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Key points

– We project changes in the joint probability of storm surge and precipitation extremes based on a large ensemble of

CMIP6 models.

– The probability will increase in the northwest and decrease in the southwest of Europe, with an absolute magnitude of

on average 36-49%.5

– Because previous projections are based on only few climate model simulations, they can can differ from our projections

qualitatively.

Abstract. When different flooding drivers co-occur, they can cause compound floods. Despite the potential impact of com-

pound flooding, few studies have projected how the joint probability of flooding drivers may change. Furthermore, existing

projections may not be very robust, as they are based on only 5 to 6 climate model simulations. Here, we use a large ensem-10

ble of simulations from the Coupled Model Intercomparison Project 6 (CMIP6) to project changes in the joint probability

of extreme storm surges and precipitation at European tide gauges under a medium and high emissions scenario, enabled by

data-proximate cloud computing and statistical storm surge modeling. We find that the joint probability will increase in the

northwest and decrease in most of the southwest of Europe. Averaged over Europe, the absolute magnitude of these changes is

36% to 49% by 2080, depending on the scenario. The large-scale changes in the joint probability of extreme wind speed and15

precipitation are similar, but locally, differences between the changes in the two types of compound extremes can exceed the

changes themselves. Due to internal climate variability and inter-model differences, projections based on only 5 to 6 random

climate model simulations have a probability of higher than 10% to differ qualitatively from projections based on all CMIP6

simulations in multiple regions, especially under the medium emissions scenario and earlier in the 21st century. Therefore, our



results provide a more robust and less uncertain representation of changes in the potential for compound flooding in Europe20

than previous projections.

Plain Language Summary

Extreme storm surges, rainfall or river discharge can cause flooding. When these events happen at the same time, even more

severe flooding may follow. Climate change could affect the odds that drivers of flooding coincide, potentially leading to larger

flood risk. However, few scientists have tried to compute such changes, using only a few different computer models of our25

climate. Here, we use a much larger set of climate models to compute how the odds that an extreme storm surge coincides with

extreme precipitation could change in the future. We find that at the coasts of northwestern Europe, those odds will increase,

whereas in southwestern Europe, they will mostly decrease. On average, the changes will be as large as 36% to 49% of the

current odds, depending on whether the concentration of greenhouse gases in the atmosphere will increase by a medium or a

large amount. When we use smaller sets of climate models for our calculations, we get substantially different results in some30

cases. In conclusion, by using a larger set of climate models than previous studies, we have made more robust computations of

how the odds that extreme storm surges and precipitation coincide will change in Europe.

Keywords

projections, compound flooding, joint probability, statistical storm surge model, precipitation, CMIP6 ensemble

1 Introduction35

The co-occurrence or close succession of different flooding drivers like storm surges, rainfall and river discharge has the

potential to affect coastal communities more severely than the separate occurrence of these drivers (e.g., Paprotny et al., 2018;

Kumbier et al., 2018; Emanuel, 2017; Bevacqua et al., 2017; Ruocco et al., 2011; van den Hurk et al., 2015). For instance,

extreme precipitation or river discharge may increase the depth and/or area of flooding due to storm surges and high coastal

water levels may hamper storm-water drainage and cause backwater effects. Such combinations of hazard drivers are called40

compound events (Zscheischler et al., 2018). Since the more traditional univariate analyses that neglect the compounding

effects of flooding drivers may underestimate flood risk and the lifetime of adaptation measures to flooding (e.g., Moftakhari

et al., 2017; Wahl et al., 2015; Leonard et al., 2014), compound events have received increased attention in the past decade.

For instance, the dependence between and joint probability of various combinations of flooding drivers has been assessed at

local (e.g., Santos et al., 2021; Kew et al., 2013; Zheng et al., 2014; Couasnon et al., 2022), national (e.g., Hendry et al., 2019;45

Wu et al., 2018), continental (e.g., Wahl et al., 2015; Paprotny et al., 2018, 2020; Ganguli and Merz, 2019; Camus et al., 2021;

Nasr et al., 2021) and global scales (e.g., Ward et al., 2018; Couasnon et al., 2019; Eilander et al., 2020; Bevacqua et al., 2020b;

Ridder et al., 2020; Lambert et al., 2020), using observations and/or model hindcasts.
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In contrast, few studies have projected how the potential for compound flooding may change in the future. For instance, a

global study projected the joint probability of extreme storm surges and precipitation to decrease in parts of the subtropics and50

to increase at higher latitudes (Bevacqua et al., 2020b). For the United States, the joint probabilities of various flooding drivers

were projected to increase due to sea-level rise, changes in extreme river discharge and changes in tropical cyclones (Moftakhari

et al., 2017; Ghanbari et al., 2019; Gori et al., 2022). For most of Europe, the joint probability of extreme storm surges and

precipitation was projected to increase by Bevacqua et al. (2019), predominantly due to the increasing probability of extreme

precipitation. However, Ganguli et al. (2020) projected a decrease in the dependence and joint probability of extreme storm55

surges and river discharge in northwestern Europe. The differences between the projections of these studies are inconsistent

with the finding that the joint probability of extreme storm surges and precipitation is generally comparable to that of extreme

storm surges and river discharge at small to medium river catchments (Bevacqua et al., 2020a).

A common limitation of existing projections of the joint probability of flooding drivers is the small ensembles of global

and/or regional climate model simulations on which they are based. For instance, Bevacqua et al. (2020b) and Ganguli et al.60

(2020) based their projections on only 5 to 6 models from the Coupled Model Intercomparison Project 5 (CMIP5; Taylor et al.,

2012), using only a single, high-emissions scenario simulation per model. Consequently, these projections may be sensitive to

the specific models that were used and provide a limited view of the uncertainties related to future emissions, internal climate

variability and structural differences between models, especially since the skill of climate models in capturing the atmospheric

conditions that may cause compound flooding varies (Ridder et al., 2021; Wu et al., 2021). Some studies used larger multi-65

model ensembles to project changes in the joint probability of extremes (e.g., Ridder et al., 2022; Sun et al., 2023; Bevacqua

et al., 2023), but none included storm surges as a driver.

Furthermore, most projections of the joint probability of extremes in general are based on climate model ensembles that

include only one initial-condition simulation per model. However, since co-occurring extremes are rare, estimates of their

joint probability are sensitive to internal climate variability when derived from a single simulation, even when using a 50-year70

period from that simulation (Santos et al., 2021). Hence, as advocated by Bevacqua et al. (2023), projections of the potential for

compound extremes would benefit from using single model initial-condition large ensembles (SMILEs). These are ensembles

of simulations generated with the same external forcing but initialized at different times, so that internal climate variability

has a different phase in each simulation and can be (partially) averaged out. Consequently, SMILEs can be used to develop

more robust projections of the joint probability of extremes (Bevacqua et al., 2023) and to partition the total uncertainty of75

projections into uncertainties due to emissions scenarios, inter-model differences and internal climate variability (Lehner et al.,

2020).

Many global climate models from the current, sixth Coupled Model Intercomparison Project (CMIP6) (Eyring et al., 2016)

provide simulations for multiple initial-condition members. Including all these simulations for the analysis of compound flood-

ing is challenging as storm surges and river discharge are not a direct output of global climate models but need to be derived80

from their simulations offline. This is typically done using computationally demanding hydrodynamic and hydrological mod-

els, respectively (e.g., Bevacqua et al., 2020b; Ganguli et al., 2020). However, as a computationally more efficient alternative

to hydrodynamic modeling, data-driven models have recently been developed to compute storm surges at large spatial scales
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(Bruneau et al., 2020; Tadesse et al., 2020; Tadesse and Wahl, 2021; Tiggeloven et al., 2021; Bellinghausen et al., 2023). Such

statistical models, for instance based on multi-linear regression or other machine learning techniques, have been shown to per-85

form similarly to or better than high-resolution hydrodynamic models such as the Global Tide and Surge Model of Muis et al.

(2016, 2020, 2023) (Tadesse et al., 2020; Tiggeloven et al., 2021). Therefore, they may also be useful for projecting changes

in the joint probability of extreme storm surges and other flooding drivers.

Here, we project changes in the joint probability of extreme storm surges and precipitation and analyze their uncertainty

using the simulations of a large ensemble of CMIP6 models, including all initial-condition members available for each model.90

To derive storm surge information from each simulation, we use the data-driven statistical model of Tadesse et al. (2020), which

we will show is well suited for the analysis of joint storm surge and precipitation extremes. We limit our study to Europe, where

data-driven storm surge models generally perform well (Tadesse et al., 2020; Bruneau et al., 2020; Tiggeloven et al., 2021).

Storm surges are mainly caused by wind and sea-level pressure. Therefore, the probability of joint extreme wind speed and

precipitation events, which can disrupt transport and power systems (e.g., Jaroszweski et al., 2015), is closely related to that of95

joint storm surge and precipitation extremes and helps to interpret the changes in the latter physically. Therefore, we consider

changes in the probability of joint wind speed and precipitation extremes alongside changes in the probability of joint storm

surge and precipitation extremes and compare them. Finally, we exploit the large ensemble of CMIP6 simulations to compare

the ensemble mean changes to the effect of internal climate variability, partition the uncertainty of our projections and compute

the ensemble size required for qualitatively robust projections.100

2 CMIP6 data and joint extremes analysis

In this section, we explain which CMIP6 simulations we use and how we analyze the changes in the joint probability of

extremes in these simulations.

2.1 CMIP6 data used

We analyze future changes in the joint probability of extremes for an intermediate (SSP2-4.5) and a high (SSP5-8.5) emissions105

scenario (Meinshausen et al., 2020). As only few CMIP6 models provide simulations at a sub-daily frequency, we use daily

mean CMIP6 simulations. Models are required to provide daily mean sea-level pressure (variable ’psl’), surface wind speed

(variable ’sfcWind’) and precipitation flux (variable ’pr’) output for the historical period (1850-2014) and at least one of the

SSP2-4.5 and SSP5-8.5 scenarios (2015-2100). To obtain time series for 1850-2100, each SSP simulation is appended to its

corresponding historical simulation. Daily mean wind speed and precipitation flux time series (converted to daily accumulated110

precipitation) are used to analyze (changes in) the joint probability of wind speed and precipitation extremes (as explained in

Sections 2.2 and 2.3), whereas daily mean wind speed and sea-level pressure time series are used as input to the statistical

storm surge model (as explained in Section 3). Like Ridder et al. (2022), we use daily mean instead of daily maximum wind

speed, as more CMIP6 simulations are available for the former.
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For several CMIP6 models, multiple realizations (denoted with ’r’ in the ’ripf’ variant label) are available that have been115

branched off from their preindustrial control run at different times. Because the phase of internal climate variability differs

between these realizations, they can be used to average out (part of the) changes due to internal climate variability and better

isolate the changes due to increasing greenhouse gas concentrations. In contrast to previous projections, we therefore include

all available realizations of each CMIP6 model providing the output described above. The resulting dataset includes over

20 terabytes of data from 27 different CMIP6 models (see Table 1 for an overview). To process this data efficiently and120

reproducibly, we use the Analysis-Ready Cloud Optimized CMIP6 data produced by the Pangeo / ESGF Cloud Data Working

Group (https://pangeo-data.github.io/pangeo-cmip6-cloud/), held in public Google Cloud Storage. The datasets summarized

in Table 1 reflect datasets that were available to download and ingest via the pangeo-forge feedstock (Busecke and Stern,

2023) at the time of writing of this manuscript. The data is analyzed using the code in the CMIP6cex repository (Hermans

and Busecke, TBD), for which the xarray (Hoyer and Hamman, 2017) and xMIP (Busecke et al., 2023) python packages are125

important building blocks.

Prior to the analysis, we bilinearly interpolated the simulations of each model to a common grid with a 1.5◦ x 1.5◦ resolution,

using xESFM (Zhuang et al., 2023). A 1.5◦ x 1.5◦ grid roughly corresponds with the average resolution of the CMIP6 models

(Table 1). Ensemble statistics are computed and displayed on this grid. The regridded simulations are also used as input to the

statistical storm surge model (as described in Section 3).130

2.2 Definition of joint extremes

In this study, we consider two types of compound extremes: (i) the combination of extreme daily mean wind speed and

extreme daily accumulated precipitation, and (ii) the combination of extreme daily maximum storm surge and extreme daily

accumulated precipitation. While compound events can already be impactful if only one of their drivers is extreme (Wahl et al.,

2015), we focus on the case in which both drivers are extreme, similar to previous studies (Bevacqua et al., 2019, 2020b;135

Ganguli et al., 2020; Ridder et al., 2022). We define extreme events using a peak-over-threshold (POT) analysis instead of

using annual maxima, because this allows us to consider multiple extremes occurring in a single year and avoids including

annual maxima that are not extreme.

Previous POT analyses have often used the same threshold percentile or used thresholds resulting in the same number of

declustered extremes for each location and variable (e.g., Ridder et al., 2020; Bevacqua et al., 2020b; Hendry et al., 2019;140

Camus et al., 2021; Ganguli et al., 2020); a pragmatic approach which we also adopt here. For Europe, Camus et al. (2021)

found that using 3 v.s. 6 declustered extremes per year resulted in similar bivariate dependence patterns for several combinations

of compound flooding drivers. Therefore, we use the 98th percentile of daily values as a threshold, which results in a number of

extremes slightly higher than 6 per year. Hence, wind speed (w), storm surge (s) and precipitation (p) extremes are defined as

P = p≥ p98, W = w ≥ w98 and S = s≥ s98, respectively, and joint extreme wind speed and precipitation and joint extreme145

storm surges and precipitation events as days on which those extremes co-occur (W ∧P and S∧P , respectively). As a baseline,

we only consider extremes that occur on the same day and do not decluster the extremes prior to the analysis. The sensitivity

of our projections to these methods is discussed in Section 5.
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Table 1. CMIP6 simulations used.

Model SSP2-4.5 [#] SSP5-8.5 [#] Both [#] ◦Lon x ◦Lat Reference

1 ACCESS-CM2 5 6 4 1.875 x 1.25 (Bi et al., 2020)

2 ACCESS-ESM1-5 38 35 33 1.875 x 1.25 (Bi et al., 2020)

3 CanESM5 25 25 25 2.8 x 2.8 (Swart et al., 2019)

4 CESM2 2 2 2 1.25 x 0.9 (Danabasoglu et al., 2020)

5 CESM2-WACCM 3 3 3 1.25 x 0.9 (Danabasoglu et al., 2020)

6 CMCC-ESM2 1 1 1 1.25 x 0.9 (Lovato et al., 2022)

7 CMCC-CM2-SR5 1 1 1 1.25 x 0.9 (Cherchi et al., 2019)

8 EC-Earth3 59 1 1 0.75 x 0.75 (Döscher et al., 2022)

9 EC-Earth3-Veg 1 0 0 0.75 x 0.75 (Döscher et al., 2022)

10 FGOALS-g3 1 0 0 2 x 2 (Li et al., 2020)

11 GFDL-CM4 1 1 1 1 x 1 (Held et al., 2019)

12 GFDL-ESM4 1 1 1 1 x 1 (Dunne et al., 2020)

13 HadGEM3-GC31-LL 5 4 4 1.875 x 1.25 (Andrews et al., 2020)

14 HadGEM3-GC31-MM 0 4 0 0.83 x 0.56 (Andrews et al., 2020)

15 INM-CM4-8 1 1 1 2 x 1.5 (Volodin and Gritsun, 2018)

16 INM-CM5-8 1 1 1 2 x 1.5 (Volodin et al., 2017)

17 IPSL-CM6A-LR 11 7 6 2.5 x 1.3 (Boucher et al., 2020)

18 KACE-1-0-G 3 3 3 not reported (Lee et al., 2020)

19 MIROC6 43 50 43 1.4 x 1.4 (Tatebe et al., 2019)

20 MIROC6-ES2L 10 1 1 2.8 x 2.8 (Hajima et al., 2020)

21 MPI-ESM1-2-LR 24 24 24 1.88 x 1.88 (Mauritsen et al., 2019)

22 MPI-ESM1-2-HR 2 2 2 0.93 x 0.93 (Mauritsen et al., 2019)

23 MRI-ESM2-0 1 1 1 0.75 x 0.75 (Yukimoto et al., 2019)

24 NorESM2-LL 3 1 1 2.5 x 1.88 (Øyvind Seland et al., 2020)

25 NorESM2-MM 2 1 1 1.25 x 0.94 (Øyvind Seland et al., 2020)

26 TaiESM1 1 1 1 1.25 x 0.9 (Wang et al., 2021)

27 UKESM1-0-LL 5 5 5 1.875 x 1.25 (Sellar et al., 2020)

2.3 Future changes in the joint probability of extremes

We analyze the joint probability of extremes empirically by counting the number of joint extremes (NW∧P and NS∧P ) and150

standardizing those numbers by the length of the time period considered, as done by Hendry et al. (2019); Camus et al. (2021);

Couasnon et al. (2019); Ridder et al. (2020) and Ridder et al. (2022).

6



2.3.1 Computing future changes

To compute the changes in the number of joint extremes that the CMIP6 models simulate (∆NW∧P and ∆NS∧P ), we define

two 40-year periods centered around 2000 (1981-2020) and 2080 (2061-2100) as the historical and future periods, respectively.155

We then compute ∆NW∧P (and similarly, ∆NS∧P ) as the difference in the number of joint extremes between these periods:

∆NW∧P =Nfut
W∧P −Nhist

W∧P , (1)

in which the superscripts fut and hist mean ’evaluated in’ the future and historical period, respectively. Importantly, for both

the historical and future periods, the number of joint extremes that exceed the historical thresholds whist
98 and phist98 are counted.

Therefore,160

Nfut
W∧P = |wfut ≥ whist

98 ∧ pfut ≥ phist98 | (2)

and

Nhist
W∧P = |whist ≥ whist

98 ∧ phist ≥ phist98 |. (3)

The same equations are applied to compute ∆NS∧P by replacing wind speed (w) with storm surges (s).

2.3.2 Decomposing future changes165

Changes in the joint probability of extremes can be decomposed into changes in the marginal distributions of each of the

considered variables and changes in the dependence structure between them (see Supporting Fig. 2 for a graphical explanation).

Using methods similar to those of Bevacqua et al. (2019, 2020b), we compute the changes in NW∧P (and similarly, NS∧P )

due to changes in the marginal distribution of wind and precipitation (denoted ∆Nw
W∧P and ∆Np

W∧P , respectively) as

∆Nw
W∧P = |whist ≥ whist

Uw
∧ phist ≥ phist98 | −Nhist

W∧P (4)170

and

∆Np
W∧P = |whist ≥ whist

98 ∧ phist ≥ phistUp
| −Nhist

W∧P . (5)

Put more simply, we compute how changing the threshold percentile for either wind speed or precipitation extremes affects

the number of joint extremes in the historical period. In Eqs. 4 and 5, the changed threshold percentiles are defined as Uw =

F fut
w (whist

98 ) and Up = F fut
p (phist98 ), where F fut

w and F fut
p are the empirical cumulative distribution functions of the wind175

speed and the precipitation in the future period. Hence, Uw and Up are the threshold percentiles that the historical threshold

7



values would correspond to in the future. Similarly, we compute the changes in NW∧P due to the changes in the two marginal

distributions combined, but still with the historical dependence structure, as

∆Nw,p
W∧P = |whist ≥ whist

Uw
∧ phist ≥ phistUp

| −Nhist
W∧P . (6)

To compute the changes in NW∧P due to changes in the dependence between wind speed and precipitation, we simply180

subtract the changes due to changes in both marginal distributions from the total change:

∆Ndependence
W∧P =∆NW∧P −∆Nw,p

W∧P (7)

Given that Uw and Up are the threshold percentiles that the historical threshold values correspond to in the future period,

the historical threshold values used to compute ∆NW∧P (see Eqs. 1-3) can be written as whist
98 = wfut

Uw
and phist98 = pfutUp

.

Therefore, by using Eq. 7 to compute ∆Ndependence
W∧P , we essentially compute the difference in the number of joint extremes185

between the historical and future periods using the same threshold percentiles to define extremes in both periods, instead of

using the same threshold values (as is done to compute ∆NW∧P ). Since using the same threshold percentiles in both periods

means that the number of univariate extremes will not change, the remaining changes in the number of joint extremes must

follow from changes in the dependence between the considered variables. Again, ∆NS∧P is decomposed similarly, using s

instead of w. Table 2 summarizes the notations defined in this section.190
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Table 2. Notations defined in Section 2.

Notation Definition

w, s & p Wind speed, storm surge and precipitation.

W , S & P Wind speed, storm surge and precipitation extremes defined as events equal to or higher than the 98th percentile

of all wind speed, storm surge and precipitation events (w ≥ w98, s≥ s98 and p≥ p98), respectively.

NW∧P Standardized number of days on which both wind speed and precipitation are extreme.

Nhist
W∧P NW∧P in the period 1981-2020 as simulated by CMIP6 models.

Nfut
W∧P NW∧P in the period 2061-2100 as simulated by CMIP6 models.

∆NW∧P The difference between Nfut
W∧P and Nhist

W∧P .

∆Nw
W∧P ∆NW∧P due to changes in the marginal distribution of wind speed.

∆Np
W∧P ∆NW∧P due to changes in the marginal distribution of precipitation.

∆Nw,p
W∧P ∆NW∧P due to changes in the marginal distributions of wind speed and precipitation.

∆Ndependence
W∧P ∆NW∧P due to changes in the dependence between wind speed and precipitation.

NS∧P Standardized number of days on which both storm surge and precipitation are extreme.

Nhist
S∧P NS∧P in the period 1981-2020 as simulated by CMIP6 models.

Nfut
S∧P NS∧P in the period 2061-2100 as simulated by CMIP6 models.

∆NS∧P The difference between Nfut
S∧P and Nhist

S∧P .

∆Ns
S∧P ∆NS∧P due to changes in the marginal distribution of storm surges.

∆Np
S∧P ∆NS∧P due to changes in the marginal distribution of precipitation.

∆Ns,p
S∧P ∆NS∧P due to changes in the marginal distributions of storm surges and precipitation.

∆Ndependence
S∧P ∆NS∧P due to changes in the dependence between storm surges and precipitation.

2.4 Computing ensemble statistics

Not every CMIP6 model provides the same number of initial-condition simulations (see Table 1). To include all simulations

while weighting models equally, we first average the (changes in the) number of joint extremes over all initial-condition simu-

lations of each model before computing the multi-model ensemble mean and standard deviation. Furthermore, the availability

of simulations differs between SSP2-4.5 and SSP5-8.5. To be able to directly compare the projections between the scenarios,195

we only use the initial-condition simulations that are available for both emissions scenarios in the main text, and provide the

projections based on all available simulations per SSP scenario in the Supporting Information.

In Section 4.4, we compare the magnitude of the ensemble mean changes in the number of joint extremes to the magnitude

of the variability in the historical number of joint extremes. As a metric of the effect of internal climate variability on the

historical number of joint extremes, we compute the average standard deviation of Nhist
W∧P and Nhist

S∧P between initial-condition200

simulations using the CMIP6 models that have at least 5 initial-condition members (see Table 1). We also use these models
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to partition the uncertainty in our projections into the uncertainty due to internal variability (I), differences between models

(M ) and differences between emissions scenarios (S), similar to Lehner et al. (2020). To estimate I , we compute the standard

deviation of ∆NW∧P and ∆NS∧P between the initial-condition members of each model, and compute the average of those

standard deviations. Next, to estimate M , we compute the standard deviation of ∆NW∧P and ∆NS∧P between the means of205

the initial-condition members of each model. Then, to estimate S, we compute the standard deviation of the member-mean

∆NW∧P and ∆NS∧P between SSP2-4.5 and SSP5-8.5 for all available CMIP6 models, and compute the average of those

standard deviations.

To study how internal climate variability and inter-model differences affect projections of the joint probability of extremes

based on small climate model ensembles (e.g., Ganguli et al., 2020; Bevacqua et al., 2020b), we compute the probability that210

the means of such ensembles agree qualitatively with our projections. To this end, we randomly draw up to 5,000 ensembles of

size s from all possible combinations of s CMIP6 models (using a single member per model), for s= 1 to s=NCMIP6 − 1.

For each s, we then compute the fraction of ensembles for which the ensemble mean ∆NW∧P (or ∆NS∧P ) has the same

sign as that of the ensemble including all CMIP6 models and initial-condition members. Finally, as an indication for how large

ensembles need to be for qualitatively robust projections, we compute the minimum s for which the fraction of ensemble means215

agreeing in sign is 90% or higher.

3 Modeling storm surges

3.1 Training and application of the storm surge model

To compute storm surges for each CMIP6 simulation in Table 1 we use a multi-linear regression (MLR) model based on

the methods of Tadesse et al. (2020) and Tadesse and Wahl (2021), as running a hydrodynamic model for each simulation220

is computationally infeasible. The MLR model of Tadesse et al. (2020) was trained with daily maximum non-tidal residuals

observed at tide gauges (TGs) as predictands and sub-daily surface winds and sea-level pressure from various reanalyses as

predictors. Predictors were used within either 10◦ by 10◦ (Tadesse et al., 2020) or 6◦ by 6◦ (Tadesse and Wahl, 2021) grids

around each TG and lags up to 30 hours between the predictands and predictors were implemented. The daily maximum non-

tidal residuals of Tadesse et al. (2020), which we also use here, were obtained by removing the annual mean sea level and225

predicted astronomical tides from TG records in the GESLA2 dataset (Woodworth et al., 2016).

A simpler version of the statistical model was previously applied to compute storm surges for a large ensemble of simulations

of the European weather@home atmospheric model (Calafat et al., 2022). This version was trained using daily mean wind

speed and sea-level pressure (without lags) from the ERA5 reanalysis (Hersbach et al., 2020) as predictors, in 2◦ by 2◦ grids

around each TG. Since we use daily mean CMIP6 data, here, we also use daily mean predictors from ERA5 (1979-2018) to230

train the MLR model. However, because a larger grid size around each TG leads to a better performance (Tadesse and Wahl,

2021), we use 9◦ by 9◦ grids around each TG. The resolution of ERA5 (0.25◦ by 0.25◦) is higher than that of the CMIP6 models

(see Table 1). Therefore, prior to estimating the regression coefficients with the ERA5 predictors, we coarsen the ERA5 data

by bilinearly interpolating it to the same 1.5◦ by 1.5◦ grid that the CMIP6 simulations were regridded to (Section 2.1). At this
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resolution, the 9◦ by 9◦ grids around each TG consist of 36 grid cells. Training the storm surge model with coarsened instead235

of native-resolution ERA5 predictors did not substantially affect its performance.

Other than using different predictor data, we estimate the regression coefficients in the same way as Tadesse et al. (2020) and

Tadesse and Wahl (2021). As the flowchart in Supporting Fig. 1 shows, the gridded ERA5 data around each TG, including the

wind speed squared and cubed, are normalized by removing the time-mean of each variable and scaling them to unit variance.

To reduce the dimensionality of the gridded data, the normalized variables are then pooled, after which empirical orthogonal240

functions (EOFs) are computed. The first EOFs that together explain at least 95% of the variance of the the predictor data are

then regressed on the daily maximum non-tidal residuals from GESLA2.

To apply the statistical storm surge model to the CMIP6 simulations, the regression coefficients that were estimated with the

ERA5 predictor data are multiplied with predictors derived from the regridded CMIP6 simulations (see flowchart in Supporting

Fig. 1). The CMIP6 predictors are prepared like the ERA5 predictors. For each combined historical and SSP simulation (1850-245

2100), we take the daily mean wind speed and sea-level pressure gridded around each TG, and also compute the squared and

cubed wind speed terms. Subsequently, we normalize these variables, pool them and compute EOFs. As the sign of an EOF is

not unique, we flip the sign of an EOF of the CMIP6 predictor data if its spatial pattern better matches that of the corresponding

EOF of the ERA5 predictor data when multiplied by -1. For each TG, the first n EOFs of the CMIP6 predictor data around that

TG are multiplied with the ERA5-based regression coefficients, where n is the number of EOFs that explained at least 95% of250

the variance of the ERA5 predictor data around that TG (see Supporting Fig. 1). For each simulation, this results in estimates

of daily maximum non-tidal residuals at every tide gauge during 1850-2100, which we refer to as storm surges.

3.2 Evaluating the storm surge model

The purpose of using the storm surge model is to analyze the number of joint storm surge and precipitation extremes NS∧P .

Therefore, we evaluate the model by comparing NS∧P based on the statistically modelled storm surges (NSMLR∧P ) with255

that based on the observed daily maximum non-tidal residuals from GESLA2 (NSG2∧P ) (Fig. 1). To put this comparison into

context, we also evaluate NS∧P based on the daily maximum non-tidal residuals from the Coastal Dataset for the Evaluation

of Climate Impact (CoDEC) (NSCoDEC∧P ). This dataset was simulated with the high-resolution Global Tide and Surge Model

(GTSM) driven by atmospheric forcing from ERA5 (Muis et al., 2020). Furthermore, we also compare NW∧P based on daily

mean wind speed from ERA5 (NWERA5∧P ) with NSG2∧P . In all cases, precipitation comes from ERA5, and we only use the260

timesteps at which GESLA2 data is available (see Supporting Fig. 1 for the temporal coverage).

NSG2∧P is relatively large (15-25 joint extremes per decade) at the west and south coasts of Spain, Portugal and France, and

at the southwest coast of the UK, while it is relatively small (0-10 joint extremes per decade) at the north coast of Spain and

along the North Sea (Fig. 1a). This pattern is consistent with the results of previous studies (Paprotny et al., 2018; Bevacqua

et al., 2019; Hendry et al., 2019; Couasnon et al., 2019). With a correlation of 0.87 and a normalized root mean square error265

(nRMSE) of 0.36, NSMLR∧P agrees relatively well with NSG2∧P (compare Figs. 1a & b), which suggests that the statistical

storm surge model predicts the timing of the extremes in the GESLA2 data well. Using 5-fold cross-validation, we verified

that the agreement between NSMLR∧P and NSG2∧P does not change much when only considering days that were not used
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for training. The differences between NSMLR∧P and NSG2∧P are largest at the south and east coasts of Spain (Fig. 1f), where

NSMLR∧P overestimates NSG2∧P .270

Overall, the number of joint storm surge and precipitation extremes based on the statistically modelled storm surges is very

similar to that based on the storm surges simulated with GTSM (compare Figs. 1b & c). Although the biases of NSMLR∧P

(nRMSE = 0.36, Fig. 1f) are moderately larger than those of NSCoDEC∧P (nRMSE = 0.29, Fig. 1g), the pattern correlation

coefficients are the same (r = 0.87). Whereas NSMLR∧P overestimates NSG2∧P mostly around Spain, NSCoDEC∧P underes-

timates NSG2∧P south of France and in the Bay of Biscay by several events per decade. The differences between NSG2∧P275

(Fig. 1a) and NWERA5∧P (Fig. 1d), which are shown in Fig. 1h, are clearly larger. These differences reveal where the joint

probability of storm surge and precipitation extremes differs from that of wind speed and precipitation extremes, and therefore

where the information on sea-level pressure and the direction of the wind that the statistical storm surge model contains adds

value. A comparison between the magnitudes of the biases in Figs. 1f & h suggests that this is the case for instance at the

north coast of Spain, along the Mediterranean Sea, at the west coast of France and around most of the UK. The agreement be-280

tween NWERA5∧P and NSG2∧P improves when we use daily maximum instead of daily mean wind speed, but including daily

maximum wind speed as a predictor variable of the MLR model does not lead to a much better performance of NSMLR∧P .

The temporal coverage of the TG records is limited at several locations (see Supporting Fig. 1). Consequently, at some of

these locations, the evaluation in Fig. 1 is based on only a couple of observed joint storm surge and precipitation extremes.

To test whether the results in Fig. 1 are robust to using a larger sample size, we repeated the evaluation with lower threshold285

percentiles (Fig. 1e). Other than that the error metrics tend to improve for lower thresholds, which may also partially reflect the

inclusion of less extreme events, the performance of NSMLR∧P remains similar to that of NSCoDEC∧P (Fig. 1e). Therefore,

we conclude that using the statistical storm surge model instead of a hydrodynamic model to analyze ∆NS∧P in CMIP6

simulations is appropriate, especially since a hydrodynamic model would also have to be forced with the relatively low-

resolution atmospheric forcing from CMIP6 instead of with the ERA5 forcing used for CoDEC.290

As an additional test we evaluated the statistical storm surge model trained with the CoDEC data instead of the daily

maxima from GESLA2. We find that with these predictands, the biases of NSMLR∧P and NSCoDEC∧P are also relatively

similar (Supporting Fig. 3). Furthermore, applying this version of the model to the CMIP6 simulations did not substantially

change the results in Section 4.3. Therefore, future research may use a statistical storm surge model trained with hydrodynamic

model simulations to extend our analysis to locations without tide gauges.295
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Fig. 1. Number of joint extreme (a) storm surges from GESLA2 and precipitation from ERA5 (NSG2∧P ), (b) statistically modelled storm

surges and precipitation from ERA5 (NSMLR∧P ), (c) storm surges from CoDEC and precipitation from ERA5 (NSCoDEC∧P ) and (d) wind

speed and precipitation from ERA5 (NWERA5∧P ) at GESLA2 TGs [#/decade]. (e) the correlation coefficient r and nRMSE of (b-d) relative

to (a) as a function of the extremes threshold percentile. (g-f) NSMLR∧P , NSCoDEC∧P and NWERA5∧P minus NSG2∧P , respectively. All

nRMSEs are normalized by dividing by the mean of NSG2∧P . All correlation coefficients are statistically significant (p << 0.05).

4 Changes in the number of joint extremes

4.1 Wind speed and precipitation (∆NW∧P )

Displaying NWERA5∧P for the entire domain, Fig. 2a indicates that the observed number of joint wind speed and precipitation

extremes is relatively large mainly over west-facing coasts and mountainous regions such as the western Iberian Peninsula,

western France, parts of the UK and Norway. In contrast, it is relatively low over Sweden, eastern Spain, southeastern France300
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and the southeastern UK (Fig. 2a). To a large degree, NWERA5∧P is consistent with the historical extremal dependency between

wind speed and precipitation that has been estimated previously (Martius et al., 2016; Owen et al., 2021). The CMIP6 ensemble

mean Nhist
W∧P well approximates this large-scale pattern (Fig. 2b), but especially the lower-resolution CMIP6 models do not

capture the small-scale imprints of orography and land seen in ERA5 (Supporting Fig. 4). Consequently, the ensemble mean

Nhist
W∧P is smoother and lower than NWERA5∧P in among others Scotland, Iceland, Norway and Italy.305

(a) Historical (ERA5)
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Fig. 2. (a) NW∧P based on the ERA5 reanalysis (1979-2018), (b) CMIP6 ensemble mean Nhist
W∧P , and (c-d) CMIP6 ensemble mean ∆NW∧P

under SSP2-4.5 and SSP5-8.5, respectively. In (c-d), the stippling indicates where the absolute ensemble mean change exceeds the standard

deviation of the change between models.

For both SSPs, the ensemble mean ∆NW∧P shows increases (of up to 4 and 6 per decade under SSP2-4.5 and SSP5-8.5,

respectively) in a band extending from the southwest to the northeast, neighboured by decreases (of up to 7 and 11 per decade

under SSP2-4.5 and SSP5-8.5, respectively) in the northwest (Iceland) and the south (Bay of Biscay & the Mediterranean Sea)

of the domain (Figs. 2c & d). Averaged over land, the absolute magnitude of the changes is approximately 39% (SSP2-4.5) to
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51% (SSP5-8.5) of the historical number of joint extremes. The spatial patterns of ∆NW∧P are similar under SSP2-4.5 and310

SSP5-8.5, but the magnitude of the changes is larger under SSP5-8.5, reflecting a larger forced response. Correspondingly, the

area in which the magnitude of the ensemble mean ∆NW∧P exceeds the standard deviation of the change between the CMIP6

models (shown in Supporting Fig. 5) is larger under SSP5-8.5 than under SSP2-4.5 (see stippling in Figs. 2c & d). If we

only include one randomly selected initial-condition member per model, the standard deviation between models increases by

approximately 15% (SSP2-4.5) and 11% (SSP5-8.5) on average, reflecting the ensemble uncertainty due to internal variability315

(see also Section 5). The ∆NW∧P of individual CMIP6 models with only few initial-condition members is clearly more noisy

(less spatially coherent) than that of CMIP6 models with more members (Supporting Figs. 6 & 7). Compared to the projections

of Ridder et al. (2022), our ensemble mean projections seem to indicate larger decreases in southern Spain, larger increases

in the east of the UK and smaller increases in the west of the UK. These differences may be related to the different CMIP6

ensembles used, but a more systematic comparison would be needed to confirm this.320

As shown in Fig. 3, a substantial part of the ensemble mean ∆NW∧P under SSP5-8.5 (and under SSP2-4.5, see Supporting

Fig. 8) consists of changes in the marginal distribution of precipitation. The ensemble mean ∆Np
W∧P (Fig. 3a) is positive over

most of Europe and negative over the south of the domain; a pattern that is consistent with projections of the magnitude of

extreme precipitation (Pfahl et al., 2017; Li et al., 2021; Seneviratne, 2021). The increases in extreme precipitation over most

of Europe, which would lead to a larger number of precipitation events exceeding the historical threshold, are understood to325

be caused by the increasing moisture carrying capacity of the heating atmosphere. The decreases in the Mediterranean, which

would lead to fewer events exceeding the historical threshold in the future, are thought to be caused by dynamic circulation

changes such as the projected shift of the North Atlantic storm track (Pfahl et al., 2017). Except in between these regions of

increases and decreases, the ensemble mean ∆Np
W∧P exceeds the standard deviation between the models.

Changes in the marginal distribution of wind speed, on the other hand, contribute negatively to ∆NW∧P in most of the330

domain (Fig. 3b), except over the North Sea region and Sweden. The pattern of the ensemble mean resembles previously

projected changes in storm track density and the wind intensity of extratropical cyclones (Zappa et al., 2013; Priestley and

Catto, 2022). In several regions with negative ∆Nw
W∧P , such as in Spain, Portugal, Iceland and Norway, the ensemble mean

exceeds the standard deviation across models under SSP5-8.5 (and to a lesser extent under SSP2-4.5, see Supporting Fig. 8).

Where ∆Nw
W∧P is positive, this is not the case, similar to what has been found for changes in windstorm damages (Severino335

et al., 2023).

Together, changes in the marginal distributions of precipitation and wind speed (Fig. 3c) explain much but not all of the

total change (∆NW∧P , Fig. 2d). The remaining differences are caused by ∆Ndependence
W∧P , which is negative mainly over the

northwest of the domain, the Bay of Biscay, part of Norway and northern Africa, and positive in most other regions (Fig. 3d).

While the magnitude of ∆Ndependence
W∧P is moderate, it is comparable to or higher than of the other components of ∆NW∧P340

in several regions. The ensemble mean of ∆Ndependence
W∧P is lower than its standard deviation between models except south

of Norway, in the southern UK and at a few other grid cells (Fig. 3d), indicating that the uncertainty in this term due to

model differences and internal climate variability is relatively large. In contrast to ∆Np
W∧P and ∆Nw

W∧P , the pattern of

∆Ndependence
W∧P does not clearly relate to the atmospheric changes projected in previous studies. For instance, the dependence-
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driven increases in NW∧P over the Mediterranean appear to be inconsistent with the projected decrease in the frequency of345

extratropical cyclones over southern Europe (Zappa et al., 2013; Priestley and Catto, 2022), given that in Europe, joint wind

speed and precipitation extremes are often associated with extratropical cyclones (Owen et al., 2021). However, as alluded

to by Owen et al. (2021), the co-occurrence of wind speed and precipitation extremes also depends on the seasons in which

the extremes tend to occur. To better understand the dependence-driven changes, we therefore analyze ∆Ndependence
W∧P from a

seasonal perspective in the next section.350

(a) Precipitation-driven (b) Wind-driven

(c) Wind & Precipitation-driven

10 5 0 5 10
NW P [#/decade]

(d) Dependence-driven

10 5 0 5 10
NW P [#/decade]

Fig. 3. CMIP6 ensemble mean ∆NW∧P (under SSP5-8.5) due to (a) changes in the marginal distribution of precipitation (∆Np
W∧P ),

changes in the marginal distribution of wind speed (∆Nw
W∧P ), changes in the marginal distributions of both precipitation and wind speed

(∆Nw,p
W∧P ), and (d) changes in the dependence between precipitation and wind speed (∆Ndependence

W∧P ). The stippling indicates where the

absolute value of the ensemble mean of each component of ∆NW∧P exceeds the standard deviation of that component between models.
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4.2 Seasonal dependence-driven changes

Most of the ensemble mean ∆Ndependence
W∧P (Fig. 3d) consists of changes in autumn (SON) and winter (DJF) (Figs. 4a & d),

which are the seasons in which extratropical cyclones in Europe prevail and extreme wind speed and precipitation are most

likely to co-occur (Owen et al., 2021). As explained in Section 2.3.2, to compute ∆Ndependence
W∧P we use the same threshold

percentiles in both the historical and future period, so that the total number of univariate extremes in these periods stays the355

same. However, the seasons in which the univariate extremes tend to occur can change between these periods (Figs. 4b, c, e &

f). The projected shifts in the number of univariate extremes in autumn and winter seem to explain at least part of the ensemble

mean ∆Ndependence
W∧P in these seasons (Fig. 4). For example, winter ∆Ndependence

W∧P is negative in the north and northwest of

the domain, where also the numbers of precipitation and wind extremes in winter decrease. Similarly, winter ∆Ndependence
W∧P

is positive over the Mediterranean Sea, where both the numbers of precipitation and wind extremes are simulated to increase360

in winter (Figs. 4a-c). Furthermore, autumn ∆Ndependence
W∧P is negative over the Bay of Biscay, consistent with the decreasing

numbers of both wind and precipitation extremes in that region (Figs. 4d-f).

The changes in the number of univariate extremes in winter and autumn (Fig. 4b, c, e & f) reflect the changes in the

magnitude of extremes in these seasons relative to the other seasons. For instance, if the magnitude of heavy-precipitation

events will increase more strongly (or decrease less strongly) in winter than in summer, a larger fraction of the unchanged total365

number of extreme precipitation events will occur in winter and a smaller fraction in summer. Therefore, even if the frequency

of the weather phenomena causing joint extremes, which prevail in autumn and winter, is not projected to increase, a larger

fraction of events with strong winds and precipitation in autumn and winter may be classified as compound extreme events if

the magnitude of univariate extremes in spring and summer decreases relative to that in autumn and winter. In places where

∆Ndependence
W∧P is less consistent with the seasonal changes in the number of univariate extremes, such as over the Bay of Biscay370

in winter (Figs. 4a-c), changes in the frequency of certain weather types may play a larger role.
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Fig. 4. CMIP6 ensemble mean changes (under SSP5-8.5) in the number of joint wind and precipitation extremes (∆NW∧P ), univariate wind

speed extremes (∆NW ) and univariate precipitation extremes (∆NP ), in (a-c) winter (DJF) and (d-f) autumn (SON), respectively.

4.3 Storm surges and precipitation (NS∧P )

Next, we analyze the number of joint storm surge and precipitation extremes, using the storm surges that were statistically

derived from the CMIP6 simulations. The CMIP6 ensemble mean Nhist
S∧P (Fig. 5a) agrees with NSG2∧P (Fig. 1a) reasonably

well (significant pattern correlation of 0.75 and nRMSE of 0.40). Similarly to NSG2∧P , the ensemble mean Nhist
S∧P is relatively375

large at west coasts and relatively small at the east coast of the UK and in northern Spain. However, especially along the

northwestern coastline of the Mediterranean Sea and at the east coasts of the UK and France, the ensemble mean Nhist
S∧P tends

to underestimate NSG2∧P (Supporting Fig. 9a). While these biases may partially be inherited from the MLR model (see Fig.

1f), the ensemble mean Nhist
S∧P also tends to underestimate NSMLR∧P in these regions (Supporting Fig. 9b). Furthermore,

a similar underestimation was found for an ensemble of CMIP5 models based on hydrodynamically modeled storm surges380

(Bevacqua et al., 2019, 2020b). Hence, part of the biases is related to the differences between the atmospheric forcing of global

climate models and ERA5, to which internal variability also contributes. Compared to the ensemble mean Nhist
W∧P (Fig. 2b),

Nhist
S∧P is larger in the northern Mediterranean, south of Spain and in and around the English Channel, and smaller in the Bay of

Biscay and the east of the UK and Spain (Fig. 5d). This pattern is very similar to that of the differences between NSMLR∧P and
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NWERA5∧P (Figs. 1b & d), suggesting that the MLR model indeed translates the atmospheric forcing from ERA5 and CMIP6385

models to storm surges similarly.

For both SSPs, we find that the ensemble mean ∆NS∧P (Figs. 5b-c) is positive at tide gauges in northwestern Europe and

negative at most tide gauges in southwestern Europe. The largest increases can be seen in the English Channel, at the east coast

of the UK and along the southeastern North Sea coast (up to 4 and 6 per decade, under SSP2-4.5 and SSP5-8.5, respectively),

and the largest decreases south of Spain (up to 6 and 10 per decade, under SSP2-4.5 and SSP5-8.5, respectively). In these390

regions, the ensemble mean tends to exceed the standard deviation between models (see Supporting Figure 5), especially under

SSP5-8.5 (grey-edged circles in Figs. 5b-c). If we only include one randomly selected initial-condition member per model,

the standard deviation between models increases by approximately 18% (SSP2-4.5) and 15% (SSP5-8.5) on average. West

of the UK, north of Spain and at the northern coast of Mediterranean Sea, the ensemble mean ∆NS∧P is relatively small.

Averaged over the tide gauges, the absolute magnitude of the ensemble mean changes is approximately 36% (SSP2-4.5) to395

49% (SSP5-8.5) of the historical number of joint extremes.

While their large-scale patterns broadly agree, ∆NS∧P and ∆NW∧P differ by several events per decade in various regions.

For instance, in the Bay of Biscay, ∆NS∧P is less negative than ∆NW∧P , and at the coast of Scotland, ∆NS∧P is more

positive than ∆NW∧P (Figs. 5e-f). Furthermore, in several locations, the magnitude of the difference between these changes

exceeds that of the changes themselves. These differences reflect that winds with extreme speeds and winds that cause extreme400

storm surges do not necessarily change in the same way, although part of the differences will depend on the storm surge model

used. The sign of the differences between ∆NS∧P and ∆NW∧P is not consistent between SSP2-4.5 and SSP5-8.5 everywhere,

which could be due to internal variability and/or non-linear changes. Given that both ∆NS∧P and ∆NW∧P are driven by the

same large-scale atmospheric circulation changes described in Sections 4.1 & 4.2, their decomposition into changes in marginal

distributions and dependence-related changes are also broadly similar (Supporting Fig. 13).405
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Fig. 5. (a) CMIP6 ensemble mean Nhist
S∧P , (b-c) CMIP6 ensemble mean ∆NS∧P under SSP2-4.5 and SSP5-8.5, respectively, (d) the CMIP6

ensemble mean of Nhist
S∧P minus Nhist

W∧P , and (e-f) the CMIP6 ensemble mean of ∆NS∧P minus ∆NW∧P under SSP2-4.5 and SSP5-8.5,

respectively. In (b-c), circles with a grey edge indicate where the absolute ensemble mean change exceeds the standard deviation of the

change between models.
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4.4 Magnitude relative to internal climate variability

Figs. 6a & b show that in most regions, the magnitude of the ensemble mean ∆NW∧P and ∆NS∧P under SSP2-4.5 is smaller

than one or two times the standard deviation of Nhist
W∧P and Nhist

S∧P due to internal climate variability (estimated as explained

in Section 2.4). In other words, most of the future changes in the number of joint extremes projected under SSP2-4.5 are

smaller than deviations that are likely to be seen due to internal climate variability alone. This does not necessarily imply that410

the ensemble mean is caused by internal climate variability, but rather that the average joint probability onto which internal

climate variability is superimposed will change. Over the eastern North Sea and south of Spain, unforced deviations in the

number of joint extremes are less likely to be larger than the ensemble mean changes (Figs. 6a & b).

Clearly, the ensemble mean ∆NW∧P and ∆NS∧P under SSP5-8.5 exceed twice the standard deviation due to internal

climate variability in more locations than under SSP2-4.5 (Figs. 6c & d). For instance, south of Spain, east of the UK and along415

the southeastern North Sea coastline, the ensemble mean changes are higher than 3 or 4 standard deviations due to internal

climate variability. Around the Mediterranean Sea and northeast of the UK, however, the ensemble mean ∆NW∧P and ∆NS∧P

under SSP5-8.5 are still smaller than 2 standard deviations. For ∆NS∧P , this is also the case in the Bay of Biscay and west of

the English Channel.
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Fig. 6. (a) CMIP6 ensemble mean ∆NW∧P under SSP2-4.5 divided by the average standard deviation of Nhist
W∧P between initial-condition

members of CMIP6 models providing at least 5 members, (b) CMIP6 ensemble mean ∆NS∧P under SSP2-4.5 divided by the average

standard deviation of Nhist
S∧P between initial-condition members of CMIP6 models providing at least 5 members, (c-d) as in (a-b), under

SSP5-8.5.

5 Uncertainty in the projections and sensitivity to ensemble size420

The projections of ∆NW∧P and ∆NS∧P are affected by uncertainties related to internal climate variability, inter-model differ-

ences and differences between emissions scenarios. Based on the CMIP6 models providing at least 5 initial-condition simula-

tions (see Section 2.4), we find that the uncertainties due to inter-model differences and internal climate variability exceed the

uncertainty due to differences between SSP2-4.5 and SSP5-8.5 in most of the domain (see Supporting Fig. 14). The emissions

scenario uncertainty would have likely been larger if we would have also included SSP1-2.6. Whether the uncertainties due to425

internal climate variability or inter-model differences are largest varies by location, but the former is largest in more regions

under SSP2-4.5 than under SSP5-8.5 (Supporting Fig. 14). To test whether the uncertainty partitioning is representative for the

entire CMIP6 ensemble, more models providing multiple initial-condition simulations are needed.
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Because the uncertainties due to internal climate variability and inter-model differences are large relative to the ensemble

mean changes (compare Figs. 2 & 5 with Supporting Fig. 14), projections of changes in the joint probability of extremes based430

on only 5 to 6 climate model simulations (e.g., Ganguli et al., 2020; Bevacqua et al., 2020b) may change qualitatively when

different models and/or initial-condition members would be used. We investigate this sensitivity by sub-sampling our large

CMIP6 ensemble as described in Section 2.4. In the northeast of the domain, in the band extending from southwest of the UK

to southern Scandinavia, and around the south of Spain, projections based on random subsets of CMIP6 models are more than

90% likely to have the same sign as the projections based on the full CMIP6 ensemble, even if the subsets consist of only 5435

models (Fig. 7). In these regions, the ensemble mean ∆NW∧P and ∆NS∧P are relatively large and tend to exceed the standard

deviation between models (see Figs. 2 & 5).

In contrast, in part of the UK and the mainland of Europe, in the Bay of Biscay and along the southern coasts of France and

Italy, the probability that projections based on small ensembles differ in sign is higher than 10%. In most places, we find that

the later in the 21st century and the higher the emissions scenario, the smaller is the ensemble size required for projections440

of which the sign is insensitive to which CMIP6 models are included (compare the top row with the bottom row and the left

two columns with the right two columns of Fig. 7, respectively), as the forced response is larger. For instance, for qualitatively

robust projections of ∆NS∧P at the east coast of the UK, more than 10 models are required under SSP2-4.5 (Fig. 7d), whereas 5

or fewer models suffice under SSP5-8.5 (Fig. 7h). However, even under SSP5-8.5, large ensembles are needed for qualitatively

robust projections of ∆NW∧P and ∆NS∧P in the Bay of Biscay and along the northern coastline of the Mediterranean Sea445

(Fig. 7h), consistent with the relatively large internal climate variability in these regions (see Fig. 6).

While Fig. 7 indicates that the climate model simulations used can strongly influence projections of ∆NW∧P and ∆NS∧P

(including their sign), different definitions and analyses of compound extremes can also introduce differences between studies

(Camus et al., 2021). When we re-do our projections with the 99th instead of the 98th percentile as the threshold for extremes,

include a time-lag of up to two days between the extremes, or decluster the extremes using a 3-day window (following Haigh450

et al., 2016) prior to making the projections, the projections mainly change in magnitude (Supporting Figs. 15 & 16). For

instance, using a higher threshold percentile or declustering the extremes results in smaller ∆NW∧P and ∆NS∧P , whereas

allowing a time-lag leads to larger ∆NW∧P and ∆NS∧P . However, the spatial patterns of the changes are not very sensitive to

these methods (Supporting Figs. 15 & 16), especially when compared to differences in ∆NW∧P and ∆NS∧P between models

and initial-condition members.455
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Fig. 7. The minimum number of random CMIP6 models that an ensemble needs to consist of for its mean (a-b) ∆NW∧P and (c-d) ∆NS∧P

under SSP2-4.5 to have a 90% or higher probability of having the same sign as the projections in Section 4, for the periods 2041-2080 and

2061-2100, respectively, and (e-h) as in (a-d), under SSP5-8.5. The black-edged circles indicate where the minimum ensemble size is 5 or

lower. Only one initial-condition member is used per model.

6 Discussion and Conclusions

Previous projections of changes in the joint probability of drivers of compound flooding in Europe are based on only 5 to

6 CMIP5 simulations (Bevacqua et al., 2020b; Ganguli et al., 2020). In this study, we used a large ensemble of CMIP6

simulations, which we have shown to result in more robust and less uncertain projections. Based on these projections, the joint

probability of storm surges and precipitation extremes will increase in the northwest of Europe (e.g., northwest of France,460

around North Sea and in the UK), while it will decrease further south (e.g., in most of Spain and around the Mediterranean

Sea). The spatial patterns of the ensemble mean change under the two emissions scenarios are similar, but the changes under

SSP5-8.5 have a higher absolute magnitude than under SSP2-4.5 (49% v.s. 36%, on average). Previous studies for Europe only

included a high emissions scenario (Bevacqua et al., 2020b; Ganguli et al., 2020).
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The changes in the joint probability of storm surge and precipitation extremes have a large-scale pattern similar to the changes465

in the joint probability of wind speed and precipitation extremes, but locally the differences can be large (e.g., in Scotland and

in the Bay of Biscay). Therefore, we conclude that changes in the joint probability of wind speed and precipitation extremes

are not always a good indication of changes in the potential for compound flooding. Nevertheless, they help to understand

the latter physically. Namely, we find that changes in the marginal distributions of wind speed, storm surges and precipitation

strongly resemble previously projected (thermo)dynamic changes of the atmosphere (e.g., Zappa et al., 2013; Priestley and470

Catto, 2022; Pfahl et al., 2017), as also concluded by Bevacqua et al. (2020b). Our results additionally reveal that changes in

the dependence between the extremes are at least partially related to shifts in the seasons in which the extremes tend to occur

(Section 4.2).

Despite several methodological differences, the ensemble mean projections of the joint probability of storm surge and pre-

cipitation extremes under SSP5-8.5 seem to agree qualitatively with the projections of Bevacqua et al. (2020b) in most regions,475

except southeast of Spain, in the Bay of Biscay and in the north of the Mediterranean Sea. Based on our results in Section

5, it is likely that the differences in these regions are mainly caused by the different and limited number of climate model

simulations used by Bevacqua et al. (2020b). We conclude that especially under not so high emissions scenarios and earlier

in the 21st century, internal climate variability is large compared to the forced response of the number of joint extremes and

relatively large ensembles are needed for qualitatively robust projections. This may partially explain why Ganguli et al. (2020)480

find decreases in the joint probability of storm surge and river discharge extremes in northwestern Europe for 2055 whereas

our results and those of Bevacqua et al. (2020a) indicate increases in the joint probability of storm surge and precipitation

extremes in that region. However, this discrepancy could also be related to the fact that Ganguli et al. (2020) used downscaled

and bias-corrected instead of raw climate model simulations. We consider it less likely that the differences are caused by their

analysis of river discharge instead of precipitation extremes, as both are projected to increase in magnitude over the UK and485

western Europe (Sante et al., 2021).

As demonstrated in this study, applying large-scale statistical storm surge models such as that of Tadesse et al. (2020) to

climate model simulations opens the door to projecting changes in the magnitude and frequency of storm surge extremes based

on large ensembles of climate model simulations. This is a promising avenue for future research because projections of extreme

storm surges and their co-occurrence with other flooding drivers are sensitive to internal variability and inter-model differences490

(Calafat et al., 2022; Vousdoukas et al., 2017, 2018; Bevacqua et al., 2020a, & our results). We conclude that statistically

modelled storm surges are appropriate for analyzing the joint probability of storm surge and precipitation extremes, even when

using relatively coarse atmospheric forcing as input. Future work could investigate whether using more sophisticated statistical

methods and/or weighting the extremes in the training data more strongly (e.g., Bellinghausen et al., 2023) could further

improve the results. As the performance of the statistical storm surge model improves when using (time-lagged) sub-daily495

mean atmospheric forcing (Tadesse et al., 2020), it would also be beneficial if more climate models would provide their output

at sub-daily frequencies. Data-proximate cloud computing could help to leverage such large datasets efficiently.

By applying the statistical storm surge model to CMIP6 simulations, we implicitly assume that the observation-based rela-

tionships between predictors and predictands will not change, which is not necessarily true. For instance, the effect of sea-level
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change on storm surges, which can be simulated with hydrodynamic models (e.g., Muis et al., 2020), cannot easily be included500

in a statistical model trained with observations. It would be useful to explore if this could be overcome by training statistical

models with hydrodynamic model simulations of future changes. Furthermore, to compute ensemble statistics we weighted

each CMIP6 model equally (Section 2.4). However, the skill of the models in simulating the number of joint extremes varies

(Ridder et al., 2021; Wu et al., 2021). Assigning different weights to the CMIP6 models based on their skill may reduce the

uncertainty due to inter-model differences (Ridder et al., 2022). As we have shown, though, the historical number of joint ex-505

tremes on which such skill scores are based is also affected by internal climate variability (Section 4.4). Therefore, skill scores

may need to be computed using multiple initial-condition simulations per model, which has not yet been done.

Like previous studies (e.g., Bevacqua et al., 2020b; Ganguli et al., 2020; Moftakhari et al., 2017; Gori et al., 2022), we have

only considered changes in the joint probability of drivers of compound flooding, which do not necessarily imply changes in

the risk of compound flooding. To project changes in flood risk, more information such as on local socioecomic activity, land510

elevation and protective measures would need to be incorporated. Sea-level rise, which we excluded here, can also increase

the frequency of (compound) flooding if coastal flood protection is not adapted accordingly (Hermans et al., 2023). While our

projections may therefore not directly reflect changes in compound flood risk, they do show that the potential for compound

flooding due to extreme storm surges and precipitation in the northwest of Europe could increase under medium and high

emissions scenarios.515
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