function energy163

Ulike(A|X). This observation substantiates the rationale for employing MRF priors, as it enables164

the assessment of conditional probabilities P(X|A) without the need for knowledge of their spe-165

cific mathematical expressions.166

Probability Graphical Model (PGM)167

Our PGM follows a first-order MRF setting (Fig. 4) where each random variable has four neighbors168

on which it is conditionally dependent. The full conditional probability of the discrete random169

variable Xi, j,k ∈ {1, . . . ,n} is the exponential of the sum of potentials (four 1st-order neighboring170

potentials θ1 between cluster labels and one 0th-order center data potential θ0 between cluster171

label and velocity) in conventional MRF settings. In image processing problems, optimizing the172

entire map can be broken down into a group of suboptimization problems that optimize each pixel173

iteratively (Pulli et al., 2012). Inserting (4) into (7), we have174

− log p(Xi, j,k | Ai, j,k) =Upost(Xi, j,k | Ai, j,k)

∝ θ0(Xi, j,k,Ai, j,k)+ ∑
(i′, j′,k′)∈Ni, j,k

θ1(Xi, j,k,Xi′, j′,k′)+C, (9)

175

θ0
(
Xi, j,k,Ai, j,k

)
=

(Ai, j,k −µn)
2

σ2
n

, (10)

where θ0 is the 0th-order neighboring potential (Li, 2012) (also known as the data cost function)176

that relates Xi, j,k to the observed velocity data Ai, j,k. µn and σ2
n are the mean and variance, re-177

spectively, of all pixels with the same cluster label n = Xi, j,k. It promotes that continuous velocity178
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values A sharing pixels with the same discrete label X follow the same Gaussian distribution.179

θ1
(
Xi, j,k,xi′, j′,k′

)
= 1−δ (Xi, j,k,Xi′, j′,k′) (11)

is the 1st-order neighboring potential (Li, 2012) (also known as the smoothness cost function),180

where δ is the Dirac delta function, that relates Xi, j,k to the 1st-order neighboring variable Xi′, j′,k′181

(see Fig. 4). This function encourages the neighboring pixels to share the same discrete label Xi, j,k,182

promoting the model’s local smoothness.183

The performance of standard or potential function-based MRF schemes can be limited when184

dealing with complex geological structures (Zhou et al., 2023). Assigning different neighboring185

pixels with various importance weights based on anisotropy patterns can effectively remove the186

non-uniform direction-dependent features of the model gradients, leading to improved inversion187

results, especially relevant for real, complex geological structures.188

The objective function for the MAP problem of Xi, j,k becomes189

X∗
i, j,k =arg max

Xi, j,k
p(Xi, j,k | Ai, j) = arg min

Xi, j,k
ω

0
i, j,kθ0(Xi, j,k,Ai, j,k)

+ ∑
(i′, j′,k′)∈Ni, j,k

ω
1
i′, j′,k′θ1(Xi, j,k,Xi′, j′,k′)+C, (12)

where ωi, j,k and ωi′, j′,k′ are the weights which balance the anisotropic characteristics. These190

weights are typically set to uniform default values, given by the number of pixels in the local191

neighborhood, here ω0
i, j,k = 1/1 and ω1

i′, j′,k′ = 1/6. This implies an equal contribution from each192

neighboring pixel.193

MCMC and Gibbs Sampling194

Markov Chain Monte Carlo (MCMC) is a statistical method used to sample probability distribu-195

tions (Melas and Wilson, 2002; Sambridge and Mosegaard, 2002). Gibbs sampling is a specific196

MCMC algorithm that can be used to iteratively sample a multivariate probability distribution197
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from the conditional distributions of each variable given the current values of the other variables198

(Carlo, 2004). Combining MCMC with Gibbs sampling enables estimating complex probability199

distributions without explicit knowledge of the distribution.200

We employ the MCMC method with Gibbs sampling to solve Eq. (8). Gibbs sampling gener-201

ates a new sample of Xi, j,k directly from its distribution conditioned on the labels of its neighbors202

Xi′, j′,k′ and Ai, j,k. In the MRF structure, the update is achieved by calculating the probability for203

each of the possible labels (here, n ∈ {1, · · · ,6}) at (i, j,k) using Eq. (12) and randomly selecting204

from this distribution (refer to Fig. 5).205

The velocity map A is initialized with the superimposed HR and LR velocity maps, see Fig. 1206

(a) and (b), and the label map X is initialized with a Gaussian mixture model clustering with207

the total cluster number N (here, 6), similar to Fig. 7 (a2, b2). All velocities with the label n208

follow the same Gaussian distribution N(µn,σ
2
n ). We then apply the expectation–maximization209

(EM) algorithm (McLachlan and Krishnan, 2007), an iterative method to find the MAP estimates210

of the parameters, which updates the Gaussian parameters µn and σ2
n . The termination criterion211

is either reaching a predefined maximum number of iterations (here 10,000) or observing that the212

cumulative absolute difference across all pixels between consecutive iterations falls below an error213

threshold, whichever is achieved first. The algorithm is summarized in Table 1.214

Summarizing the algorithm from an intuitive perspective, our PGM adjusts each point in the215

grid-based method, not only on the point itself as in many conventional approaches, but also on216

the values of the surrounding points. The model processes each pixel, adjusting its values to align217

more closely with its neighbors, resulting in smoother and more consistent results. Our approach218

is analogous to a diffusion process, similar to introducing ink into clear water, where the result-219

ing patterns gradually spread throughout the entire system. In the context of image processing,220

the algorithm methodically traverses each pixel, recalibrating its coloration to achieve harmonious221

alignment with nearby pixels. This paradigm enhances overall smoothness and significantly re-222

duces aberrations, thereby increasing the consistency of the entire model.223
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Experiments224

An aggressive smoothing policy removes sharp boundaries, while potentially important details225

are lost. On the other hand, gentle smoothing preserves the details but leaves behind artificial226

boundaries between the LR and HR models. It is essential to achieve a trade-off between the two227

cases, and this is exactly the aim of our PGM method. To quantify this trade-off between presenting228

detailed information and minimizing artifacts we use the travel time between the stations and their229

residuals at 36 synthetic sensors (red X, 10 on each edge, see Fig. 1d on the border between the230

LR and HR areas. These residuals are then used to evaluate how much detailed information is231

preserved in the fused velocity model, compared to the HR maps.232

Checkerboard Model233

We used a 2D square checkerboard model with 100x100 pixels, each with 10 small squares on each234

edge, and each small square measures 10x10 pixels in size. The pattern on the board alternates235

circular high- and low-velocity pixels in each small square.236

Ridgecrest Fault Zone Model237

To demonstrate the efficacy of the proposed PGM model, we compare its performance with com-238

monly used conventional methods (e.g. Gaussian filter and cosine-taper window) on both the239

synthetic checkerboard model and the real-data Ridgecrest model. We have selected the high-240

resolution model of the Ridgecrest, CA, region, obtained by ambient noise tomography, to test the241

efficacy of our proposed PGM. The Ridgecrest fault zone image consists of a shallow (represent-242

ing a depth of approximately 0.5 km) high-resolution Rayleigh wave model (Zhou et al., 2022),243

from which the S-wave velocity is roughly approximated by dividing by 0.9. This model reveals a244

3D flower-shaped low-velocity zone surrounding the M7.1 and M6.4 earthquakes that ruptured in245

the 2019 Ridgecrest sequence. Yeh and Olsen (2023) showed that including the fault zone model246

into the SCEC CVM-S V4.26M01 significantly improves the fit of simulations to strong motion247
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data from the M7.1 Ridgecrest earthquake, including at stations more than 200 km away in Los248

Angeles. The improvement in the fit to data was caused by more accurately generated Love waves249

at the boundaries of the low-velocity zone around the faults, as compared to the low-resolution250

model without the fault zone model. Motivated by the results by Yeh and Olsen (2023), who used251

the cosine-window taper fusion method by Ajala and Persaud (2021), we compare the efficacy of252

our proposed PGM with other existing methods.253

Optimal Parameter Selection254

The number of clusters in GMM clustering has a significant impact on the results. Generally, the255

number of clusters can influence the complexity of the model and the interpretability of the results.256

More clusters result in a more complex model, which can better capture intricate data structures257

and lead to more detailed insights into the data. However, it also increases the risk of overfitting.258

Selecting the optimal number of clusters is crucial in GMM and other clustering techniques.259

Several methods can help determine an appropriate number of clusters, such as the Bayesian In-260

formation Criterion (BIC), and the silhouette score (Neath and Cavanaugh, 2012). These methods261

balance the trade-off between the goodness of fit of the model and the complexity of the model. In262

this experiment, we tested and compared the cluster number sequences N = 3,5,6,7,9, which are263

commonly used in practical applications of MRFs. Figure 6 (a) shows that the larger the number264

of clusters, the more detailed information is preserved in the HR models, and the larger the compu-265

tation is required, implying a trade-off between computational cost and performance. Figure 6(b)266

demonstrates the number of clusters versus RMSE (root mean square error), which is defined as267

RMSE =

√
∑

Nt
i=1(ti − t̂i)

Nt
, (13)

where Nt is the total number of ray paths, and ti and t̂i are the posterior and prior travel-times (left268

vertical axis). The right vertical axis shows the computation time for the Ridgecrest test. The269

RMSE decreases when the cluster number grows from 3 to 6, with a limited decrease for larger270
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clusters, and there is a rapid growth in run time when the cluster number exceeds 6. For these271

reasons, we choose the cluster number as 6.272

2D Performance273

We demonstrate the fusion for the checkerboard and Ridgecrest velocity models described above,274

in both cases with directly superimposed HR and LR components, in Fig. 7 (a1, b1), both with an275

HR region in the center, surrounded by LR velocities. The dimensions of the models are summa-276

rized in Table 2.277

Figure 7 (a2, b2) shows the checkerboard and Ridgecrest model station settings along with the278

ray-path density. For the checkerboard model, the stations are evenly distributed, whereas the sta-279

tions for the Ridgecrest model are highly irregular, reflecting the pattern used in Zhou et al. (2022).280

Fig. 7 (a3, b3) shows the label mask maps generated in the final iteration of the PGM models. In281

these maps, pixels sharing the same label suggest that the corresponding areas may exhibit com-282

parable velocity patterns, implying that they are likely sampled from a similar distribution. The283

smoothed fusion results with the 5×5 Gaussian smoothing filter (GF), dictionary learning (DL)284

(Yang et al., 2012), and our proposed probability graphical model (PGM) are shown in Fig. 7285

(a4-a6) and (b4-b6). The outcomes suggest that the learning-based methods, e.g. DL and PGM,286

demonstrate a superior capacity to retain detailed information in comparison to the application287

of direct Gaussian smoothing. This enhanced performance is attributed to the adaptive nature of288

these learning methods in determining the optimal fusion parameters for accurate data representa-289

tion. Conversely, Gaussian smoothing employs a fixed kernel to blend neighboring pixels, which290

does not allow for such adaptive optimization and may lead to a less detailed final output.291

We evaluate the efficacy of our model fusion with multiple metrics: travel time Root-Mean-292

Squared-Error (RMSE, which measures the travel time misfits (Bianco et al., 2019), Naturalness293

Image Quality Evaluator, NIQE, a common-used measurement for image quality (Mittal et al.,294

2012), Peak Signal-to-Noise Ratio, PSNR, measuring the sharpness of images (Poobathy and295

Chezian, 2014), and the Fréchet inception distance, FID, capturing similarities between the orig-296
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inal and fused models (Chong and Forsyth, 2020)) in Table 3. In the checkerboard test, due to297

the simplicity of the pattern and the uniform distribution of stations, all learning methods exhibit298

a comparable performance. In contrast, for the more complex and realistic Ridgecrest model, the299

PGMs outperform the DL model, as the latter is sensitive to the orientation of the patches while300

the graphical models are rotationally invariant.301

Geological formations are often anisotropic, meaning their properties vary depending on the302

direction in which they are measured, e.g., laterally continuous and vertically stratified. Standard303

Markov Random Field (MRF) schemes, which assume homogeneous properties (same properties304

in all directions), can lead to errors when applied to such formations. PGMs, on the other hand,305

consider the anisotropic nature of geological formations, generally leading to more accurate re-306

sults. Seismic inversion is an ill-posed problem, meaning it doesn’t have a unique solution, and307

small changes in the input can lead to large changes in the output. Regularization is a technique308

used to stabilize the solution. Our PGM provides an edge-preserving regularization based on the309

information from neighboring pixels, which is effective for reconstructing subsurface models.310

3D Ridgecrest Model Fusion Comparison311

To assess the proficiency of the PGM fusion approach, we have expanded our methodological312

framework to the integration of 3D models. Analogous to the 2D fusion experiments, the S-wave313

velocity model was extracted from the top 5 km around the 2019 Ridgecrest, CA, earthquake314

sequence, from the SCEC CVM-S4.26, serving as the LR model, while the 3D S-wave velocity315

model derived from surface wave dispersion inversion by Zhou et al. (2022) represents the HR316

model. Both LR and HR models were interpolated into 100× 100 (pixels) horizontal models for317

each specified depth and resampled to a depth resolution of 250 meters.318

In Fig. 8, the LR CVM-S4.26 model centered on the Ridgecrest domain is shown in panel319

(a), while panel (b) depicts the model obtained by directly incorporating the HR model (from320

surface wave dispersion inversion, see Zhou et al., 2022) into the LR matrix. Employing the321

cosine-taper smoothing technique (with the three-dimensional window size set to (108,120,21)322
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and cosine fractions configured as (0.75,0.75,0.9), representing the dimensions of south-north,323

west-east, and depth correspondingly) and 3D dictionary learning (with a kernel size of 7× 7×324

5) as benchmark methodologies, the resultant fusion models via benchmark methods, and PGM325

are shown in Fig. 8 panels (c)-(e), respectively. The cosine taper functions exclusively in the326

overlapping regions of HR and LR data. When there is a significant mismatch in the boundary327

areas, the cosine-taper smoothing function may not fully correct misaligned patterns (Fig. 8(c)).328

However, machine-learning-based methods (including dictionary learning and PGM) are adept329

at both overlapping regions and areas with only LR information. This capability enhances their330

effectiveness in successfully aligning unmatched patterns from both sides. It is also notable that331

the 3D PGM fusion methodology appears to retain enhanced details from the HR models compared332

to the 3D dictionary learning procedure. To quantify the performance in 3D, synthetic stations were333

placed between the LR and HR models at each depth level (similar to Fig. 1d in the 2D case), where334

the travel times were computed before and after the fusion methodologies were applied on the HR335

and LR directly-superimposed model. Using the travel time preceding the fusion as a reference,336

we calculated the root-mean-squared errors (RMSE) corresponding to the post-fusion travel time337

misfit. The calculated RMSEs of travel time misfit for cosine taper smoothing, 3D dictionary338

learning fusion, and our 3D PGM for depths from the surface to 5 km are listed in Table 4. As339

for the 2D fusion case, the results derived from machine-learning-based dictionary learning and340

PGM surpass those obtained through cosine taper smoothing. Notably, our 3D PGM approach341

yields the most significant improvement, achieving a 44% reduction in travel-time misfit relative342

to conventional cosine-taper methods. This substantial decrease indicates a minimal distortion of343

information from the HR model, underscoring the efficacy of the 3D PGM method in preserving344

data integrity.345

Six dense sensor arrays were deployed across the faults that ruptured in the 2019 Ridgecrest346

earthquake sequence (see Fig. 9, left panel, A1, A2, B1 through B4). Owing to these densely dis-347

tributed arrays, we computed surface wave dispersion inversion profiles for station pairs and sub-348

sequently aggregated them to derive HR 2D vertical S-wave velocity models (Zhou et al., 2022), as349

15



illustrated in Fig. 9 (top right). These derived models are compared with vertical cross-sections ex-350

tracted from 3D models and combined with the LR background model (SCEC CVM-4.26) through351

various fusion methodologies. For instance, the B2 and B4 array panels (Fig. 9c, d) depict the 2D352

cross-sections extracted from the 3D dictionary learning fusion model and the 3D Probabilistic353

Graphical Model (PGM), respectively. The superior performance of our 3D PGM approach is354

evident in its ability to more precisely define and preserve the accuracy of the boundary of the355

low-velocity zone. This improved accuracy can be attributed to the PGM’s strategy of assigning356

differential weights to edges, which are oriented in various directions. In contrast, the efficacy357

of 3D dictionary learning is somewhat limited due to its inherent rotational invariance and the358

constraints imposed by a fixed patch dimension.359

Conclusions360

We present a method for combining multiresolution seismic velocity maps using probabilistic361

graphical models (PGMs). The performance of our PGM algorithm is assessed through experi-362

ments, using both a checkerboard model and a complex fault zone model around the 2019 Ridge-363

crest earthquake sequence. The evaluation of the checkerboard model, which is characterized by its364

inherent simplicity and uniform station distribution, demonstrates that our PGM approach outper-365

forms all tested established baseline techniques. The machine-learning-based methods employed366

for map synthesis, such as our PGM, distinctly outperform traditional methods, primarily due to367

adaptive parameter learning. In the context of the Ridgecrest model, the PGM technique produced368

a 44% reduction in the computed travel time residuals versus the conventional Gaussian smooth-369

ing methods in 3D exploration models. This is due to the limitations of traditional methods in370

addressing anisotropic patterns, in contrast to the PGM which learns weights consistent with the371

complex structure of the Ridgecrest model. In summary, our PGM fusion approach effectively372

minimizes the undesired sharp discontinuities often observed between LR and HR models, while373

simultaneously preserving detailed information inherent in the HR models. A prospective area of374
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investigation in future work involves addressing the challenge of irregular model resolution within375

the HR domain, which is crucial for enhancing the fidelity and applicability of our models and376

potentially improves the understanding and application in various real-world models. Finally, we377

recommend that the efficacy of the PGM be tested directly through a comparison of synthetic and378

observed waveforms.379
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List of Figure Captions485

Figure 1. (a) Excerpt of S-wave velocities from the SCEC CVM version S-4.26 (hereafter re-486

ferred to as the low-resolution (LR) CVM) at 0.5 km depth around the Ridgecrest area. (b) High-487

resolution (HR) S-wave map from 1 Hz Rayleigh wave tomography from Zhou et al. (2022). (c)488

Direct superposition of the HR and LR models. (d) Synthetic stations (’X’) are located on the489

boundaries between the HR and LR models for evaluation. These two models share some patterns490

in the low-velocity zones, but show many mismatched detailed patterns where the two models491

overlap, which results in sharp and misaligned boundaries in those areas. Our PGM is applied to492

the mismatched boundary areas between the two bounding boxes in (c). The pixels in this area493

belong to the effective vertices set.494

Figure 2. A 6-cluster Gaussian Mixture model clustering is applied on the continuous velocity map495

A in (a). Each pixel is clustered to be a 6-cluster discrete label map X in (b). Pixels with similar496

velocity information have been assigned the same label.497

Figure 3. (a) In a 2D graphical model, each pixel has a continuous velocity Ai, j and a discrete498

label mask Xi, j. The objective function has two parts: (1) the data cost θ0 (0th-order neighboring499

potential) that forces a pixel to have a Ai, j specified by the Gaussian distribution of its label Xi, j,500

and (2) the smoothness cost θ1 (1st-order neighboring potential) that promotes smoothness among501

neighboring labels (Koller and Friedman, 2009). (b) For a 3D graphical model, the framework502

closely aligns with 2D (a). The 3D model encompasses 6 adjacent nodes (while in 2D, it has 4503

nodes).504

Figure 4. (a) In a 2D graphical model, the neighborhood system Ni, j (marked in gray/black) of the505

given center node (i, j) (marked in black). The 1st- and 2nd- neighborhood systems of node (i, j),506

marked with numbers 1 and 2, is represented as N 1
i, j and N 2

i, j. Number 0 denotes the center pixel.507
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(b) 3D graphical model similar to (a), where 0, 1, and 2 denote the center pixel and the 1st-, and508

2nd- neighborhood systems, respectively.509

Pipeline of the iterative update policy for both pixel labels (discrete class labels) and pixel values510

(continuous velocity values).511

Figure 6. (a) Comparison of the fusion results using cluster numbers n= 3, 5, 6, 7, and 9. (left) fused512

velocity model, and (right) cluster distribution. (b) The number of clusters versus RMSE error (left513

vertical axis, corresponding to the solid line) and run time (right vertical axis, corresponding to the514

dashed line) for the Ridgecrest model. Generally, the larger the cluster number, the smaller the515

RMSE error with a longer run time.516

Figure 7. (top 2 rows) Checkerboard and (bottom 2 rows) Ridgecrest models. (1) Superimposed517

HR and LR models. (2) Station location and ray density. (3) 6-class label mask maps for HR mod-518

els (pixels with the same label are learned together). (4) Smoothing results with a 5×5 Gaussian519

filter (GF). (5) and (6) Fusion results with dictionary learning (DL) and with our PGM, respec-520

tively.521

Figure 8. (a) The LR model extracted from CVM-S4.26 around the Ridgecrest area. (b) Direct522

superposition of the 3D HR surface wave dispersion inversion model and CVM LR models for the523

Ridgecrest area. (c-e) Combined LR and HR models, smoothed by (c) cosine-taper function, (d)524

dictionary learning, and (e) PGM. Figure 9. (a) Station locations (triangles) and main faults (lines)525

surrounding the Ridgecrest area. There are six dense sensor arrays across the main faults (A1-2526

and B1-4). (b) Vertical cross-sections of the shear wave velocity along the B1-4 station arrays from527

(top) surface wave dispersion inversion, (center) the 3D fusion model from dictionary learning, and528

(bottom) the PGM.529
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Tables530

Table 1: Algorithm for 3D multiresolution velocity model fusion.

Algorithm 1 MCMC Method for MRF

1. Input: ALR and AHR

2. Initialize velocity A by superimposing AHR over ALR

Initialize X , µn and σn with GMM clustering
3. for each EM iteration do
4. Construct PGM
5. for t = 1 to max iteration T do
6. (E-Step) Gibbs Sampling
7. for pixel (i, j,k) = (1,1,1) to the max index (I,J,K) do
8. X (t+1)

i, j,k ∼ P
(
Xi, j,k |X

(t+1)
1,1,1 , . . . ,X (t+1)

i, j,k−1,A
(t)
i, j,k,X

(t)
i, j,k+1, . . . ,X

(t)
I,J,K

)
9. end for
10. for pixel (i, j,k) = (1,1,1) to the max index (I,J,K) do
11. Ai, j,k ∼ ∑

6
n=1 P(Xi, j,k = n)N(µn,σ

2
n )

12. end for
13. (M-Step) Update Gaussian parameters µn and σ2

n

with sample means and variances of A(t+1).
14. end for
15. end for
15. return X,A (for each pixel)

Table 2: Model Coverage Range and Dimensions.

LR HR Fused
Range (km) Dimension Range (km) Dimension Range (km) Dimension

2D Checkerboard 100×100 40×40 40×40 40×40 100×100 100×100
2D Ridgecrest 100×100 50×50 58×64 192×224 100×100 330×350
3D Ridgecrest 100×100×5 50×50×11 54×60×5 108×120×21 100×100×5 200×200×21

* Range indicates the physical coverage of the models, and Dimension denotes the number of
pixels used for computation. ‘LR’, ‘HR’, and ‘Fused’ denote the low-resolution, high-resolution,
and fused models, respectively.
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Table 3: 2D Evaluation Results.

RMSE/s↓ NIQE↓ PSNR/dB↑ FID↓
Checkerboard GF 1.65 7.68 14.58 45.75

” DL 1.18 5.44 15.70 33.85
” PGM 1.14 5.40 16.14 32.49

Ridgecrest GF 3.52 12.41 21.80 61.39
” DL 2.61 7.29 22.36 54.25
” PGM 2.27 6.70 23.04 47.49

* Evaluation metrics are root-mean-square error (RMSE) of the travel time misfit (with unit s), nat-
uralness image quality evaluator (NIQE), peak signal-to-noise ratio (PSNR), and Fréchet inception
distance (FID). ↓ indicates smaller is better, and ↑ opposite.

Table 4: 3D Evaluation Results.

Depth Cosine Taper DL PGM
0 km 1.67 1.57 0.86
1 km 1.52 1.39 0.73
2 km 1.73 1.38 1.04
3 km 1.58 1.53 0.96
4 km 1.57 1.62 1.13
5 km 1.79 1.43 1.04

* Evaluation metric is the root-mean-square error (RMSE) of the travel time misfits (with unit s).
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Figures531

 

  

(a) (b) 

(c) (d) 

Figure 1: (a) Excerpt of S-wave velocities from the SCEC CVM version S-4.26 (hereafter re-
ferred to as the low-resolution (LR) CVM) at 0.5 km depth around the Ridgecrest area. (b) High-
resolution (HR) S-wave map from 1 Hz Rayleigh wave tomography from Zhou et al. (2022). (c)
Direct superposition of the HR and LR models. (d) Synthetic stations (’X’) are located on the
boundaries between the HR and LR models for evaluation. These two models share some patterns
in the low-velocity zones, but show many mismatched detailed patterns where the two models
overlap, which results in sharp and misaligned boundaries in those areas. Our PGM is applied to
the mismatched boundary areas between the two bounding boxes in (c). The pixels in this area
belong to the effective vertices set.
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Label 

Figure 2: A 6-cluster Gaussian Mixture model clustering is applied on the continuous velocity map
A in (a). Each pixel is clustered to be a 6-cluster discrete label map X in (b). Pixels with similar
velocity information have been assigned the same label.
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(a)  

Figure 3: (a) In a 2D graphical model, each pixel has a continuous velocity Ai, j and a discrete
label mask Xi, j. The objective function has two parts: (1) the data cost θ0 (0th-order neighboring
potential) that forces a pixel to have a Ai, j specified by the Gaussian distribution of its label Xi, j,
and (2) the smoothness cost θ1 (1st-order neighboring potential) that promotes smoothness among
neighboring labels (Koller and Friedman, 2009). (b) For a 3D graphical model, the framework
closely aligns with 2D (a). The 3D model encompasses 6 adjacent nodes (while in 2D, it has 4
nodes).
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     (a)   

     (b)   

Figure 4: (a) In a 2D graphical model, the neighborhood system Ni, j (marked in gray/black) of the
given center node (i, j) (marked in black). The 1st- and 2nd- neighborhood systems of node (i, j),
marked with numbers 1 and 2, is represented as N 1

i, j and N 2
i, j. Number 0 denotes the center pixel.

(b) 3D graphical model similar to (a), where 0, 1, and 2 denote the center pixel and the 1st-, and
2nd- neighborhood systems, respectively.
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Stop 

High-resolution Model 𝑨𝑯𝑹 

Low-resolution Model 𝑨𝑳𝑹 

Superimpose 𝑨𝑯𝑹 over 𝑨𝑳𝑹 to get 𝑨 

Update Discrete Labels 𝑿 

Update Continuous Velocities 𝑨 

Update Gaussian Parameters 𝝁𝒏 and 𝝈𝒏 

Stop Criterion 

Continuous Velocity 𝑨 

True 

False 

Figure 5: Pipeline of the iterative update policy for both pixel labels (discrete class labels) and
pixel values (continuous velocity values).
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Figure 6: (see next page)
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(b) 

Figure 6: (a) Comparison of the fusion results using cluster numbers n= 3, 5, 6, 7, and 9. (left) fused
velocity model, and (right) cluster distribution. (b) The number of clusters versus RMSE error (left
vertical axis, corresponding to the solid line) and run time (right vertical axis, corresponding to the
dashed line) for the Ridgecrest model. Generally, the larger the cluster number, the smaller the
RMSE error with a longer run time.

33



 

Cluster 

Label 

Figure 7: (top 2 rows) Checkerboard and (bottom 2 rows) Ridgecrest models. (1) Superimposed
HR and LR models. (2) Station location and ray density. (3) 6-class label mask maps for HR mod-
els (pixels with the same label are learned together). (4) Smoothing results with a 5×5 Gaussian
filter (GF). (5) and (6) Fusion results with dictionary learning (DL) and with our PGM, respec-
tively.
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(a) (b) (c) (d) (e) 

Figure 8: (a) The LR model extracted from CVM-S4.26 around the Ridgecrest area. (b) Direct
superposition of the 3D HR surface wave dispersion inversion model and CVM LR models for the
Ridgecrest area. (c-e) Combined LR and HR models, smoothed by (c) cosine-taper function, (d)
dictionary learning, and (e) PGM.
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Figure 9: (a) Station locations (triangles) and main faults (lines) surrounding the Ridgecrest area.
There are six dense sensor arrays across the main faults (A1-2 and B1-4). (b) Vertical cross-
sections of the shear wave velocity along the B1-4 station arrays from (top) surface wave dispersion
inversion, (center) the 3D fusion model from dictionary learning, and (bottom) the PGM.
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