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Key Points: 15 

1. Estimates for termite, herbivore and fire emissions from novel methods 16 

2. Global woody biomass products constrained with high quality local data 17 

3. Africa a net source (approximately carbon neutral) between 2010 and 2019, sink capacity 18 

decreasing 19 

 20 

Abstract 21 

As part of the REgional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project, we 22 

developed a comprehensive African Greenhouse gases (GHG) budget for the period 2010-2019 and 23 

compared it to the budget over the 1985-2009 (RECCAP1) period. We considered bottom-up process-24 

based models, data-driven remotely sensed products, and national GHG inventories in comparison with 25 

top-down atmospheric inversions, accounting also for lateral fluxes. We incorporated emission estimates 26 

derived from novel methodologies for termites, herbivores, and fire, which are particularly important in 27 

Africa. We further constrained global woody biomass change products with high-quality regional 28 

observations. During the RECCAP2 period, Africa’s carbon sink capacity is decreasing, with net 29 

ecosystem exchange switching from a small sink of −0.61 ± 0.58 PgCyr−1 in RECCAP1 to a small source 30 

in RECCAP2 at 0.162 (-1.793/2.633) PgCyr-1. Net CO2 emissions estimated from bottom-up approaches 31 

were 1.588 (-6.461/11.439) PgCO2yr-1, net CH4 were 78.453 (36.665/59.677) TgCH4yr-1) and net N2O 32 

were 1.81 (1.716/2.239) TgN2Oyr-1. Top-down atmospheric inversions showed similar trends. LUC 33 

emissions increased, representing one of the largest contributions at 1.746 (0.841/2.651) PgCO2eq yr-1 to 34 
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the African GHG budget and almost similar to emissions from fossil fuels at 1.743 (1.531/1.956) 1 

PgCO2eq yr-1, which also increased from RECCAP1. Additionally, wildfire emissions decreased, while 2 

fuelwood burning increased. For most component fluxes, uncertainty is large, highlighting the need for 3 

increased efforts to address Africa-specific data gaps. However, for RECCAP2, we improved our overall 4 

understanding of many of the important components of the African GHG budget that will assist to inform 5 

climate policy and action. 6 

 7 

Plain Language Summary 8 

We developed a comprehensive greenhouse gases (GHG) budget for Africa as part of the REgional 9 

Carbon Cycle Assessment and Processes Phase 2 (RECCAP2) project over the 2010-2019 period. We 10 

used global and local data sets and innovative methods to estimate the different components of the 11 

budget. Our estimates show that wildfire emissions decreased; termite emissions may be less than 12 

previously expected and emissions from large mammals are increasing. We also used data from new 13 

satellite technology to estimate carbon that is stored in above-ground biomass in Africa. With increasing 14 

land use change and fossil fuel usage in Africa, the net bottom-up GHG estimate shows Africa is a source 15 

at 5.518 (-2.666/12.859) PgCO2eq yr-1, with the top-down atmospheric inversion estimate smaller at 3.984 16 

(3.126/4.849) PgCO2eq yr-1. However, our estimates continue to have large uncertainty owing to the 17 

differences between data sets and methods. It is therefore essential to increase efforts to expand on the 18 

availability of high quality local data. Nevertheless, our work improved our understanding of all the 19 

components of the African GHG budget and will help to inform climate policy and action. 20 

1. Introduction 21 

Africa’s role in the global greenhouse gases (GHG) cycles is of great interest due both to the large 22 

landmass covered by the continent, and the potential for rapid change in coming decades as the human 23 

population increases and land use patterns continue to evolve. Africa contains some of the largest tracts of 24 

untransformed land in the world, although this is often heavily utilised for grazing, fuelwood and other 25 

natural resources. With a current population of about 1.4 billion, set to increase to over 2 billion by 2040 26 

(United Nations Urban Settlement Programme, 2019), it is expected that large areas of land will be 27 

converted for agricultural production to feed this increasingly urbanised community and to increase 28 

country-level GDP. Concurrently there is massive interest in using African landscapes to store carbon and 29 

offset global carbon emissions (Armani et al., 2022). Quantifying the net effect of these competing trends 30 

on continental scale, improved carbon and GHG budgets is urgently needed. 31 
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Previous accounting efforts of the African GHG budget estimated the continent as a net biospheric sink 1 

but highlighted the large uncertainty associated with an inadequate observation network (Bombelli et al., 2 

2009; Ciais et al., 2011; Valentini et al., 2014; Williams et al., 2007). Moreover, African savannas and 3 

woodlands, with seasonal rainfall, frequent fire and large populations of native and introduced herbivores, 4 

play a unique and significant role in the inter-annual variability of the continent’s GHG fluxes that further 5 

contribute to uncertainty in estimates (Bombelli et al., 2009; Valentini et al., 2014).  6 

Modeling studies indicate the risk for rapid and irreversible changes in vegetation cover in response to 7 

changing climates and CO2 fertilisation (e.g. greening in northern ecosystems and browning in tropical 8 

biomes) (Winkler et al., 2021). Field observations further demonstrate both extensive woody thickening 9 

as well as areas of reduced productivity in recent years (Stevens et al., 2016). It is therefore imperative to 10 

develop reliable data on key carbon-cycle processes and GHG emissions. Since the last continental-scale 11 

GHG budget for the 1985-2009 period (Valentini et al., 2014), we have seen improved estimations of fire 12 

(Andela et al., 2017; Hantson et al., 2016; Lasslop et al., 2020) and herbivore emissions (Pachzelt et al., 13 

2015) and better representation of African landscapes and functional types in Dynamic Global Vegetation 14 

Models (DGVMs) (e.g. aDGVM - Scheiter & Higgins, 2009). Estimates for other GHG budget 15 

components such as inland waters (Borges et al., 2022, 2015; Lauerwald et al., 2023) and geological 16 

fluxes (Etiope et al., 2019; Lacroix et al., 2020) are also better represented.  17 

The current synthesis of the GHG budget of Africa aims to integrate the most contemporary modeling and 18 

observational datasets to present a comprehensive, up to date summary of the key sources and sinks of 19 

carbon, CO2, CH4 and N2O greenhouse gases, and their associated uncertainties, from 2010 to 2019. 20 

Where possible, analyses that include the 1985-2009 period are presented for comparison. Due to the 21 

limitations imposed by the availability of some data sets, some estimates may represent alternative dates 22 

for the RECCAP1 (1985-2009) and RECCAP2 period (2010-2019) but reference periods are defined 23 

where necessary.  24 
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As part of the Regional Carbon Cycle Assessment and Processes Phase 2 (RECCAP2, 1 

https://www.globalcarbonproject.org/reccap/) initiative of the Global Carbon Project (GCP) 2 

(https://www.globalcarbonproject.org/index.htm), this paper will therefore address the policy-relevant 3 

objectives of RECCAP2 through a comprehensive overview of improved estimates of CO2, CH4 and N2O 4 

fluxes and variability. In the following sections, we report the methodology and results for various 5 

component fluxes and uncertainties for Africa as a whole and for five ecoregions, delineated for 6 

interpretive purposes (Figure 1). Our synthesis generally follows the guidelines by (Ciais et al., 2022) for 7 

estimates derived from bottom-up approaches and those from top-down inversion models. 8 

Figure 1. The Scholes African Ecoregions Map (Ernst and Scholes, 2023) was delineated by regrouping 9 

and smoothing the vegetation classification of the UNESCO/AETFAT/UNSO (White's) Vegetation Map 10 

of Africa (White, 1983) in accordance with the delineations of the distributions of Mean Annual 11 

Precipitation-determined (‘stable’) and Disturbance-determined (‘unstable’) savannas in Africa by 12 

(Sankaran et al., 2005). 13 

 14 

2. African GHG component estimates 15 

2.1. Land cover and land use change in Africa 16 

Accurate quantification of baseline land cover area and its changes is essential for GHG flux and carbon 17 

stock accounting (Poulter et al., 2011). Estimating land cover and its changes is however associated with 18 

much uncertainty due to differences in data products and methodology, limited training and validation data, 19 

https://www.globalcarbonproject.org/index.htm
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and classification inconsistencies. Land cover estimates for 2009 and 2019 reported by the FAO, that 1 

include publicly available Global Land Cover (GLC) maps, MODIS land cover types based on the Land 2 

Cover Classification System, ESA-CCI annual land cover maps (Table 1) show a wide range of land cover 3 

area estimates for several categories (based on the land cover classification of the international standard 4 

system for Environmental and Economic Accounting Central Framework (SEEA CF)) and further indicate 5 

differences in trends between 2009 and 2019. For example, the MODIS based estimates of net increases or 6 

decreases indicate opposite trends for herbaceous crops, grassland, tree-covered areas, flooded vegetation 7 

and terrestrial barren land than for the ESA-CCI estimates (Table 1). 8 

 9 

Table 1. Land cover area (Mha) for Africa calculated from publicly available Global Land Cover (GLC) 10 

maps, MODIS land cover types based on the Land Cover Classification System, LCCS (2001–2018) and 11 

the European Spatial Agency (ESA) Climate Change Initiative (CCI) annual land cover maps (1992–2018) 12 

as reported by the FAO (https://www.fao.org/faostat/en/#data/LC, accessed 14 October 2023). 13 

 2009 2019 Change 2009-2019 

SEEC classes 

CCI-LC 

(Mha) 

MODIS 

(Mha) 

CCI-LC 

(Mha) 

CGLS 

(Mha) 

MODIS 

(Mha) 

CCI-LC 

(Mha) 

MODIS 

(Mha) 

Artificial 

surfaces  2.77 4.85 4.06 10.29 5.28 1.29 0.43 

Herbaceous crops 358.26 145.52 357.14 236.34 145.83 -1.12 0.31 

Woody crops 46.55  48.60   2.05  

Grassland 287.80 777.25 287.25 410.81 779.87 -0.55 2.61 

Tree-covered areas 753.25 839.78 760.13 849.51 835.09 6.88 -4.70 

Mangroves 3.76 4.00 3.72  3.80 -0.04 -0.20 

Shrub-covered areas 460.65 196.51 454.20 434.63 195.38 -6.45 -1.13 
Shrubs and/or herbaceous 

vegetation, aquatic or 

regularly flooded 26.07 4.38 25.97 21.21 4.89 -0.10 0.50 

Sparsely natural vegetated 

areas 80.57  87.36   6.78  

Terrestrial barren land 951.70 997.61 942.86 997.68 1000.45 -8.84 2.84 
Permanent snow and 

glaciers 0.07 0.00 0.07 0.00 0.02 0.00 0.02 

Inland water bodies 31.00 30.31 31.11 23.60 30.12 0.11 -0.20 

 14 

Recent advances in the quantification of land cover and land use is seeing a multitude of methodologies 15 

and modelling approaches that incorporate and harmonize satellite and inventory data sets in order to 16 

overcome some of the challenges (Ochiai et al., 2023). The Historic Land Dynamic Assessment + 17 

(HILDA+) model combines multiple open data sets including high-resolution remote sensing, 18 

reconstructions and statistics to assess changes in land use area extending from 1960 to 2019 at a 1km 19 

https://www.fao.org/faostat/en/#data/LC
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spatial resolution (Winkler et al., 2021). Data from HILDA+, downloaded from 1 

https://landchangestories.org/hildaplus-mapviewer/ (accessed 14 October 2023), were used to calculate 2 

the area of the land use classes over the 1985 to 2019 period to illustrate how land use estimates have 3 

changed over time. Classes representing the natural landscapes such as Forest (Figure 2a), Sparse/no 4 

vegetation (Figure 2e) and Unmanaged grass/shrubland (Figure 2d) show an overall decrease in area over 5 

the 1985 to 2019 period. The decline in area were however slower during the last decade (2009-2019) 6 

than for the 1985 to 2008 period for both Forest and Sparse/no vegetation, while the area for Unmanaged 7 

grass/shrubland changed from decreasing to increasing during the last time period (Table 2). In contrast, 8 

the anthropogenic conversion of land is clearly evident from the increases in area for Cropland (Figure 9 

2b), Pasture/rangeland (Figure 2c) and Urban expansion (Figure 2f) over the 1985 to 2019 period. Again, 10 

these increases in area occurred at a slower rate during the 2009 to 2019 period than during the 1985 to 11 

2008 period (Table 2).  12 

Figure 2. Change in LUC in the (a) Forest, (b) Cropland, (c) Pasture/rangeland, (d) Unmanaged 13 

grass/shrubland, (e) Sparse/no vegetation and (f) Urban LULC categories as estimated from the Hilda+ 14 

dataset. These classifications are not directly comparable to the Scholes Ecoregions as they represent land 15 

use rather than land cover. 16 

 17 

https://landchangestories.org/hildaplus-mapviewer/
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Table 2. Estimated changes in land use area (Mha) from the HILDA+ modelled data set for the 1985 to 1 

2008 and 2009 to 2019 periods. 2 

 Net changes 
 1985-2008 2009-2019 

Urban 2.93 1.45 

Cropland 41.02 13.45 

Pasture/rangeland 21.09 5.87 

Forest -32.24 -27.10 

Unmanaged grass/shrubland -8.90 8.71 

Sparse/no vegetation -23.90 -2.39 

 3 

Forest loss estimated from the HILDA+ data were most dominant in the central African forest region for 4 

both periods (Figure 3). Indeed, Song et al., (2018) ascribes tree cover loss in the Congolian rainforest 5 

and Miombo woodlands in sub-Saharan Africa to agricultural practices, including a shift to commodity 6 

crop cultivation. Cropland expansion is observed across most of the continent but are most prominent in 7 

the western African and Sahel region south of the Sahara Desert when considering the HILDA+ data 8 

(Figure 3). These cropland patterns of change are largely similar to that of (Potapov et al., 2022) that 9 

produced a global cropland extent and change data set for the 2000 to 2019 time period based on the 30m 10 

spatial resolution Landsat satellite date archive. Although not directly comparable with the HILDA+ 11 

estimates, Potapov et al., (2022) additionally show large areas of cropland expansion in eastern Africa and 12 

report accelerated rates of cropland increase since 2004. Beside cropland expansion in the Sahel region, 13 

increases in short vegetation on bare ground due to extreme rainfall anomalies explain the greening of the 14 

Sahel region (Song et al., 2018). This greening inclination - through increased rainfall and CO2 15 

fertilisation - further affects the savanna regions in Central and West Africa through gross increases in 16 

woody cover (including forest expansion and woody encroachment) (Song et al., 2018).  17 

 18 

 19 
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 1 

Figure 3. Maps of the extent of forest loss (red), forest gain (purple) and cropland gain (black) across Africa 2 

estimated from the HILDA+ modelled land use data set for the 1985-2008 and 2009-2019 time periods. 3 

 4 

2.2. Biomass 5 

 6 

2.2.1. Aboveground biomass change 7 

A highly dynamic aboveground biomass (AGB) stock is the norm for many ecosystems in Africa, where 8 

natural and human disturbances are common, but recovery rates are also rapid (Syampungani et al., 2016). 9 

This complicates assessments of degradation and AGB trends (McNicol et al., 2018). For RECCAP1, 10 

Valentini et al., (2014) estimated emissions from LULCC in Africa that were equivalent to fossil fuel 11 

emissions based on a bookkeeping model, while field observations showed increases in woody biomass 12 

across intact African tropical forests (Lewis et al., 2009). The net effect of these generated a small sink. 13 

Since the RECCAP1 period, novel L-VOD passive microwave data (Diouf et al., 2015) and LiDAR-based 14 

biomass data (Potapov et al., 2021) have become available. These data have the potential to provide more 15 

comprehensive information on AGB changes than estimates derived from changes in land cover as they 16 

measure AGB change within the land cover classes. They therefore account both for losses due to 17 

degradation, natural disturbance as well as gains from regrowing vegetation and environmental drivers such 18 



Global Biogeochemical Cycles 

10 

 

as CO2-fertilisation. These within-land cover changes are important for Africa as land cover conversion is 1 

estimated to account for only about 25% of the AGB change on the continent (Feng et al., 2021; McNicol 2 

et al., 2018). However, although many papers reporting changes in AGB in Africa have been published 3 

within the 1985-2019 period, there is no agreement on the regional trends or magnitude of the changes.  4 

(Baccini et al., 2017) reported widespread biomass losses in Africa of approximately -72 ± 32 TgCyr-1 for 5 

the period 2003-2014. These are slightly lower than most previous estimates (ranging from -72 to -234 6 

TgCyr-1) but similar to the losses of -100 TgCyr-1 reported by (Brandt et al., 2018) from 2010-2016 using 7 

L-VOD passive microwave data. However, other studies find that gains outweigh losses: (Zhao et al., 8 

2022) report net increases in AGB of 15.7 ± 3.3 TgCyr-1 between 2010 and 2019 in central African forests 9 

and savannas despite large scale losses in the Democratic Republic of Congo, and McNicol et al., (2018) 10 

found no significant trend in AGB in southern Africa over the 2007-2010 period (-20 ± 40 TgCyr-1). Liu 11 

et al., (2015) showed losses of <10 TgCyr-1 for tropical African forests, which were more than offset by 12 

increases in savannas and woodlands over the 1993-2012 period. Pelletier et al., (2018) demonstrated that 13 

biomass growth rates in field plots in Zambia were higher than nationally reported losses due to LUC. 14 

These disagreements in AGB change estimates are largely due to the varied methods used, which include 15 

bookkeeping models, LiDAR-derived products, and various microwave-derived products. However, 16 

differences in the observation time periods might also add to the uncertainty due to large inter-annual 17 

variation in AGB. 18 

For RECCAP2, we compared five microwave- and VOD-derived AGB change estimates from 2010 to 19 

2017, three of which have been developed and calibrated specifically for Africa. The L-VOD product 20 

(Brandt et al., 2018) was calibrated against the Baccini et al., (2012) LIDAR-derived AGB. The X-VOD 21 

product (Wang et al., 2021) was retrieved from the AMSR2/AMSR-E brightness temperature 22 

observations at X-band, with Saatchi et al., (2011) AGB (LiDAR-derived), (Bouvet et al., 2018) AGB 23 

(SAR-derived), GlobBiomass (SAR-derived AGB) and ESA-CCI AGB (SAR-derived AGB) as the 24 

calibration references. The National Centre for Earth Observation (NCEO) product (Rodríguez-Veiga et 25 

al., 2017) uses GEDI canopy-height data and L-band SAR to produce a canopy-height model calibrated 26 

against LiDAR-derived biomass data.  The global ESA-CCI Biomass product (Santoro et al., 2021) uses 27 

both C- and L-band RADAR to estimate growing stock volume, and converts this to AGB using 28 

allometric equations from published wood density and biomass expansion data. The updated McNicol et 29 

al., (2018) product for southern Africa is focused on accurately estimating change in non-forest African 30 

ecosystems (i.e. in contrast to L-VOD which is also sensitive to high-biomass regions), and trains its 31 

product with in-situ biomass measurements. All products have potential artifacts from soil moisture and 32 



Global Biogeochemical Cycles 

11 

 

range in spatial resolution from 25 km (Brandt LVOD) to 25 m (McNicol product). More details on the 1 

products are available in Table S1. 2 

For each product, we calculated annual change as (AGB2017-AGB2010)/7. As 2017 was the end of a severe 3 

multi-year drought in southern Africa (Blamey et al., 2018) the trends might not be reliable, but it is the 4 

first time that so many different products have been compared over the same period and regions.  5 

All the products estimate net AGB losses at the scale of Africa, ranging from -71.9 to -309.9 TgCyr-1, but 6 

there was no consistency in predicted trends across biome classes or regions (Table 3, Figure 4). For 7 

example the ESA-CCI biomass product predicted biomass gains of 44 TgCyr-1 in forest but losses of -118 8 

TCyr-1 in sub-humid savannas, and the Brandt L-VOD product showed the opposite trend (forest loss: -9 

20.8 TgCyr-1, sub-humid savanna gains: 36.6 TgCyr-1). Generally these estimates are within the range 10 

reported by Valentini et al., (2014), but the uncertainty remains high for RECCAP2. Global RADAR and 11 

VOD products are currently unlikely to represent the dynamics of African woodlands accurately because 12 

they often lack African calibration data, and potentially require locally defined algorithms to represent the 13 

lower-biomass dynamic of African woodlands.  14 

 15 

Table 3: Estimated net aboveground biomass (AGB) annual change 2010-2017 (in TgCyr-1) for Africa 16 

and its ecoregions.  17 

 1985-2009 2010-2019 

Region Valentini et 

al. (2014) 

CCI NCEO L-VOD 

(Brand et 

al. 2018) 

X-VOD 

Wang et al 

2021 

McNicol et 

al. (2018) 

NH Desert  0.1 -1.4 -5.9 -3.0  

Forest  44.8 -80.2 -20.8 -147.4  

Sub-humid savanna  -118.6 -63.0 36.2 -92.1  

Semi-arid savanna  -17.9 -7.5 -71.3 -62.6  

Desert/shrubland  -0.3 -0.2 -10.0 -4.8  

Miombo Ecoregion  -98.0 -22.0 -1.0 17.0 3.6 

Africa -234 to -72 -92 -152.3 -71.9 -309.9  

Note. Positive values represent fluxes into the land surface, and negative values fluxes out to the atmosphere. 18 
Products ordered from global (left) to regional (right) calibrations. The Miombo Ecoregion was added to include the 19 
locally-calibrated and developed (McNicol et al., 2018) product and because it is a region of rapid change. 20 

 21 
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 1 

Figure 4: Change in aboveground biomass across seven countries in southern Africa for the period 2010-2 

2017 as reported by five different RADAR-derived data products. Positive values represent fluxes into the 3 

land surface (sink), and negative values fluxes out to the atmosphere (source). There is no clarity on the 4 

trends between or within countries, but regionally and locally calibrated products report more sink 5 

capacity than globally calibrated products overall.  6 

 7 

2.2.2. Belowground carbon and biomass 8 

Since the previous synthesis of the African GHG budget, soil organic carbon (SOC) estimates (Table 4) 9 

have improved with the ISRIC (International Soil Reference and Information Centre) producing soil 10 

property maps for the continent at 250 m resolution (Hengl et al., 2015, 2017). These SoilGrids 11 

(https://www.isric.org/explore/soilgrids, accessed 14 October 2023) are interpolated from a network of 12 

several thousand soil cores and several hundred thousand surface samples, and estimate SOC of Africa to 13 

be 87.7 PgC. However, these maps still do not accurately map or account for peatlands, which are 14 

estimated to contain significant stores of carbon and are also being degraded at approximately 0.013 15 

PgCyr-1 (Joosten, 2009). Currently peat stocks are estimated at 36.9 PgC (UNEP, 2022), which is ~ 3 16 

times higher than previous estimates of ~11 PgC due to new reserves found in the Congo basin (Dargie et 17 

al., 2017), and novel peat mapping methods (Lourenco et al., 2022). Peat loss is estimated to be ~0.0124 18 

PgCyr-1 (Joosten, 2009) and is increasing. 19 

https://www.isric.org/explore/soilgrids
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Below-ground biomass carbon estimates can vary substantially between ecosystems (Mokany et al., 1 

2006). Stocks in grasslands and savannas are more variable and more difficult to generalize from above-2 

ground stocks than in woodlands and forests but grasslands can contain equivalently high below-ground 3 

biomass stores to adjacent woodlands (Gomes et al., 2021), which is not accurately represented in any 4 

existing continental-scale studies, and the current below-ground biomass values are likely under-5 

estimates.    6 

Below-ground stocks modeled from DGVMs vary greatly ranging from 87.48 to 259.53 PgC in the 7 

previous RECCAP period (Valentini et al., 2014). For the RECCAP2 period, aDGVM, a dynamic 8 

vegetation model developed for African ecosystems  (Scheiter & Higgins, 2009, see also section 2.3.3) 9 

estimates total stocks to be 98.85 PgC, of which SOC is 76.77 Pg and belowground biomass carbon 22.08 10 

Pg. The Trendy models show a mean SOC of 148 ± 60 Pg and all but three show an increasing trend.  11 

 12 

Table 4: Soil Organic Carbon, peat carbon stocks and estimated peat loss rates for Africa per ecoregion.  13 

 

SOC (Pg) 

from 

SoilGrids 

Peat Carbon (Pg)  
Valentini et 

al. 2014 
2009-2019 

  Total 

 

1990a 

 

 

2008a 

 

2020b 
Loss rate 

(PgCyr-1) 

Total below-

ground C 

aDGVM

# SOC 

aDGVM 

biomass C 

aDGVM Total 

belowground C 

NA Desert 3.7  2.1    4.33 0.67 5 

Forest 15.7  3.6    13.29 3.92 17.21 

Desert/shrubland 1.0  0.0    1.03 0.15 1.18 

Sub-humid 

savanna 
46.9  4.0    40.98 12.91 53.89 

Semi-arid 

savanna 
20.3  1.1    17.15 4.42 21.57 

Total 87.7 11.0 10.78 36.9 0.013 
167  

(87-259) 
76.77 22.08 98.85 

*Valentini et al., (2014) model average - including biomass carbon 
#aDGVM is a dynamic vegetation model developed for African ecosystems, see section 2.3.3 
a Joosten (2009) 
b UNEP – including new reserves in the Congo 

 14 

2.3. Gross and Net primary production estimates 15 

2.3.1. Satellite observation constrained GPP models 16 

We used seven Earth observation based global scale vegetation gross primary productivity (GPP) data 17 

sets collected by (Tagesson et al., 2021) for estimating Africa’s GPP budgets 1982-2015. The 18 
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contribution of Africa to the mean, trend and inter-annual variability in the global scale GPP were 1 

estimated following Ahlström et al., (2015). The products with their spatial and temporal resolution and 2 

estimates are listed in Table S2 and described in Tagesson et al., (2017). The average GPP budget for 3 

Africa 1982-2015 was 23.39 ± 0.52 (± one standard deviation of inter-annual variability) ± 2.45 PgC yr-1 4 

(± one standard deviation of model variability) (Table S2), which represents about 20% of the annual 5 

global GPP. This is relatively close to the 22.3% share Africa has to the global terrestrial surface area. 6 

Satellite observations indicate that the GPP is increasing by 39.7 ± 6.8 ± 37.4 TgC yr -1, over the 1982-7 

2015 period (about 18.2% of the global trend) but the share of Africa to the inter-annual variability in the 8 

global GPP budgets was relatively low (7.2 ± 1.3 ± 4.0 %). 9 

Sub-humid savannas and forests were the main contributors to African GPP, contributing with more than 10 

50% and ~25%, respectively (Table 5). Sub-humid savannas drove both the increasing trends and the 11 

inter-annual variability in GPP, but the forest GPP showed less strong trends, indicating relatively stable 12 

vegetation conditions compared to the other ecoregions. Instead, semi-arid savanna, which contributed 13 

relatively little (3.72 ± 0.15 ± 0.31 PgCyr-1) to the mean African GPP budgets, contributed substantially to 14 

the GPP trends (about a quarter of the GPP increases occurred in semi-arid savannas). Semi-arid regions 15 

in Africa are steadily becoming encroached with woody vegetation (Venter et al., 2018) and are important 16 

in terms of their inter-annual variability (Ahlström et al., 2015). The NH Desert and Desert/Shrubland 17 

regions have a very low share (about 1%) to the African GPP budget (Table 5). However, significant NA 18 

Desert trends and inter-annual variability (Table 5) indicate considerable changes in the vegetation cover 19 

during recent decades likely driven by CO2 fertilisation (Song et al., 2018).  20 

The GPP of Africa increased over the period 1982-2015; both according to the trend and the differences 21 

in the mean GPP budgets between the long-term averages of the 1985-2009 and 2009-2015 periods 22 

(Table 5). However, the GPP trends switched from being positive to negative for most land cover classes 23 

between the two periods (Table 5). This could be caused by the strong drought at the end of the study 24 

period in 2015 (Brandt et al., 2018). Other reasons for a slowing down of the GPP trends could be a 25 

decrease in the degree to which CO2 is upregulating photosynthesis (fertilisation effect) (Wang et al., 26 

2020), enhanced constraints from water supply, nutrient limitation, and land cover change (Feng et al., 27 

2021; Peñuelas et al., 2013; Piao et al., 2020; Yuan et al., 2019). Trends in the 2009-2015 period should 28 

be used with caution since the data on GPP trends cover only six years. Still, Africa’s contribution to the 29 

global GPP budgets are similar for both study periods. Forests show a minor decrease in their contribution 30 

to the GPP budgets between RECCAP1 and RECCAP2, with increases in semi-arid savanna 31 

compensating for this. The semi-arid savanna also has a large GPP trend between1982-2015 compared to 32 

forests, explaining their larger share during the RECCAP2 period. 33 
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Table 5. The GPP mean, trend and inter-annual variability (± one standard deviation of inter-annual 1 

variability ± model variability) from seven global earth observation products for Africa and its ecoregions 2 

for the 1985-2009 and 2009-2015 periods.  3 

Region Period Mean  GPP 

(PgCyr-1) 

Trend  GPP 

(TgCyr-2) 

Contributions (%) of Africa to global GPP 

budget/ 

Ecoregions to Africa GPP budget 

    Mean IAV* Trend * 

Africa 

(22.3% of 

global 

surface) 

1985-

2009 

23.45 ± 0.40 

± 2.49 

42.2 ± 7.25 

± 43.45 

20.2 ± 0.3 

± 1.8 

7.5 ± 1.1 

± 6.4 

24.3 ± 4.2 

± 14.0 

2009-
2015 

24.67 ± 0.30 
± 2.46 

-31.6 ± 60.92 
± 38.57 

20.5 ± 0.3 
± 1.5 

37.1 ± 3.5 
± 7.0 

4.9 ± 9.4 
± 9.5 

NA 

Desert 

(34.7% of 

Africa) 

1985-

2009 

0.31 ± 0.02 

± 0.13 

1.08 ± 0.52 

± 1.22 

1.28 ± 0.1 

± 0.6 

6.1 ± 0.4 

± 2.7 

2.6 ± 1.3 

± 6.3 

2009-

2015 

0.38 ± 0.02 

± 0.12 

-6.20 ± 1.52 

± 4.17 

1.48 ± 0.1 

± 0.4 

1.0 ± 0.2 

± 2.3 

17.0 ± 4.3 

± 10.5 

Forests 

(8.2% of 

Africa) 

1985-

2009 

5.99 ± 0.06 

± 0.49 

6.07 ± 1.05 

± 10.49 

24.7 ± 0.2 

± 4.0 

34.2 ± 1.1 

± 7.9 

14.4 ± 2.5 

± 22.5 

2009-

2015 

5.76 ± 0.07 

± 0.47 

-21.32 ± 10.1 

± 9.66 

22.6 ± 0.3 

± 4.0 

12.7 ± 1.6 

± 9.2 

59.7 ± 28.3 

± 6.8 

Desert/ 

Shrubland 

(2.4% of 

Africa) 

1985-

2009 

0.13 ± 0.01 

± 0.06 

0.52 ± 0.18 

± 0.41 

0.5 ± 0.3 

± 0.28 

4.3 ± 0.1 

± 1.4 

1.2 ± 0.4 

± 0.6 

2009-

2015 

0.15 ± 0.3 

± 0.06 

-0.02 ± 2.88 

± 1.27 

0.6 ± 0.1 

± 0.3 

1.1 ± 0.2 

± 1.6 

0.0 ± 8.1 

± 3.1 

Sub-

humid 

savanna 

(34.0% of 

Africa) 

1985-

2009 

13.14 ± 0.22 

± 2.39 

22.96 ± 4.09 

± 25.21 

54.2 ± 0.9 

± 4.5 

50.5 ± 3.9 

± 7.9 

54.5 ± 9.7 

± 21.9 

2009-

2015 

13.95 ± 0.16 ± 2.33 -5.13 ± 32.85 ± 29.28 54.8 ± 0.6 ± 

4.1 

67.0 ± 3.3 ± 

9.9 

14.4 ± 92.0 ± 

22.0 

Semi-arid 

savanna 
(20.7% of 

Africa) 

1985-

2009 

3.72 ± 0.15 

± 0.31 

11.52 ± 3.49 

± 7.80 

13.1 ± 0.6 

± 0.2 

4.9 ± 2.2 

± 12.4 

27.3 ± 8.3 

± 13.0 

2009-

2015 

3.71 ± 0.14 

± 0.60 

3.06 ± 29.76 

± 14.59 

14.6 ± 0.6 

± 1.3 

18.2 ± 2.0 

± 15.2 

8.6 ± 83.3 

± 13.4 

*Trends and IAV in the RECCAP2 period should be used cautiously because of the short study period, but is still included 

for consistency. 

 4 

 5 

 6 
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2.3.2. Ecosystem model ensembles including LULCC: Trends in the Land Carbon Fluxes (TRENDY) 1 

Outputs from an ensemble of 14 Dynamic Global Vegetation Models (DGVMs) from the TRENDY v.9 2 

model suite were forced with observed changes in climate, CO2 and nitrogen deposition, and LULCC 3 

(Land Use Land Cover Change HYDE3.2 within LUH2-GCB) over the period 1985 to 2019 4 

(Friedlingstein et al., 2020) (Table 6).  5 

We estimated changes in the African regional carbon fluxes and sinks and calculated the attribution to the 6 

underlying environmental drivers and the different ecoregions (Figure 5). Between 2000 and 2019 there 7 

were widespread but subtle losses due to climate change and variability (Figure 5c). The models also 8 

show a strong tropical forest uptake response driven by enhanced atmospheric CO2 concentrations (Figure 9 

5b) while LULCC losses were concentrated in East and West Africa (Figure 5d). These large opposing 10 

fluxes result in Africa acting as a net sink between 2000 and 2019 (Figure 5a), but there are still large 11 

uncertainties around the magnitude of the estimates.   12 

The model ensemble show that losses due to LULCC in Africa have increased over time (from 0.18 to 13 

0.46 PgCyr-1 at a similar rate but in the opposite direction than the CO2 fertilisation sink increase (from -14 

0.41 to -0.55 PgCyr-1, Table 6). Climate-induced losses have decreased to almost zero (Table 6) likely due 15 

to the breaking of the decades-long drought in the Sahel. Consequently the biospheric sink capacity in 16 

Africa has increased to -0.09 ± 0.24 PgCyr-1 in the last decade. The LUC fluxes are spatially concentrated 17 

in the sub-humid savanna (a net source of 0.04 ± 0.17 PgCyr-1), while most of the sink capacity is 18 

concentrated in the tropical forests (-0.08 ± 0.06 PgCyr-1). This estimated sink capacity is an order of 19 

magnitude lower than that estimated from models that do not include land use and land cover: Africa 20 

NEE (including fire disturbances) estimated by Trendy model ensembles was -0.09 ± 0.24 PgCyr-1 in 21 

2010-2019 compared with -2.21 PgCyr-1 for aDGVM – section 2.3.3).   22 

We find large gross changes in the vegetation stocks but the net carbon stocks remain the same (Figure 6). 23 

Soil carbon pools are increasing: i.e. the DGVM models predict that the increase in CO2 uptake caused by 24 

CO2 fertilisation continues to be larger than fluxes to the atmosphere due to increased microbial 25 

respiration rates, LULCC and climate change. 26 

 27 

 28 
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Table 6. Regional carbon fluxes (PgCyr-1) decomposed into the three main drivers; climate change 1 

(CLIM), CO2 fertilisation (CO2), and land use land cover change (LULCC) over the last four decades. 2 

Positive values represent fluxes out (source) of the biosphere and negative values, fluxes in (sinks).  3 

Region Forcing Net Ecosystem Exchange (NEE PgCyr-1)  

  1980s 1990s 2000s 2010s 

Africa 

        

 

 

CLIM 0.33 ± 0.21 0.16 ± 0.12 0.21 ± 0.13 0.00 ± 0.15 

CO2 -0.41 ± 0.17 -0.39 ± 0.18 -0.56 ± 0.21 -0.55 ± 0.24 

LULCC 0.18 ± 0.12 0.22 ± 0.13 0.28 ± 0.1 0.46 ± 0.15 

NET 0.10 ± 0.19 -0.01 ± 0.20 -0.07 ± 0.21 -0.09 ± 0.24 

North Africa Desert 

 

 

 

CLIM 0.01 ± 0.02 -0.00 ± 0.01 0.01 ± 0.00 -0.00 ± 0.02 

CO2 -0.01 ± 0.01 -0.01 ± 0.00 -0.01 ± 0.01 -0.01 ± 0.01 

LULCC -0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.01 -0.00 ± 0.01 

NET 0.01 ± 0.01 -0.00 ± 0.01 -0.01 ± 0.01 -0.01 ± 0.02 

Forest 

 

 

 

CLIM 0.03 ± 0.03 0.02 ± 0.03 0.03 ± 0.03 0.02 ± 0.02 

CO2 -0.11 ± 0.04 -0.13 ± 0.05 -0.15 ± 0.05 -0.17 ± 0.07 

LULCC 0.04 ± 0.02 0.05 ± 0.03 0.05 ± 0.03 0.07 ± 0.04 

NET -0.04 ± 0.04 -0.06 ± 0.05 -0.07 ± 0.04 -0.08 ± 0.06 

Sub-humid savanna 

 

 

 

CLIM 0.18 ± 0.14 0.11 ± 0.09 0.13 ± 0.09 0.01 ± 0.08 

CO2 -0.22 ± 0.13 -0.21 ± 0.13 -0.30 ± 0.17 -0.30 ± 0.17 

LULCC 0.12 ± 0.08 0.15 ± 0.08 0.20 ± 0.07 0.33 ± 0.12 

NET 0.09 ± 0.13 0.05 ± 0.14 0.03 ± 0.14 0.04 ± 0.17 

Semi-arid savanna 

 

 

 

CLIM 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 

CO2 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

LULCC 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

NET 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Desert/Shrubland 

 

 

 

CLIM 0.10 ± 0.08 0.03 ± 0.04 0.04 ± 0.02 0.03 ± 0.06 

CO2 -0.07 ± 0.03 -0.04 ± 0.03 -0.10 ± 0.03 -0.07 ± 0.04 

LULCC 0.02 ± 0.02 0.02 ± 0.03 0.03 ± 0.02 0.05 ± 0.04 

NET 0.04 ± 0.06 0.01 ± 0.03 -0.02 ± 0.05 -0.04 ± 0.05 

      

 4 

 5 

 6 



Global Biogeochemical Cycles 

18 

 

 1 

Figure 5. Spatial pattern of trends in annual mean NBP (gC m-2yr-1) across Africa over 2000 to 2019 based 2 

on an ensemble of 14 DGVMs from TRENDY v9. Large opposing fluxes result in a net sink of carbon (a), 3 

while (b) shows the attribution of CO2 fertilisation and N deposits, (c) the attribution of climate change and 4 

variability and (d) the attribution of LULCC. Black isolines represent the boundaries of the ecoregions as 5 

depicted in Figure 1. 6 
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 1 

Figure 6. Change in carbon pools over the 1985 to 2019 period. 2 

 3 

2.3.3. Ecosystem models without land use (aDVGM) 4 

The aDGVM is an individual-based model that has been developed specifically to simulate grass-tree 5 

dynamics in African ecosystems (Scheiter & Higgins, 2009). It has been shown to simulate the 6 

distribution of grasslands, savannas, and forests in Africa but detailed assessments of carbon fluxes have 7 

not been conducted (Martens et al., 2021; Scheiter & Higgins, 2009). The aDGVM only represents 8 

potential natural vegetation without any land use driver (see section 2.3.2 for results including land use). 9 

Here aDGVM was forced with an ensemble of regionally-downscaled general circulation models over the 10 

1985-2018 period. 11 
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In aDGVM simulated GPP, NPP and NEE increased to 13.4, 7.4, and -3.0 PgCyr-1 for the 2009-2018 1 

period (Table 7). These GPP values are lower than estimates from satellite observation (22.4 to 24.7 2 

PgCyr-1 for different periods, section 2.3.1, Table 5), and lower than values simulated by other DGVMs 3 

(GPP between 20.6 and 40.9 PgCyr-1, NPP between 9.2 and 20.5 PgCyr-1 for an ensemble of nine models, 4 

(Valentini et al., 2014); NPP of 10.2 PgCyr-1 for the period 1980-2009 in simulations for Africa, (Pan et 5 

al., 2015); NPP of 10.2 and 10.9 PgCyr-1 in the presence and absence of fire (Sato & Ise, 2012). However 6 

the NEE of the forest region simulated by aDGVM (-0.51 PgCyr-1 for 1985-2008, increasing to -0.56 7 

PgCyr-1 for 2009-2018) is slightly higher than the estimate of -0.34 PgC yr-1 (CI, -0.15 to -0.43) for 8 

observation data from sparse forest plots (Lewis et al., 2009). This supports results by Hubau et al., 9 

(2020) indicating that the forest carbon sink in intact African forests remained constant throughout the 10 

RECCAP2 period.  11 

Both autotrophic and heterotrophic respiration increased for Africa according to aDGVM simulations 12 

(Table S3). Autotrophic respiration increased from 1.03 PgCyr-1 in the period 1985-2008 to 1.19 PgCyr-1 13 

in the period 2009-2018, heterotrophic respiration increased from 8.11 PgCyr-1 to 8.82 PgCyr-1 over the 14 

same periods. Highest respiration rates were simulated in the Sub-humid savanna region (0.65 PgCyr-1 15 

and 4.72 PgCyr-1 for autotrophic and heterotrophic respiration in 2009-2018). Valentini et al., (2014) 16 

report a multi-model mean heterotrophic respiration 11.8 PgCyr-1, which is higher than the aDGVM 17 

simulations.  18 

In aDGVM simulations, carbon stored aboveground in Africa was 59.5 PgC in the period 2009-2018 19 

(Table 7). This is lower than values by other models; 66.7 to 181.44 PgC for an ensemble of nine models 20 

(Valentini et al., 2014); 75.3 to 87.5 PgC with SEIB-DGVM (Sato & Ise, 2012); but falls within the range 21 

of estimates (48.3-64.5 PgC) by remote sensing AGB products (Avitabile et al., 2016; Baccini et al., 22 

2012.; Liu et al., 2015; Saatchi et al., 2011). Those remote sensing products do however represent slightly 23 

different periods within the RECCAP2 time period.  24 

Aboveground carbon increased by 4.6 PgC between 2009 and 2018 with the highest increases in Sub-25 

humid savannas. Belowground biomass increased by 2 PgC, and SOC increased by 3.1 PgC (Table 7), the 26 

overall rate of increase estimated without land use activities is 0.674 PgCyr-1 which is higher than for the 27 

1985-2008 period. 28 

 29 

 30 

 31 
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Table 7: Carbon stocks and fluxes simulated by aDGVM.  1 

  

Carbon 

stocks 

  AboveGround (PgC) Belowground (PgC) Soil (PgC)   Total (PgC) Trend (PgCyr-1) 

Region 1985-2008 2009-2018 1985-2008 2009-2018 1985-2008 2009-2018 1985-2008 2009-2018 1985-2008 2009-2018 

Total 

carbon 

  
  

NH Desert 0.95 1.05 0.59 0.67 4.22 4.33 5.76 6.06 0.016 0.04 

Forest 18.85 19.66 3.68 3.92 12.75 13.29 35.29 36.86 0.083 0.1 

Desert/Shrubland 0.26 0.29 0.13 0.15 1 1.03 1.39 1.47 0.002 0.004 

Sub-humid savanna 28.2 30.97 11.68 12.91 39.32 40.98 79.2 84.87 0.288 0.404 

Semi-arid savanna 6.69 7.58 3.91 4.42 16.37 17.15 26.98 29.14 0.096 0.126 

Africa 54.95 59.54 20.01 22.08 73.66 76.77 148.63 158.4 0.486 0.674 

Carbon 

fluxes 

         Total (PgCyr-1) Trend (PgCyr-1) 

Region             1985-2008 2009-2018 1985-2008 2009-2018 

NPP NH Desert       0.23 0.28 0.003 0.012 

  Forest       1.15 1.24 0.005 0.006 

  Desert/Shrubland      0.06 0.06 0 -0.001 

  Sub-humid savanna      3.82 4.14 0.018 0.036 

  Semi-arid savanna      1.5 1.68 0.011 0.01 

  Africa             6.75 7.4 0.038 0.063 

GPP NH Desert       0.41 0.5 0.005 0.02 

  Forest       2.23 2.4 0.01 0.011 

  Desert/Shrubland      0.1 0.11 0 -0.002 

  Sub-humid savanna      6.86 7.45 0.033 0.066 

  Semi-arid savanna      2.63 2.94 0.02 0.018 

  Africa             12.22 13.41 0.068 0.114 

NEE NH Desert       -0.06 -0.09 -0.001 -0.008 

  Forest       -0.51 -0.56 -0.003 -0.003 

  Desert/Shrubland      0 -0.01 0 0.001 

  Sub-humid savanna      -1.62 -1.78 -0.01 -0.025 

  Semi-arid savanna      -0.52 -0.6 -0.007 -0.005 

  Africa             -2.72 -3.04 -0.022 -0.04 

Note. Variables are averaged for whole Africa and ecoregions for the periods 1985-2008 and 2009-2018 and stocks include Aboveground, Belowground and Soil. Trends were 

derived by linear regression models using time series of monthly means of the respective variable. Detailed results in the SI. Some values are zero due to rounding. 

2 
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2.4. Fluxes of special importance within the African GHG budget 1 

2.4.1. Fires   2 

Recent decades have seen reductions in the area burned per year in Africa from ~3.1 x 106  km2 to ~2.6 x 3 

106  km2 (Andela et al., 2017; Zubkova et al., 2019) and consequently also a decline in total fire emissions 4 

(Figure 7) (Van Der Werf et al., 2017). Approximately 30% of this decline is attributed to land 5 

transformation and expansion of agricultural land (Zubkova et al., 2019) so does not necessarily imply 6 

increased C-sink potential. However the remaining ~70% appears to be a result of higher effective rainfall 7 

and soil moisture, particularly in North Africa, producing less flammable vegetation (Zubkova et al., 2019). 8 

This decrease in fire, together with CO2 fertilisation help explain concurrent increases in tree cover (Venter 9 

et al., 2018) and increasing GPP trends (section 2.3.3). However, the current burned area products are 10 

known to omit small fires and analyses with higher resolution SENTINEL-2 data nearly double the 11 

estimated burned area (Roteta et al., 2019), possibly also doubling the estimated GFED fire emissions 12 

(Ramo et al., 2021).  13 

Figure 7. Spatial patterns of biomass burning emissions in Africa, calculated from the FREMV2.1 14 

 15 
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Existing estimates of total carbon emissions from wildfires for Africa range from 954 to 1595 TgCyr-1, with 1 

CH4 ranging from 4.9 to 9.1 TgCH4 yr-1 and N2O from 0.8 to 0.42 TgN2O yr-1 (Table 8). Of these emissions, 2 

~85% come from sub-humid savannas which, due to their high productivity and long dry seasons, produce 3 

frequent fires that consume high amounts of biomass. Both top-down (calculated via energy released) and 4 

bottom-up approaches (calculated via burned area) show a clear decline over the last two decades (Table 8; 5 

Figure 8) in the order of ~10 TgCyr-1. In contrast, total carbon emissions from wood fuel burning have 6 

increased steadily from 184 ± 24.6 TgCyr-1 for RECCAP1 to approximately 242 ± 36.1 TgCyr-1 for the 7 

RECCAP2 period (see Table S4 for more details). This represents an increase of approximately 5.3 TgCyr-8 

1. Total fire emissions (wildfire and fuel wood burning) have therefore decreased slightly from 1225 ± 99 9 

to 1197 ± 85 TgCyr-1.  10 

A large proportion of these emissions are “carbon-neutral” and offset by rapid regrowth of burned/harvested 11 

biomass but when associated with over-harvesting or land conversion some of these emissions represent a 12 

net source to the atmosphere (Van Der Werf et al., 2017). Bailis et al., (2015) estimated that ~27% of fuel 13 

wood burning in Africa (or approximately 64 TgC) is ‘unsustainable’, causing a net carbon source. Van 14 

Der Werf et al., (2017) estimate that 4% (48 TgC) of the emissions from wildfires in Africa are associated 15 

with fires in tropical forests. Burning of crop residue is estimated to add ~22 TgC annually to Africa’s 16 

carbon emissions (Scholes et al., 2011), so approximately 134 of the 1208 TgC emitted by fires each year 17 

could be considered a source. 18 

Table 8: Comparing the change in mean annual emissions (Tg yr-1) for different chemical species for 19 

wildfires (including deforestation and cropland fires) and fuelwood burning over the RECCAP1 and 20 

RECCAP2 periods. Fuelwood burning was calculated from published sources (Amos, 1999; Broadhead et 21 

al., 2001, Bailis 2005, FAO 2010, Boden 2013) integrated with the IEA World Energy Balances statistics 22 

(IEA, 2022).  23 

Type Source Region RECCAP1a RECCAP2 

2010-2019 

Trend: 

change/

yr 

Wildfire Valentini Africa  1031 (+-87)   

  FREMv2.1 Africa 999 (+-79) 953 (+-113) -10.9 

    
Northern 

Hemisphere 
 377  

    
Southern 

Hemisphere 
 576  

    Forest  26  

    NH Desert  4  

    SH Desert  3  

    Sub-humid savanna  810  
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    Semi-arid savanna  124  

FuelWood Various(see SI) Africa 184 241 5.3 

Total C  wildfire+fuelwood   1215 1194  -9 

Total CO2 FREM (range)   3250 (2225-5475)  

Total CH4 FREM (range)   6.8  (4.9-9.1)  

Total C0 FREM (range)   146 (142-224)  

Total N2O FREM (range)   0.09 (0.09/0.42)  

Note. Estimates come from FREMv2.1, a top-down regional product derived specifically for Africa (slightly 

modified from Nguyen & Wooster, 2020). Estimates for CO, CH4 and N2O emissions for RECCAP2 period are 

also provided, showing the FREM2.1 estimate and the range of other estimates for that time period. See 
supplementary information for more details of wildfire emissions data sources and the wood fuel burning estimates. 
a Valentini et al., (2014) reported from 1997-2011, FREMv2.1 was available from 2004-2009. 

 1 

 2 

Figure 8. Total carbon emissions from wildfires are decreasing while fuel wood emissions are increasing. 3 

Wildfire estimates are provided for a “bottom up” data product (GFED4.1s) (Randerson et al., 2017; Van 4 

Der Werf et al., 2017), a global “top-down” data product derived from an atmospheric inversion applied to 5 

MOPITT satellite CO data (Zheng et al., 2021), and a regional “top-down” dataset for Africa derived from 6 

correlations between FRP and TPM and CO (FREMv2.1 slightly modified from Nguyen & Wooster, 7 

(2020)). The trends in these products are consistent but the actual values are still highly uncertain. See Table 8 

8 for the range of current estimates for all greenhouse gases.  9 
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2.4.2. Large mammals  1 

Herbivore CH4 emissions represent a small but increasing component of the African methane cycle 2 

(Valentini et al., 2014). Most of these emissions are from livestock, representing 98% of the herbivore 3 

biomass in Africa (Hempson et al., 2017), and this is largely enteric fermentation (manure emissions 4 

are estimated at < 3% in Africa (Herrero et al., 2008). We therefore only quantified enteric 5 

fermentation from livestock.  The use of different methodologies and parameterisations, and the lack 6 

of accurate information on livestock numbers and production systems add to the uncertainty (Chang et 7 

al., 2021; Höglund-Isaksson et al., 2020). Most African countries use the IPCC Tier 1 methodology 8 

for reporting livestock emissions (IPCC, 2019). This provides representative emission factors for 9 

African livestock production systems, which differ from global averages in terms of diet, average 10 

body weights, herd structure, and body condition (Goopy et al., 2021; Ndung’u et al., 2022). The 11 

IPCC 2019 methodology estimates emission factors for free-ranging cattle in low productivity 12 

systems of Africa to be 48 kgCH4/head yr-1 (Table 10.11 in IPCC, 2019), which is much higher than 13 

the value of 31 kgCH4/head yr-1 previously suggested by IPCC methodologies (Dong et al., 2006).  14 

Recent empirical papers from Africa report emissions factors more in line with the original 31 15 

kgCH4/head yr-1 (Table 9).  16 

The UNFCCC reporting on livestock emissions is sparse: only 11 of the 52 African countries 17 

provided data covering both the 2000-2009 and the 2010-2019 time period. These countries reported 18 

methane emissions increasing by ~5% from 5.05 (± 0.32) TgCH4yr-1 to 5.33 (±0.01) TgCH4yr-1 19 

between the two periods. The emissions that were calculated with a standard IPCC 2019 Tier 1 20 

approach were 5.22 and 6.83 TgCH4yr-1 over each time period for the same 15 countries. Hence, 21 

UNFCCC estimates and IPCC Tier1 estimates were similar for the 2000-2009 period but the 22 

UNFCCC data suggest a 5% increase in emissions while increases using the IPCC Tier 1 approach are 23 

closer to 30%. The large increases reported using the IPCC Tier 1 approach are a result of FAO 24 

livestock numbers increasing by 30% in the last decade. We produced a new African livestock 25 

emission factor (Africa_EF) calculated using the mean of a range of empirical data sources from 26 

African livestock production systems (see Table S5) of 35.6 kgCH4/head yr-1. When using Africa_EF 27 

instead of the IPCC value of 48 kgCH4/head yr-1 the overall methane emissions are reduced, but the 28 

increasing trend remains the same.    29 

Herrero et al., (2008) classified 6 different livestock production systems for Africa and used a detailed 30 

metabolically-based methane emissions model and modelled livestock numbers from 2000 to 2030. 31 

Their estimates are less than half the IPCC 2019 Tier 1 approach (Table 9) and only show a 13% 32 

increase between the two periods caused both by increasing livestock numbers and a switch to more 33 

mixed production systems. Wolf et al., (2017) modelled global livestock emissions using a Tier 2 34 

approach and revised parameterisations, and estimated emissions for Africa in 2011 to be 12.69 ± 35 
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1.94 TgCH4yr-1. Thus, the current best estimate of CH4 emissions from enteric fermentation of 1 

livestock in Africa for the RECCAP2 period is 17.6 (range 9.2- 21.7) TgCH4yr-1 which represents an 2 

annual increase of 2.9% (395 GgCH4yr-1) from RECCAP1. 3 

 4 

Table 9: Estimates of annual enteric methane emissions (TgCH4 yr-1) for Africa calculated using the 5 

IPCC Tier 1 methodology (IPCC2019) and the Tier 1 methodology with Africa-specific emissions 6 

factors (IPCC2019_AfricaEF), contrasted with estimates from published sources, and from national 7 

UNFCCC reporting.  8 

  2000-2009 2010-2019 Trend: GgCH4 yr-1 

UNFCCC (11 reporting countries)  

  UNFCCC 5.1 (+- 0.32) 5.3 (+- 0.1) 27 

  IPCC2019 5.2 6.8 161 

  IPCC2019_AfricaEF 4.1 5.4 131 

Africa 

  Herrero(2008) 8.1 9.2 109 

 Wolf (2017) 12.69 ± 1.94   

  IPCC2019 16.8 21.7 482 

  IPCC2019_AfricaEF 13.7 17.6 395 
Note. IPCC2019 uses emission factors from Table 10.11 which has a cattle emission factor of 48 for low-productivity 

systems. This is higher than all published emission factors for free-ranging cattle in Africa (See Table S5, so the 

IPCC2019_AfricaEF replaces this with the mean reported value of 35.6 kgCH4/head yr-1.  Only 11 countries have 

UNFCCC data for both RECCAP periods so data are reported for these 11 countries, and for Africa as a whole. 

2.4.3. Termites  9 

Termites are an important source of methane due to the methanogenic degradation of lignocellulose in 10 

termite hindguts (Brune, 2014). The African continent hosts 39% of the total 2600 species that have 11 

been described worldwide (Ahmed et al., 2011), contributing substantially to global termite CH4 12 

emissions. Here, we provide new estimates of termite CH4 emissions across the African continent 13 

(Figure 9, Table 10) based on a new global termite biomass product predicted from 500 field transect 14 

measurements using a machine learning approach and the global mean and median of termite CH4 15 

production rate from existing literature (mean = 3.74 μgCH4g
-1[termite] h-1, median = 2.88 μgCH4g

-16 

1[termite] h-1, n = 251) (Zhou et al., 2023). Overall, termites across the African continent are predicted 17 

to emit 1.40 TgCH4yr-1 (the 95% confidence intervals range: 1.31-1.49 TgCH4yr-1) based on the mean 18 

termite CH4 production rate, with the largest emission from sub-humid savannas (0.63 TgCH4yr-1) 19 

followed by semi-arid savanna (0.37 TgCH4yr-1) and forests (0.19 TgCH4yr-1) (also see Table 10 for 20 

the median estimate of termite CH4 production rate).  21 

This new estimate is substantially lower than the estimate of 2.09 TgCH4yr-1 from the global methane 22 

budget (Saunois et al., 2020) (Table 10) and other reported values (2.5 to 6.9 TgCH4yr-1) from 23 

Valentini et al., (2014) for the African continent. Two prominent reasons for these inconsistencies are 24 
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the lack of accurate data on termite biomass for upscaling, and the scarcity of empirical data on 1 

termite CH4 emission rates. Termite biomass is generally estimated by its dependence on GPP of 2 

ecosystems based on simple regression models (Kirschke et al., 2013; Saunois et al., 2020). Here, our 3 

global termite biomass estimate is based on available field measurements and predicted by a set of 4 

variables, including rainfall, soil pH, NPP, minimum/maximum temperature, soil organic carbon, and 5 

topography. Additionally, only a few studies measured CH4 emission rates at the individual species or 6 

mound scale across the African continent (Table S6) with CH4 emission rates varying significantly 7 

between species (0.68-17.4 μg CH4 g
-1 h-1), between mounds (81-5478 ng CH4 s

-1 mound-1) (Brauman 8 

et al., 2001; Macdonald et al., 1999; Rouland et al., 1993) and between seasons (Räsänen et al., 2023). 9 

However, more empirical measurements are still needed to improve the accuracy of termite biomass 10 

as well as termite methane emission rates across different ecosystems and regions.     11 

 12 

Figure 9. Methane emission rates (mgCH4 m
-2 d-1) from termites estimated across the African 13 

continent.  14 

Table 10. Predicted termite methane emissions across African ecoregions. Values in parentheses 15 

represent the 95% confidence intervals.  16 

 Ecoregion Termite methane emissions (TgCH4 yr-1) 

  Saunois et al. (2020) 
New estimate based on mean 

termite CH4 production rate 

New estimate based on median 

termite CH4 production rate 

North Africa desert 0.067 0.134 (0.123-0.145) 0.103(0.094-0.111) 

Desert/shrubland 0.021 0.039 (0.036-0.042) 0.030(0.028-0.032) 

Semi-arid savanna 0.354 0.367 (0.342-0.392) 0.282(0.263-0.301) 

Sub-humid savanna 1.220 0.629 (0.589-0.670) 0.484(0.452-0.516) 

Forest 0.350 0.185 (0.175-0.195) 0.142(0.134-0.150) 

Africa (in total) 2.094 1.397 (1.305-1.489) 1.076(1.004-1.247) 
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2.5. Component fluxes of NEE from geological, aquatic, and coastal systems 1 

2.5.1. Geological carbon emissions 2 

Africa’s geogenic CO2 emissions are mostly due to volcanic and geothermal activity in the East 3 

African Rift (EAR) which is globally the largest active continental rift, spanning a cumulative length 4 

of approximately 3000 km (Lee et al., 2016). Extrapolation from first-order CO2 flux measurements 5 

of tectonic degassing in the Magadi-Natron basin, amounts to a flux of 71 ± 33 TgCO2 yr-1 in the EAR 6 

(Lee et al., 2016). However, estimates based on extrapolation from surveys in the Main Ethiopian Rift 7 

(0.52–4.36 TgCO2yr-1) gives a flux range of 3.9–32.7 TgCO2yr-1 (Hunt et al., 2017).  8 

Geological emission sources of CH4 were calculated for each ecoregion and Africa as a whole using 9 

data from Etiope et al. (2019) (Table 11, Table S7). These include emissions from onshore seeps (gas-10 

oil seeps and mud volcanoes), diffuse exhalation of CH4 associated with petroleum fields 11 

(microseepage) and geothermal manifestations mainly from volcanoes and geothermal sites, but 12 

excluding submarine seeps (see Ciais et al., 2022). The North African desert ecoregion contributes 13 

46% of the estimated total African geological CH4 emissions of 1.01 TgCH4yr-1 (see Figure S1 for the 14 

spatial distribution). Semi-arid and Sub-humid savanna ecoregions contribute 30% and 20% 15 

respectively while the forest ecoregion only contributes 5% of the estimated geological CH4 emissions 16 

across Africa.  17 

 18 

2.5.2. Weathering uptake of atmospheric CO2  19 

We extracted estimates of weathering CO2 uptake and the weathering dissolved inorganic carbon 20 

(DIC) release from gridded products provided by Lacroix et al., (2020) for the African ecoregions 21 

(Table 11, Table S8). The method quantifies weathering and depends on surface runoff and 22 

temperature, lithology types and soil shielding, and is based on a modified version of the weathering 23 

model of Hartmann et al., (2009). Weathering on the continent induces a flux of -12.2 TgCyr-1 of CO2, 24 

accounting for around 7 % of the global weathering consumption. The sink estimate for the continent 25 

is comparable with the previous estimate of -11.7 TgCyr-1 of (Ludwig et al., 1998). The carbon uptake 26 

from the atmosphere and carbon originating from the rock material add up to a total of -15.2 TgCyr-1 27 

DIC exported to freshwaters and the ocean. Lacroix et al., (2020) reported that there was a general 28 

underestimation of catchment DIC exports for African catchments, e.g., a 20% underestimation 29 

compared to measurements for the Congo basin.   30 

 31 

In Africa, lowest consumption rates (0 – 0.1 tC km-2 yr-1) were recorded over eastern and southern 32 

Africa, while larger amounts (0.5 – 5 tC km-2 yr-1) of CO2 were consumed in central Africa and parts 33 

of East Africa. The Semi-arid savanna ecoregion, which consists, to a large degree, of metamorphics, 34 
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unconsolidated and silicoclastic sediment lithological classes, accounts for the highest weathering 1 

rates per area and the largest part of the continent’s weathering drawdown and DIC release (Table 11, 2 

Table S8), owing to rather high runoff rates ranging from 50 to 250 mm yr-1. Weathering rates in 3 

warm and runoff-abundant tropical forest areas are strongly reduced due to shielding by old and 4 

highly weathered soils (Hartmann et al., 2014), whereas weathering in the dry semi-arid savanna and 5 

desert is limited by precipitation and runoff, which is dominantly less than 25 mm yr -1. 6 

 7 

2.5.3. Inland water emissions  8 

The inland water network serves as a major conduit for transfers of C and N, which were originally 9 

fixed by terrestrial ecosystems from the atmosphere, to the ocean. Inland waters are at the same time 10 

biogeochemical reactors for the terrestrial C and N loads, driving an important production and 11 

emission of GHGs. Finally, a part of the terrestrial C inputs to rivers are buried in aquatic sediments. 12 

The emissions of C from inland waters to the atmosphere (in the forms of CO2 and CH4) represent a 13 

return loop in the land-atmosphere C balance which is not necessarily included when upscaling from 14 

for instance flux tower observations. Moreover, the increased production and emission of the more 15 

potent GHG CH4 under anaerobic conditions in aquatic sediments gives inland waters an important 16 

role in the GHG budget of continents. Fluvial exports of C to the coast and burial of C in aquatic 17 

sediments, on the contrary, add to the net uptake of atmospheric C on the continents. 18 

Emissions of CO2, CH4 and N2O from rivers and lakes were taken from the regional estimates by 19 

Borges et al. (2015, 2022) which provide average annual emissions of 990-1360 TgCO2yr-1, 3.9-5.2 20 

TgCH4yr-1 and 14.8-19.8 GgN2Oyr-1 from African rivers, and annual emissions of 12.1 TgCO2yr-1 and 21 

2.2 TgCH4yr-1 from African lakes, but explicitly excluded reservoirs (Table 11). Moreover, they 22 

suggest that African lakes can be a minor sink of 0.2 GgN2Oyr-1 (Borges et al., 2022). For reservoir 23 

emissions, we used numbers provided in the synthesis of regionalised inland water emissions 24 

estimates by Lauerwald et al. (2023) for the RECCAP2 initiative. These estimated emissions amount 25 

to 16 (7/26) TgCO2yr-1, 2.1 (1.2/3.1) TgCH4yr-1 and 6.6 (2.7/8.6) GgN2Oyr-1 (Lauerwald et al., 2023). 26 

Summing up these estimates, we get to total emission fluxes of 1,203 TgCO2yr-1, 8.9 TgCH4yr-1 and 27 

23.7 GgN2Oyr-1 from African inland waters (Table 11). It is noteworthy that rivers contribute 98% of 28 

inland water CO2 emissions, but only about half of inland water CH4 emissions.  29 

To quantify DOC and POC we summarised data from Zscheischler et al., (2017), and freshwater 30 

burial was quantified from Mendonça et al., (2017). 31 

 32 

2.5.4. Fluxes from estuaries and coastal wetlands  33 

Emissions of CO2, CH4, and N2O from various coastal ecosystems in Africa were estimated using 34 

available empirical data scaled to the total surface area of each of the coastal ecosystems (Table 11). 35 
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These systems include tidal systems and deltas, lagoons, mangroves, salt marshes and seagrasses. 1 

Organic carbon burial and coastal margin (non-riverine) C inputs were also estimated. However, 2 

although the coastal margin C sink is likely to be substantial, methodology are not yet resolved 3 

enough to calculate at the regional scale. To deal with this highly uncertain estimate we therefore 4 

included the (rough) estimate in Table 11 for reporting purposes but for the final budgets we set the 5 

mean value to zero and the 95th quantile as our best estimate. Hereby, the coastal margin sink is not 6 

represented in the final budgets but the uncertainty has been accounted for. 7 

 8 
Table 11. Geological, Inland Water and Coastal CO2, CH4, N2O and net GHG emissions and sinks.    9 

  
CO2 

(Tg yr-1) 

CH4 

(Tg yr-1) 

N2O 

(Gg yr-1) 

CO2eq (GWP100) 

(Tg yr-1) 

C 

(Tg yr-1) 

Geological sources a 
18.3 

(3.9/32.7) 

1 

(1/1) 
 45.7 

(31.3/60.1) 

5.8 

(1.8/9.7) 

Atmospheric fluxes      

Lakes b 
12.1 

(12.1/12.1) 
2.2 

(2.2/2.2) 
-0.2 

(-0.2/-0.2) 
71.4 

(71.4/71.4) 
5 

(5/5) 

Reservoirs c 
16.2 

(6.8/26.1) 

2.1 

(1.2/3.1) 

6.6 

(2.7/8.6) 

74.7 

(39.9/111) 

5.7 

(1.9/9.4) 

Rivers b 
1175 

(990/1360) 

4.6 

(3.9/5.2) 

17.3 

(14.8/19.8) 

1302.6 

(1099.3/1505.8) 

322.4 

(271.7/373.1) 

Estuary Emissions 

(Tidal systems and 

lagoons) d 

21.6 

(12.7/32.4) 

0 

(0/0.1) 

2.8 

(2.5/3.2) 

23.3 

(13.4/37.3) 

5.9 

(2.5/9.6) 

Coastal Wetland 

Emissions (Mangroves, 

Salt marshes, 

Seagrasses) d 

-118.8 

(-149.1/-82) 

0.1 

(0.1/0.3) 

0.1 

(0.1/0.3) 

-116 

(-147.1/-73.4) 

-32.4 

(-45.8/-22.5) 

Net aquatic 

atmospheric fluxes 

1106.2 

(872.5/1348.6) 

9 

(7.4/10.9) 

26.6 

(19.8/31.8) 

1356.1 

(1076.9/1652.2) 

306.6 

(235.2/374.7) 

Carbon stock change      

OC burial – inland e 
-131.9 

(-24.1/-212.6) 

0 

(0/0) 

0 

(0/0) 

-131.9 

(-24.1/-212.6) 

-36 

(-6.6/-58) 

OC burial - coastal d 
-20.9 

(-20.9/-20.9) 
0 

(0/0) 
0 

(0/0) 
-20.9 

(-20.9/-20.9) 
-5.7 (-5.7/-5.7) 

Net aquatic carbon 

stock change 

-152.8 

(-45/-233.5) 

0 

(0/0) 

0  

(0/0) 

-152.8 

(-45/-233.5) 

-41.7 

(-12.3/-63.7) 

Lateral fluxes      

DIC f -55.7  

(-55.7/-55.7) 

0  

(0/0) 

0  

(0/0) 

-55.7  

(-55.7/-55.7) 

-15.2  

(-15.2/-15.2) 

DOC g -71.4  

(-71.4/-71.4) 

0  

(0/0) 

0  

(0/0) 

-71.4  

(-71.4/-71.4) 

-19.5  

(-19.5/-19.5) 

POC g -64.6  

(-64.6/-64.6) 

0  

(0/0) 

0  

(0/0) 

-64.6  

(-64.6/-64.6) 

-17.6  

(-17.6/-17.6) 

Coastal Margin C 
inputs d 

-458.3 

(-187/-729.7) 

0  

(0/0) 

0  

(0/0) 

-458.3  

(-187/-729.7) 

-125  

(-51/-199) 
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Net aquatic lateral 

fluxes 
-650  

(-378.6/-921.3) 

0 

(0/0) 

0  

(0/0) 

-650  

(-378.6/-921.3) 

-177.3  

(-103.3/-251.3) 
a Hunt et al. 2017, Etiope et al. 2017, section 2.5.1 
b Borges et al. 2015, 2022 
c Lauerwald et al. 2023 
d RECCAP2 database (https://www.bgc-jena.mpg.de/geodb/projects/Data.php) 
e Mendonça et al 2017 
f Lacroix et al., 2020, section 2.5.2 
g Zscheischler et al. 2017 

 

 1 

2.6. Trade fluxes 2 

2.6.1. Carbon in crop and wood trade 3 

The transfer of physical and embodied carbon to and from Africa represents a relatively small 4 

percentage when compared to the rest of the world (Peters et al., 2012). We consider the physical flows 5 

of carbon via trade in biomass that includes crops and harvested wood products for three different 6 

periods, including 1961-1984, 1985-2008 and 2009-2019, based on inventory data from the Food and 7 

Agricultural Organisation of the United Nations (FAO; https://www.fao.org/faostat/en/#data, accessed 8 

18 October 2023). Ftrade is considered a carbon flux source by the region if it imports more than it exports 9 

or a carbon flux sink if otherwise. 10 

Africa was a net importer of crops during all three periods (Table 12). Carbon imports through crops 11 

have increased more than six-fold in the 1985 to 2008 period from the 1961 to 1984 period and almost 12 

doubled from the 1985-2009 to 2010-2019 periods. From 1961 to 2009, Africa was a small net 13 

exporter of carbon through wood. During the RECCAP2 period, however, Africa’s wood carbon 14 

imports exceeded the exports, although the amount of carbon entering the region was still relatively 15 

small in contrast to global carbon trade.  16 

 17 

Table 12. Crop and wood trade fluxes (± inter-annual variability) in TgCO2yr-1 and TgCyr-1. Positive 18 

values represent imports (source) and negative values represent exports (sink). 19 

Period 1961-1984 1985-2009 2010-2019 

 TgCO2yr-1 TgCyr-1 TgCO2yr-1 TgCyr-1 TgCO2yr-1 TgCyr-1 

Crop export -13.63 ± 2.34 -3.68 ± 0.63 -14.93 ± 4.02 -4.03 ± 1.09 -29.13 ± 10.84 -7.87 ± 2.93 

Crop import  22.60 ± 13.16 6.10 ± 3.55 73.55 ± 23.88 19.86 ± 6.45 137.22 ± 45.33 37.22 ± 12.24 

 

Crop Net flux 8.97 ± 13.37 2.42 ± 3.61 58.62 ± 24.22 15.83 ± 6.54 108.74 ± 46.61 33.2 ± 12.59 

 

Wood export -3.88 ± 0.72 -1.05 ± 0.19 -7.66 ± 3.28 -2.07 ± 0.89 -9.89 ± 3.27 -2.70 ± 0.88 

Wood import 1.64 ± 0.63 0.44 ± 0.17 4.22 ± 2.26 1.14 ± 0.61 9.93 ± 3.59 2.68 ± 1.00 

 

Wood Net flux -2.25 ± 0.96 -0.6 ± 0.26 -3.44 ± 3.98 -0.9 ± 1.07 0.048 ± 4.86 0.3 ± 1.33 

https://www.fao.org/faostat/en/#data
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2.7. Anthropogenic emissions of greenhouse gases from inventory data 1 

 In RECCAP1, Valentini et al. (2014) used the UNFCCC data to derive estimates for anthropogenic 2 

emissions. However, due to the sparse reporting of countries in Africa, we summarise the GHG 3 

emission estimates provided by the International Energy Agency acquired through Climate Watch 4 

(https://www.climatewatchdata.org/, accessed 18 October 2023). Total fossil fuel emissions increased 5 

from 1.216 PgCO2-eq to 1.728 PgCO2-eq from the 1990-2009 to 2010-2019 period (Table 13). Fossil 6 

fuel emissions contributed 42% of the total anthropogenic emissions while LULCC contributed about 7 

32% during RECCAP2. We therefore notice that the proportional contribution of fossil fuel emissions 8 

has increased since RECCAP1 (39% and 35% contribution for fossil fuels and LUCF, respectively). 9 

Of the 23% contribution of agriculture (including livestock) to the total emissions, methane emissions 10 

are responsible for 15%. For a comprehensive analysis and comparison of inventory data to 11 

atmospheric inversions for Africa, see Mostefaoui et al., (2023). 12 

Table 13. Anthropogenic greenhouse gas emissions for the 1990-2009 (R1) and 2010-2019 (R2) 13 

periods. 14 

  Anthropogenic emissions (PgCO2-equivalent yr-1) 

 Period 

Fossil fuels 

(including  

industrial 

processes) 

Waste Agriculture LUCF 
Total incl 

LUCF 

 Bunkers  

(Tg CO2-eq yr-1) 

CO2 R1 0.83 ± 0.11   0.98 ± 0.02 1.81 ± 0.13 37.1 ± 3.83 

 R2 1.28 ± 0.06   1.20 ± 0.07 2.48 ± 0.12 41.6 ± 1.69 

CH4 R1 0.35 ± 0.04 0.13 ± 0.02  0.44 ± 0.05 0.06 ± 0.02 0.99 ± 0.08 0.04 ± 0.01 

 R2 0.38 ± 0.02 0.16 ± 0.01 0.61 ± 0.03 0.06 ± 0.00 1.21 ± 0.04 0.02 ± 0.01 

N2O  R1 0.06 ± 0.02 0.01 ± 0.00 0.28 ± 0.03 0.04 ± 0.01 0.36 ± 0.05 0.24 ± 0.03 

 R2 0.08 ± 0.00 0.02 ± 0.00 0.36 ± 0.01 0.05 ± 0.00 0.46 ± 0.01 0.28 ± 0.02 

Total R1 1.23 ± 0.12 0.15 ± 0.02 0.73 ± 0.06 1.09 ± 0.03 3.15 ± 0.16 37.4 ± 3.83 

 R2 1.74 ± 0.06 0.19 ± 0.01 0.97 ± 0.03 1.31 ± 0.07 4.15 ± 0.12 41.9 ± 1.69 

 15 

2.7.1. Emissions from different fossil fuel energy sources 16 

We used the Greenhouse Gas from Energy Database Highlights data set (IEA, 2023) to evaluate the 17 

greenhouse gas emissions from different energy sources (Figure 10). The data in Table 14 show that 18 

fuel combustion from coal, gas and oil increased substantially from 1985-2009 to 2010-2019 while 19 

the increasing trend for fugitive emissions seems to slow down for the RECCAP2 period, but still 20 

contributing almost the same amount of emissions as for RECCAP1. Emissions from bunkers add a 21 

relatively small amount of emissions to the total estimate, with emissions increasing for aviation 22 

bunkers and decreasing for marine bunkers from 1985-2008 to 2009-2019. 23 

https://www.climatewatchdata.org/
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Table 14. Emission estimates (TgCO2-eq yr-1) for different fossil fuel energy sources. 1 

Energy source 1985-2009 2010-2019 

Coal - Fuel combustion 276.51 ± 59.43 399.06 ± 18.29 

Oil - Fuel combustion 298.85 ± 62.37 522.65 ± 38.78 

Gas - Fuel combustion 95.03 ± 44.38 233.78 ± 30.50 

Fugitive emissions 337.91 ± 57.02 340.63 ± 20.10 

Marine bunkers (CO2 only) 19.65 ± 3.91 18.55 ± 0.97 

Aviation bunkers (CO2 only) 15.34 ± 3.50 23.85 ± 1.01 

   

 2 

Figure 10. Fossil fuel (and biofuel) emissions by fuel type. 3 

 4 

2.8. Results of top-down atmospheric inversions 5 

2.8.1. CO2 inversions 6 

For the land CO2 fluxes, we used a set of four CO2 inversions that used data from the global surface in 7 

situ network:  CAMS v20r2 (Chevallier et al., 2005, 2019), sEXTocNEET_v2021 (Rödenbeck et al., 8 

2003, 2018), Carbon Tracker Europe CTE2021 (Van Der Laan-Luijkx et al., 2017), University of 9 

Edinburgh or UoE (Feng et al., 2016) and one inversion driven by both in-situ and satellite column-10 

averaged dry air mole fraction of atmospheric CO2 from OCO-2 and GOSAT:  CMS-Flux (Liu et al., 11 

2021), all with different priors, algorithms and transport and re-analyses fields, described in the global 12 

carbon budget 2021 (Friedlingstein et al., 2022) (Figure 11). Previous synthesis studies showed that 13 

the net terrestrial carbon balance of Africa is a small CO2 sink (Ciais et al., 2011; Valentini et al., 14 

2014; Williams et al., 2007). However, the inversions are subject to large uncertainties, especially in 15 

the tropics, because of the lack of observations and the difficulties of representing tropical convection 16 

and related vertical mixing (Gaubert et al., 2019; Schuh et al., 2019). Using satellite CO2 column 17 

retrievals, (Palmer et al., 2019) identified northern tropical Africa as being responsible for the 18 
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majority of the pan-tropical net carbon seasonal cycle, with the largest emissions found over western 1 

Ethiopia and western tropical Africa during March and April.  2 

In RECCAP1, the spread of the net exchange carbon according to four inversions was 1 PgC yr−1 for 3 

five years’ annual means (2001-2004). Based on our collected CO2 inversions, the standard deviation 4 

was 0.25 PgC yr−1 for both 2001-2004 and for 2000-2009, and 0.30 PgC yr−1 for 2010-2019 (Table 5 

15). For the 2000-2009 period, the average land flux (sink) was -0.14 PgC yr−1 ± 0.25 PgC yr−1 with 6 

three out of four inversions showing moderate CO2 uptake through the entire decade. In contrast, the 7 

same four inversion models find the 2010-2019 period to be a carbon source (0.11 ± 0.27 PgC yr−1) to 8 

the atmosphere, likely as a result of the 2015/2016 El-Niño with most inversions showing a net source 9 

in 2016 with an average flux of 1 PgC yr−1(Table 15). This source is in line with previous studies that 10 

identify increased respiration rates associated with the increased surface-temperature in 2016 (Gloor 11 

et al., 2018; Liu et al., 2017). For the full set of five available inversion models used for the 2009-12 

2019 period, this source is estimated at 0.27 ± 0.3 PgC yr−1 as the CMS-flux inversion model 13 

estimates net emissions over most of this period. Within Africa, this source is mostly driven by 14 

emissions from the sub-humid savanna (0.27 ± 0.19 PgC yr−1). The CMS-Flux inversion is driven by 15 

GOSAT and OCO-2 data and show a larger source than the in-situ inversions alone. This source is 16 

driven by satellite observations of high CO2 over northern tropical Africa during the dry season and 17 

might be overestimated (Gaubert et al., 2023).  18 

 19 

Table 15. Inverse model ensemble summary of posterior land fluxes for CO2 (PgC yr−1). A positive 20 

value means a source to the atmosphere.  21 

 2010-2009 (4 inversions) 2010-2019 (4 inversions) 2010-2019 (5 inversions) 

 mean stdev range mean stdev range mean stdev range 

African continent  -0.14 0.25 -0.35/0.37 0.11 0.27 -0.07/0.29 0.27 0.3 -0.07/0.93 

Desert/Shrubland 0 0 -0.01/0. 0 0 -0.01/0.01 0 0 -0.01/0.01 

Forest -0.05 0.05 -0.13/0.07 -0.03 0.07 -0.16/0.06 -0.05 0.06 -0.16/0.06 

North-Africa desert 0 0.01 -0.04/0.02 -0.01 0.01 -0.04/0.01 -0.01 0.01 -0.04/0.01 

Semi-arid savanna -0.03 0.05 -0.07/0.01 0.05 0.06 -0.01/0.15 0.07 0.06 -0.01/0.15 

Sub-humid savanna -0.06 0.16 -0.23/0.29 0.09 0.15 -0.1/0.25 0.27 0.19 -0.1/0.98 

Note. Value for 2009-2019 for all 5 available inversions are also shown (column 3), but for assessing change since the 

previous decade it is more appropriate to compare data with only 4 inversions. 

 22 
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1 

Figure 11. Annual land CO2 fluxes (represented as year + 0.5) over Africa (PgC yr−1) 2 

 3 

2.8.2. CH4 and N2O inversions 4 

We present an inter-comparison of six surface-based atmospheric inversion models for CH4 over Africa 5 

and four inversions with assimilation of GOSAT observations with different transport models and 6 

inversion techniques CT-CH4/SURF (Tsuruta et al., 2017), NICAM-TM/4DVar (Niwa et al., 2017), 7 

NIES-TM-FLEXPART (Maksyutov et al., 2021; Wang et al., 2019), TM5-CAMS (Bergamaschi et al., 8 

2010, 2013; Pandey et al., 2016; Segers & Houwelling, 2018), TM5-4DVAR (Bergamaschi et al., 2013; 9 

Bergamaschi et al., 2018). The comparison reveals a significant model estimate range difference of over 10 

15 TgCH4yr-1 in annual mean estimates for Southern Africa (Table 16). The inversion results from 11 

surface based ensemble mean estimates for North Africa between 2009 and 2017 was 25.94 ± 3.03 12 

TgCH4yr-1, and for Southern Africa, it was 52.08 ± 5.05 TgCH4yr-1 (Table 16). These values are slightly 13 

larger than the mean methane emissions during the previous period 2000-2008, which were 23.02 ± 14 

3.76 TgCH4yr-1 for North Africa, and 49.37 ± 3.81 TgCH4yr-1 for Southern Africa. This is nearly 5% 15 

for North Africa and 12% for Southern Africa of the global total methane estimate of 557 TgCH4yr-1 16 

(Wang et al., 2019).  17 

GOSAT based inversions show similar estimates to the surface based inversions. Mean estimates of 18 

four GOSAT-based inversions were 23.14 ± 2.29 TgCH4yr-1 for Northern Africa, and 57.66 ± 5.68 19 

TgCH4yr-1 for Southern Africa for the years 2010-2017 (Table 16). Although Africa's contribution to 20 

global methane emissions is relatively small, it is important to monitor the continent's emissions as they 21 

may increase in the future due to population growth, urbanization, and the development of oil and gas 22 

production. Agricultural west and wetlands are responsible for more than 80% of net methane emissions 23 

in Africa.  24 
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The spatial mean estimations of N2O concentrations in Africa, as reported by five inversion models, 1 

have shown a relatively small discrepancy with a mean value of 3.26 ± 0.19 TgNyr-1 during the years 2 

from 2000 to 2008 (Table 16). This value has slightly increased to 3.44 ± 0.14 TgNyr-1 from 2009 to 3 

2016. The data from these models showed similar results over these two time periods, with a small 4 

increase in the average N2O concentrations.  5 

 6 

Table 16. Inversion estimates include the model means, variance and ranges for CH4 and N2O. 7 

CH4 2000-2008  2009-2017  

(6 Surface-based 

inversions) 
Mean 

Model 

variance 
Range Mean 

Model 

variance 
Range 

Africa 72.39 2.91 68.56 - 75.53 78.02 3.88 73.04 - 82.90 

North Africa 23.02 3.76. 19.01 - 27.84 25.94 3.03 22.86 - 30.25 

Southern Africa 49.37 3.81 45.56 - 54.99 52.08 5.05 45.73 - 60.03 

CH4 2000-2008  2009-2017  

(GOSAT inversions) 
Mean 

Model 

variance 
Range Mean 

Model 

variance 
Range 

Africa – – – 80.80 6.45 73.16 - 87.11 

North Africa – –         – 23.14 2.29 21.20 - 26.34 

Southern Africa – – – 57.66 5.68 51.31 - 63.85 

N20 2000-2008 2009-2016 

 
Mean 

Model 

variance 
Range Mean 

Model 

variance 
Range 

TgN 3.26 0.19 3.40 - 3.53 3.44 0.14 3.29 - 3.61 

TgN2O 5.1182 0.2983 5.338 – 5.5421 5.4008 0.2198 5.1653 – 5.6677 

 8 

3. Synthesis of the African region greenhouse gases budget 9 

We summarised the estimates and trends for the African GHG flux components and carbon stocks for 10 

the RECCAP2 period (Table 17). We present separate total estimates for each of the gases (CO2, CH4, 11 

N2O) and calculated the Carbon (PgCyr-1) and GHG budgets in CO2 equivalents using the GWP100 12 

values from the IPCC sixth assessment (IPCC, 2021). We employed both bottom-up (BU) and top-13 

down (TD) approaches as described by Ciais et al., (2022) and compare these estimates below. 14 

Uncertainty estimates, calculated as the 5th and 95th percentiles, are provided in brackets where 15 

possible. Uncertainty in the net fluxes was difficult to calculate as some flux estimates were reported 16 

with standard deviations and other flux estimates only had minimum (min) and maximum (max) 17 

values (or 5th and 95th quantiles). For this reason we converted all standard deviations to a 5th and 95th 18 

quantiles using the equations; min = mean-1.645*sd; max = mean+1.645*sd. We then produced a min 19 
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and max net flux estimate by summing across these min and max values. When summing across 1 

positive and negative fluxes we summed the smallest fluxes, not the smallest numbers. For example, 2 

if the min NPP estimate was -8.18  and the max NPP estimate was -17.44 PgC, and the min Rh was 3 

4.8 and the max Rh was 17.2 we summed  -8.18 and 4.8 and -17.44 and 17.2. This is still a very crude 4 

way of assessing uncertainty and results in very large uncertainty values, but until we have more data 5 

on all fluxes it is the best uncertainty estimates we are able to provide at present.  6 

Total CH4 fluxes for Africa over the RECCAP2 period amount to 78.453 (36.665/59.677) TgCyr-1. 7 

This BU estimate is very close to the TD estimate of 78.02 ± 3.88 (73.04/82.9) from the atmospheric 8 

inversion models. An estimate of 66 ± 35 TgCH4yr-1 was reported for RECCAP1 (Valentini et al. 9 

2014). For N2O, the RECCAP2 BU estimate of 1.81 (1.716/2.239) TgN2O
-1 is much lower than the 10 

estimate from the atmospheric inversions at 5.401 ± 0.22 (5.165/5.668). The RECCAP1 estimate was 11 

3.3 ± 1.3 TgN2Oyr-1. As the large majority of N2O emissions for Africa are from agricultural sources 12 

we would expect this flux to be increasing over time. Given the lack of certain component fluxes in 13 

our bottom-up estimates and the large uncertainty associated with our estimates, a considerable effort 14 

should be directed at improving observations and estimates for CH4 and N2O fluxes in Africa. 15 

Considering the carbon in CO2 and CH4, we find that the BU approach estimates Africa to contribute 16 

0.553 (-1.35/2.974) PgCyr-1 to the global carbon cycle when we include non-terrestrial fluxes such as 17 

fossil fuels. Within this BU net carbon balance, terrestrial fluxes contribute 0.162 (-1.793/2.633) 18 

PgCyr-1 with the rest being produced through anthropogenic emissions from fossil fuels and 19 

agriculture. However, the TD approaches estimate a much lower African contribution at 0.169 ± 0.27 20 

(-0.015/1.616). Similarly, the calculated balance of fluxes from all three gases (in CO2 equivalents) 21 

add to a total of 5.518 (-2.666/12.859) PgCO2eq yr-1 of which NEE contributes 2.585 (-5.899/10.225) 22 

PgCO2eq yr-1 for the BU approaches. The TD approaches estimate the African contribution of GHG 23 

emissions at 3.449 (2.614/4.287) PgCO2eq yr-1.  The estimate for RECCAP1 (Valentini et al. 2014) 24 

was −2.66±4.28, but they did not include key aquatic fluxes which are significant contributions. The 25 

differences between the estimates from the BU and TD approaches is not unexpected as BU 26 

approaches often omit some flux components due to the challenges in observation and lack of data. In 27 

particular, the coastal ocean margin sink (Kwon et al., 2021) could not accurately be quantified so was 28 

omitted from the final budget, and models of above and below ground biomass change require further 29 

validation.  The large uncertainty values of the TD approaches are also a consequence of the sparse 30 

surface observations which makes it difficult to constrain the inversion models. 31 

Nevertheless, we find increasing trends of carbon and GHG emissions in the net balance estimates 32 

from both BU and TD approaches. Given the large uncertainties associated with these balances, it is 33 

difficult to definitively state that Africa is a source of carbon emissions, although it does appear to be 34 

likely. If we consider the contribution of N2O and CH4 in the total GHG net emission estimate, Africa 35 
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does however categorise as a net source. Certainly, we do see that Africa’s carbon and GHG budget 1 

remains close to carbon neutral and still contributes a small percentage to the global budget relative to 2 

other regions. It is however concerning that the sink capacity in Africa is decreasing.  3 
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Table 17. Synthesis of the estimates (with uncertainties) and trends of GHG and carbon stocks (Pg) and fluxes (Pg yr-1) for Africa over the 1 

RECCAP2 period (specific periods depicted by footnotes). Estimate units for CH4 and N2O in blue italics are Tg yr-1. Where more than one 2 

estimate is provided for a component the value considered as the “best estimate” was used for calculating the net balances and is provided in bold. 3 

The bottom-up NEP, NEE, NBP and top-down atmospheric inversion estimates are highlighted in light grey. 4 

  CO2 CH4 N20 Carbon Budget GHG budget (CO2 equivalents) 

CARBON STOCKS 

   

Estimate 

(PgC) 

 

Trend 

(PgCyr-1) 

   

Above ground biomass:        
Satellite based models a 

   
84 (71/95) 

 

  
TRENDY model ensemble a 

   
56 (48/64) 

 

  
aDGVM c 

   
59.54 

 

  
Belowground biomass: 

Peat 

   
36.9 -0.012 

  
Belowground biomass: 

Soils 

     

  
Soilgrids b 

   
87.7 (77/99) 

 

  
TRENDY model ensemble a 

   
148 ± 60 

 

  
aDGVM c 

   
76.77 

 

  
Total Carbon stocks    208.6    

GHG FLUXES 

Estimate 

(PgCO2 yr-1) 

 

Estimate 

(TgCH4 yr-1) 

 

Estimate 

(TgN2O yr-1) 

 

Estimate 

(PgC yr-1) 

 

Trend 

(PgCyr-1) 

 

Estimate  

(PgCO2eq yr-1) 

 

Trend 

(TgCO2eq yr-1) 

 

GPP: 
       

Satellite based models d -90.457 ± 9.02 

(-105.295/-75.619)   

-24.67 ± 2.46 

(-28.717/-20.623) -0.032 

-90.457 

(-105.295/-75.619) -0.117 

TRENDY model ensemble a -103.039 ± 12.444 

(-123.51/-82.568)   

-28.102 ± 3.394 

(-33.685/-22.519) -0.094 

-103.039 

(-123.51/-82.568) -0.345 

aDGVM c -49.17 

(-49.17/-49.17)   

-13.41 

(-13.41/-13.41) -0.114 

-49.17  

(-49.17/-49.17) -0.418 
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Autotrophic respiration 

(Ra):        
TRENDY model ensemble a 56.082 ± 9.939 

(39.732/72.432)   

15.295 ± 2.711 

(10.836/19.754) 0.051 

56.082 

(39.732/72.432) 0.186 

aDGVM c 

4.363 (4.363/4.363)   

1.19  

(1.19/1.19) 0.015 

4.363  

(4.363/4.363) 0.055 

NPP: 
       

TRENDY model ensemble a -46.957 ± 10.322 

(-63.936/-29.978)   

-12.807 ± 2.815  

(-17.437/-8.176) -0.043 

-46.957  

(-63.936/-29.978) -0.159 

aDGVM c -44.807 

(-44.807/-44.807)   

-12.22 

(-12.22/-12.22) -0.063 

-44.807  

(-44.807/-44.807) -0.231 

Heterotrophic respiration 

(Rh):        
TRENDY model ensemble a 40.436 ± 13.861 

(17.635/63.238)   

11.028 ± 3.78 

(4.809/17.247) 0.025 

40.436 

(17.635/63.238) 0.092 

aDGVM c 32.34 

(32.34/32.34)   

8.82 

(8.82/8.82) 0.051 

32.34  

(32.34/32.34) 0.187 

Wild fire emissions: 
       

FREMv2.1 a 3.25 

(3.25/5.475) 

6.792 

(4.858/9.083) 

0.085 

(0.085/0.422) 

0.953 ± 0.113 

(0.953/1.595) -0.011 

3.433  

(3.381/5.72)  
TRENDY model ensemble a 3.154 ± 2.085 

(-0.275/6.584)   

0.86 ± 0.569 

(-0.075/1.796) -0.002 

3.154  

(-0.275/6.584)  
aDGVM c 

4.217   

1.15 

(1.15/1.15)  4.217  
Land use change 

emissions:        
TRENDY model ensemble a 

   

0.476 ± 0.15 

(0.229/0.723)  

1.746  

(0.841/2.651)  
NET ECOSYSTEM 

PRODUCTION 

-1.525  

(-8.252/7.428) 

6.792 

(4.858/9.083) 

0.085 

(0.085/0.422) 

-0.349   

(-2.184/2.128)  

-1.318  

(-8.098/7.788)  
Biofuel emissions a 0.905 ± 0.165 

(0.634/1.176)   

0.247 ± 0.045 

(0.173/0.321) 0.005 

0.905  

(0.634/1.176)  
Crop trade fluxes a 0.109 ± 0.047 

(0.032/0.185)   

0.03 ± 0.013 

(0.009/0.051)  

0.109  

(0.032/0.185)  
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Wood trade fluxes a 0 ± 0.005  

(-0.008/0.008)   

0 ± 0.001  

(-0.002/0.002)  

0  

(-0.008/0.008)  
Lateral fluxes (aquatic) a -0.192  

(-0.192/-0.650)   

-0.052 

(-0.052/-0.177)  

-0.192  

(-0.192/-0.650)  
Aquatic atmospheric fluxes 

a 

1.106  

(0.872/1.349) 

8.988 

(7.371/10.922) 

0.027 

(0.02/0.032) 

0.308 

(0.245/0.368)  

1.356  

(1.077/1.652)  
Organic C burial a 

(freshwater/coastal) 

-0.153  

(-0.045/-0.233)   

-0.042  

(-0.012/-0.064)  

-0.153  

(-0.045/-0.233)  
Geological fluxes a 0.018  

(0.004/0.033) 

1.014 

(1.014/1.014)  

0.006  

(0.002/0.01)  

0.046  

(0.031/0.06)  
Termites a 

 

1.397 

(1.305/1.489)  

0.001 

(0.001/0.001)  

0.038  

(0.035/0.04)  
Herbivores a 

 

17.623 

(9.185/21.65)  

0.013 

(0.007/0.016)  

0.476  

(0.248/0.585) 10.8 

NET ECOSYSTEM 

EXCHANGE  

0.269 

(-7.601/9.942) 

35.814 

(23.734/44.159) 

0.112 

(0.105/0.453) 

0.162 

(-1.793/2.633)  

2.585  

(-5.899/10.225)  
Fossil fuels a 1.277 ± 0.107 

(1.101/1.453) 

14.219 ± 0.786 

(12.926/15.511) 

0.301 ± 0.004 

(0.294/0.308) 

0.359 ± 0.03 

(0.31/0.408)  

1.743  

(1.531/1.956)  
Bunkers a 0.042 ± 0.002 

(0.039/0.044) 

0.001 ± 0 

(0.001/0.001) 

0.001 ± 0 

(0.001/0.001) 

0.011 ± 0 

(0.011/0.012)  

0.042 

 (0.039/0.045)  
Agriculture a 

 

22.464 ± 1.071 

(20.703/24.225) 

1.331 ± 0.045 

(1.258/1.405) 

0.017 ± 0.001 

(0.016/0.018)  

0.97 

(0.902/1.038)  

Waste a 

 

5.956 ± 0.329 

(5.415/6.496) 

0.065 ± 0.004 

(0.058/0.072) 

0.004 

(0.004/0.005)  

0.179  

(0.162/0.195)  
NET BOTTOM-UP 

TOTAL (NBP) 

1.588 

(-6.461/11.439) 

78.453 

(36.665/59.677) 

1.81 

(1.716/2.239) 

0.553  

(-1.35/2.974)  

5.518  

(-2.666/12.859)  
ATMOSPHERIC 

INVERSIONS (TOP-

DOWN) 

0.403 ± 0.99  

(-0.257/1.063) a 

78.02 ± 3.88 

(73.04/82.9) e 

5.401 ± 0.22 

(5.165/5.668) f 

0.169 ± 0.27  

(-0.015/1.616)  

3.984  

(3.126/4.849)  
a 2010-2019    b 2009-2019    c2009-2018    d2009-2015   e 2009-2017    f 2009-2016 

1 
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4. Conclusion 1 

From a global perspective, Africa is important due to its size and potential for climate change mitigation 2 

through assumed increases of its carbon stocks. However, given the high anthropogenic pressure through 3 

rapid population growth that catalyses energy demand and land transformation, Africa is more likely to 4 

increase its relative contribution to global GHG emissions. This is evident from our synthesis that shows a 5 

decrease in the sink capacity of the continent, largely due to the contributions of land use and fossil fuel 6 

emissions. Increasing productivity trends due to CO2 fertilisation, intentional afforestation (or 7 

reforestation) and widespread woody encroachment of open savanna ecosystems can be contested given 8 

our large range of above-ground biomass estimates. We require massive effort to reduce uncertainties 9 

through increasing the resolution of Africa-specific observations both spatially and temporally, and we 10 

need to develop models that account for the unique functioning of African ecosystems.  11 

Land use change emissions in Africa is significant (0.51 ± 0.10 PgCyr-1 in RECCAP1 and 0.476 ± 0.15 12 

PgCyr-1 in RECCAP2 - although methods differ widely) and still contributes slightly more than fossil 13 

fuels (0.359 ± 0.03) to the net CO2 balance. This key component requires more directive attention because 14 

even with the availability of novel state-of-the-art satellite products, categorisation of land use and land 15 

cover is still coarse, irregular and largely difficult to verify. Apart from the spatial variability in land use 16 

pressure across ecoregions, inter-annual variability due to seasonal fluctuations and periodic climatic 17 

oscillations also play a large role in the year-to-year sink:source dynamic.  18 

As one of the important fluxes in Africa, fire contributed between 46% and 65% to the global fire 19 

emission estimate. Although we have shown that wildfire emissions decreased from the RECCAP1 20 

period, the concern remains that much of this decrease is a consequence of land conversion that manifests 21 

as an alternative source of GHG emissions to the atmosphere. Fire is a process that maintains 22 

functionality in a large proportion of Africa’s ecosystems (e.g. grasslands and savannas) and its 23 

importance can therefore not be underestimated. Moreover, until we have more certainty on the soil 24 

carbon responses to changes in tree cover, fire, and grazing, it would be premature to draw conclusions 25 

regarding the carbon cycle implications of reduced fire. Stable soil carbon reserves can be lost when 26 

woody species spread into grasslands (Jackson et al., 2017; Mureva et al., 2018) and therefore although 27 

reduced fire is likely to increase above-ground carbon stores, the net effect might not be increased sink 28 

capacity. The TRENDY models all predict large increases in soil carbon reserves in the past few decades, 29 

but the causes of this are unclear, and should be further investigated.  30 
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For this synthesis, we made a concerted attempt to calculate lateral fluxes, both from crop and wood 1 

trade, and from rivers. However, much of the data is based on coarse methods that used tier 1 inventory 2 

data and/or taken from global models with insufficient Africa-specific observation data. Although lateral 3 

trade fluxes represent a relatively small contribution to the net estimates, future efforts should be directed 4 

at improved methodology and the inclusion of embodied carbon in products. Similarly for carbon 5 

transport in rivers, we advocate for increased observations and empirical studies that are specific to 6 

Africa. 7 

To conclude, we show that Africa’s sink capacity is decreasing and that the continent most likely 8 

switched from a small net sink to a small net source during the 2010-2019 period. Although we have 9 

improved many of the component estimates since the previous RECCAP period, we still have large 10 

uncertainties in our estimates. What is clear is that Africa has an increasing GHG emissions trend and it 11 

deviates from the mitigation aims of the Paris Agreement towards net-zero emissions. Forecasts of a 12 

growing population that is associated with increasing emissions from fossil fuel burning and land 13 

conversion will inevitably increase Africa’s relative contribution to the global GHG estimates in the next 14 

decade. This may further be exacerbated by the lack of actionable policy and increasing socio-economic 15 

challenges that will likely multiply as climate change continues to impact the region. We suggest a 16 

directed attempt to increase the GHG observation network of Africa for all BU components of the GHG 17 

budget, but especially with regard to land use change and biomass estimates. Importantly, protocol for 18 

accountability within national pledges should be accompanied by enabling African countries to observe 19 

and report more consistently in a standardised way for centralisation of data in inventories.  20 

The information from this African budget is key to assessing which aspects of the carbon cycle are most 21 

important to be managed, and what sorts of management is possible in the quest to achieve net zero. 22 

Shifts to C-neutral energy sources can potentially remove up to 30% (1.743 (1.531/1.956) PgCO2eq yr-1) 23 

of the current anthropogenic emissions but emissions from land use change (1.746 (0.841/2.651) 24 

PgCO2eq yr-1) are harder to reduce. Both agricultural intensification, and expansion of agricultural land 25 

will continue to increase GHG fluxes in the short term, and the impact on the GHG budget depends on the 26 

degree to which climate-smart agricultural practices can be rolled out in different contexts.  27 

As natural ecosystems are increasing their C-sink capacity, and currently more than compensating for the 28 

land use change emissions (CO2 fertilisation estimated as -2.02 +- 0.88 PgCO2eq yr-1 by the TRENDY 29 

model ensemble) there is hope that nature-positive investments in Africa can help balance the global 30 

GHG budget. The IPCC AR6 scenarios for limiting warming to 1.5 degrees include substantial carbon-31 

capture in African ecosystems; 2.3 Pg annually by 2050, involving over 700 million ha of land (Forster et 32 
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al. 2018). Key fluxes in this budget that are targeted are the fuelwood emissions (0.91 PgCO2eq yr-1), and 1 

the above-ground biomass (highly uncertain), as well as climate-smart agricultural practices. There is no 2 

evidence yet that this is possible within the socio-ecological context, with evidence emerging that 3 

estimates of above-ground biomass increases are unrealistic, and some will have negative biodiversity and 4 

social outcomes (Bond et al., 2019; Armani et al. 2022). This RECCAP2 GHG budget sets a baseline 5 

against which to assess the effectiveness of policies, and highlights the key fluxes that need better 6 

quantification to support financing these interventions, and assessing their consequences.  7 

A key flux highlighted here is the 0.48 (0.248/0.585) PgCO2eq yr-1 contributed by livestock methane 8 

emissions. Our paper demonstrates how sensitive this value is to incorrect emissions factors and to 9 

varying livestock production systems, and highlights that there is a growing body of evidence on the 10 

continent to enable better parameterisation of this important flux. Key also to note that only 60% of this 11 

methane flux represents a net increase above what would have been emitted by the wildlife of Africa 12 

before they were replaced with livestock (Hempson et al., 2017). Options for reducing the livestock 13 

methane flux in African ecosystems need to be sensitive to the social contexts involved, but policies 14 

enabling mixed livestock-wildlife systems might prove important.  15 

Currently the ability to accurately monitor C stock changes at large scales in Africa is limited, as the 16 

remotely sensed datasets have not been well parameterised for these ecosystems. This will improve 17 

rapidly due to private-public partnerships as C offset projects are scrutinized and verification procedures 18 

provide the motivation for improved C monitoring. Soil carbon stocks likewise, need attention in the 19 

DGVM modelling community. Again, with better quantification it will be easier to access funding to 20 

drive ecosystem-based mitigation activities.  21 

Given that Africa currently is almost certainly a net source of GHG emissions, it would be unwise to 22 

presume that this continent can help offset emissions in other regions, but there is huge opportunity to 23 

invest in ways to help African countries to follow nature-supporting, rather than nature-eroding 24 

development pathways, and to remain carbon neutral. 25 
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