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Abstract
Database Management Systems (DBMSs) are largely used to store, retrieve, and manage the vast amounts
of data that modern applications handle. There are various DBMSs available in the industry. While a few
studies have examined the co-evolution of DBMSs and application source code, there is a research gap in
examining the adoption of DBMSs in real systems. Knowing the most commonly used DBMSs, how fre-
quently they are used together, and their patterns of replacement can assist project managers in making
informed decisions about DBMS adoption. Therefore, we conducted a historical investigation of 317 pop-
ular open source end-user applications developed in Java and hosted on GitHub. We determined if these
projects had, at any point, employed any of the top 50 DBMSs as ranked by DB-Engines.
We observed that MySQL is the most utilized relational DBMS, succeeded by PostgreSQL and H2. Con-
sidering only non-relational DBMSs, Redis emerges as the predominant choice, with Cassandra trailing
behind. Multi-model DBMSs are top-ranked in Infrastructure Management projects. Furthermore, we found
different combinations of subsets of 11 DBMSs being used together at the beginning of the project life cy-
cle (e.g., PostgreSQL and MySQL). Halfway through the project life cycle, we found combinations of 25
DBMSs being used together (e.g., MS SQL Server and Oracle). Finally, at the end of the life cycle, this
number increases to 29 DBMSs (e.g., Redis and H2). We also investigated the replacements of DBMSs.
We mined sequential patterns and discovered 20 situations where projects replaced DBMSs. For example,
we could observe 11 replacements of PostgreSQL in 8 projects in our corpus, with MySQL being a domi-
nant replacement choice, having superseded PostgreSQL in four instances. Conversely, no project switched
from MySQL to PostgreSQL. In summary, our study offers insights into the patterns of DBMS adoption,
co-use, and replacement tendencies.
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1 INTRODUCTION

The exponential growth and increasing complexity of data generated by applications have driven the development of a variety of
solutions for data storage and management. However, the diverse and heterogeneous nature of existing Database Management
Systems (DBMSs) complicates the selection of an appropriate DBMS for an application1.

As there is no DBMS that is the best choice for all needs2, there is a multitude of DBMSs available. According to Gessert
et al1, the reason for this variety is the impossibility of a system achieving all the desirable properties simultaneously. Thus,
distinct DBMSs may be used concomitantly in a single application. For example, relational DBMSs have reached unmatched
reliability, stability, and support through decades of development and are widely used by applications. They are often comple-
mented with non-relational DBMSs (i.e., NoSQL)3, which have emerged as an alternative for storing information that does not
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fit well on the relational data model—such as key-value, column-oriented, document-based, and graph-based information—in
environments with high demand for scalability2.

Selecting a DBMS for a new project, or re-evaluating a prior choice, can benefit from past project experiences. For example,
managers can base their decisions on data showing which DBMSs are commonly used. They might also reconsider their choice
if they learn certain DBMSs are often replaced. Finally, they could investigate the adoption of additional DBMSs when they
know that some DBMSs are frequently used together.

In the literature, some studies analyze the correlation between changes in the database code and application code. Among
these studies, Goeminne et al.4 stands out, analyzing how new functionality added to an application can affect the structure of
the database and, conversely, how changes in the structure of the database can affect the source code associated with it. Qiu
et al.5 investigate the coevolution between database schemas and the source code of the applications. These studies focus on
the structural level of granularity, considering changes made to schemas or database files and how they affect the source code.
Thus, understanding the trends in adopting DBMSs over time is still underexplored in the literature.

In this paper, we investigate the use of DBMSs during the life cycle of 317 popular open-source end-user projects developed
in Java and hosted on GitHub. We looked for the 50 most used DBMSs ranked on the DB-Engines website6, regardless of
the data model they implement—relational or non-relational—and analyzed their adoption, considering a DBMS’s inclusion,
replacement, or removal. In addition, we checked for a tendency to support different DBMSs concomitantly. To guide our
efforts, we answer the following research questions:

RQ1: What are the most commonly used DBMSs during the projects’ life cycle? In this question, we identify which DBMSs
are most commonly adopted during the history of the projects in our corpus. We conceived a set of heuristics (see Section 2.3)
to identify each of the selected DBMS. Then, we counted their occurrences in the projects and ranked the most used DBMSs.

RQ2: Which DBMSs are often used together? In this question, we identify which DBMSs are frequently adopted together
during the projects’ history. We used association rules, a data mining technique that detects correlations among frequent item
sets. According to Agarwal7, this technique generates frequent item sets, from which strong association rules in the form of
A -> B are defined. The analysis of associations enables the discovery of correlation rules, presenting statistical correlations
between sets A and B. With this technique, we could detect DBMSs that are frequently adopted together.
RQ3: Which DBMSs are frequently replaced by others? In this question, we identify the most frequent replacements of DBMSs
during the projects’ history. We used sequential patterns mining, a data mining technique that finds patterns of sequential events
over time. According to Agarwal7, this technique allows mining the set of frequent sub-sequences in a sequence or in a set of
sequences. Using this technique, we identified which DBMSs are commonly replaced by others, either simultaneously or in
sequential time intervals.

To answer these questions, we sliced each project history, looking for evidence of the selected DBMS. In addition, we an-
alyzed how the application domains and the data models affect the observed results. We found that MySQL is the most used
relational DBMS, followed by PostgreSQL and H2. As for the non-relational models, Redis comes ahead, followed by Cassan-
dra. We also found that Multi-Model DBMSs are the most adopted in the Infrastructure Management domain. Furthermore, we
found combinations of the concomitant use among 11 DBMSs early in the projects’ life cycle (e.g., PostgreSQL and MySQL).
By the middle of the life cycle, the number of DBMSs involved in combinations has more than doubled, reaching 25 DBMSs
(e.g., MS SQL Server and Oracle). This number increased to 29 DBMSs (e.g., Redis and H2) at the end of the project life cycle.
We also discovered 20 situations that indicate replacements of DBMSs. For example, we found that PostgreSQL was replaced
eleven times in eight projects in our corpus. In those projects, PostgreSQL was replaced by four distinct DBMSs. Among them,
MySQL was the predominant choice as it replaced PostgreSQL four times in four projects. We also noted the opposite is not
true: MySQL was not replaced by PostgreSQL in our corpus. Thus, in addition to discovering the most common DBMSs dur-
ing the projects’ life cycle, we observed that the concurrent use of different DBMSs has grown over time and that substitutions
between them occur.

The remainder of this paper is organized as follows. Section 2 details the corpus selection and the research methodology.
Section 3 describes our findings. Section 4 discusses the threats to the validity of our study. Section 5 discusses related work.
Finally, Section 6 concludes our work and discusses some future work.
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T A B L E 1 Characteristics of the selected projects for our corpus

contributors stargazers forks commits
mean 133.10 3,228.07 1,066.56 8,372.85
std 163.80 3,981.99 1,563.43 25,191.38
min 10 1,000 81 1,007
25% 46 1,285 334 1,799
50% 86 1,824 598 3,208
75% 149 3,364 1,114 6,980
max 1,000 33,981 18,871 330,851

2 MATERIALS AND METHODS

This section describes the process and the data we used to answer the research questions. We analyzed 317 Java project
repositories from GitHub (see Section 2.1) and identified which DBMSs, among the 50 most popular DBMSs, were used during
the life cycle of the projects. Then, we used data mining techniques to process the dataset to generate the results.

2.1 Project Corpus

We aimed to create a corpus that balanced representativeness with manageability, as we manually classified each project. Our
goal was to select popular open source end-user applications written in Java. We focused on a single programming language
because our method for determining a project’s DBMS usage depended on searching for language-specific database-related
constructs within the project’s source code.

We used the GitHub GraphQL API (v4) to search for all public repositories that were not forks of other repositories, had at
least 1,000 stars, were not archived, and received at least one push in the last three months. According to Kalliamvakou et al.8,
avoiding forks is important to guarantee that the corpus contains only one repository per project. Since we are aware of forks
that are much more successful than the original forked projects, we checked our initial sample for forked projects that met our
selection criteria and found none. Besides that, restricting the number of stars to at least 1,000 signals that our corpus contains
relevant and popular repositories9. Finally, avoiding archived repositories or repositories that did not receive pushes in the last
three months ensures a certain degree of activity in all repositories of our corpus. We did not filter out mirror repositories as our
analyses do not focus on GitHub-specific features; thus, replicas of external repositories stored in GitHub are welcome. This
search was performed on March 27, 2021, and returned 21,149 repositories.

Afterward, we analyzed the metadata of these 21,149 repositories to perform additional filters on the number of contributors
(10 or more) and the number of commits (1,000 or more) in the default branch. Filtering out repositories with less than ten
contributors aims at avoiding personal or coursework projects in our corpus8. Moreover, restricting the number of commits in
the default branch to 1,000 or more is an attempt to remove immature or short-term projects from our corpus. After applying
these filters, our corpus was reduced to 6,708 repositories.

GitHub classifies these 6,708 repositories as using ten different primary programming languages. We used this information
to filter projects written in Java, which is the focus of this paper. This resulted in a corpus with 633 repositories.

We then manually inspected the 633 repositories. For each project, four authors examined the GitHub repository and the
project web page (when available) to answer four questions: (i) Is this repository documented in English? (ii) Does this reposi-
tory contain a software project? (iii) Does this repository contain an end-user application? (iv) What is the project domain? The
answers to these questions were discussed between two authors and inspected and revised by the remaining two authors. The
first question aimed at guaranteeing that the authors could understand the documentation of the projects. The second question
aimed to refine the primary programming language’s automatic filter. The third question aimed at keeping only applications,
removing projects that are not focused on end users, such as frameworks, libraries, programming languages, compilers, and
interpreters. The fourth question aimed at identifying the general application domain of the project. The projects in our cor-
pus belong to 21 established domains: Application Container, Automation, Collaboration, Communication, Cryptocurrency,
E-commerce, ERP, File Management, Gaming, HPC, Infrastructure Management, Machine Learning (end-user applications
in the machine learning domain), Media, Monitoring, Network, Operating System, Personal Management, Program Analysis,
SCM, Security, and Software Development. After answering these four initial questions and dismissing those projects that are
not documented in English, not software projects, and not end-user applications, our corpus was reduced to 317 repositories.
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F I G U R E 1 Skywalking repository commits’ history slicing

Table 1 presents descriptive statistics for the characteristics of the projects selected for our corpus. For example, the "com-
mits" column provides an overview of the number of commits of the analyzed projects. The project with the fewest commits
has 1,007, while the one with the most has 330,851 commits. On average, projects have 8,372.85 commits, demonstrating
significant development activity in the projects. Table 1 also shows statistics for the number of contributors, stargazers, and
forks.

2.2 Research Method

To answer our research questions, we first conceived heuristics based on regular expressions for detecting which DBMSs
are adopted by each project (see Section 2.3). We also built an infrastructure that automatically clones the projects, runs the
heuristics over each project, and populates a database with the obtained outputs.

Since some of our research questions require an analysis of the history of the projects, we split each project into ten equal-
sized slices (in terms of commits). We then analyzed each of the ten slices in each project history, looking for changes on
added, maintained, and removed DBMSs. In practice, we determined the total number of commits for each project and divided
them into segments, with each segment representing 10% of the project’s commit history. Therefore, the first slice does not
correspond to the initial commit of the project but to the last commit of the first 10% of the project history, and so on for the
remaining parts until completing 100%. Note that the last slice does not necessarily correspond to the project’s last commit on
the collection date. This may occur when the number of commits is not divisible by 10. In this case, we ignore some of the last
commits to split the project history into slices of the same size. Also, the last slice may not reflect the end of the project since
the life cycle of the projects continued after we collected our data in March 2021.

Figure1 illustrates the Skywalking repository, with 7,127 commits sliced into 10 parts, where each slice corresponds to 10%
of the total number of commits in this repository. To do so, we first ignore the last seven commits. Then, we distributed the
reminder 7,120 commits in each of the 10 slices, so each slice has 712 commits. Each slice is represented by its last commit,
which is a snapshot of the repository at 10%, 20%, ..., 100% of the project history.

After defining the method for slicing the history of the projects, we selected five projects to validate the heuristics we used
to automatically detect the DBMSs used by each project. Thus, in each of the ten slices defined for each project, we used
the heuristics to automatically detect the DBMSs and stored the results in the database we created for our analysis. Once we
confirmed that the detection occurred properly in our five projects sample (see Section 2.3), we ran the heuristics in all ten
slices of all the projects in our corpus.

Using these results, we then generated a dataset suitable for the data mining tools used to answer the research questions
through association rules and sequential patterns. We first used the MLExtend library from Raschka10 to generate the associa-
tion rules and the SPMF library from Fournier-Viger et al11 to generate the sequential patterns. MLExtend has about 4.3k stars
on GitHub, demonstrating popularity in the community. As for the SPMF repository, since it is not public, we cannot consider
it in terms of stars, but we found around 1,000 research papers that cited or adopted the SPMF library †. Also, both libraries’
authors are active researchers in the scientific community, having many papers published in the Data Mining and Machine
Learning fields.

† https://www.philippe-fournier-viger.com/spmf/index.php?link=citations.php
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T A B L E 2 Types of heuristics that indicate DBMS adoption.

DataBases Import Driver Connection Libraries

Oracle -
oracle\.jdbc\.driver\.OracleDriver

oracle\.jdbc\.OracleDriver
jdbc:oracle

ojdbc
com\.oracle

Cassandra import\s{1,}com\.datastax [ˆa-zA-Z|ˆ\/"\_#|0-9]CassandraConnector[ˆa-zA-Z|ˆ\/"\_#|0-9] -
<\s*artifactId\s*>\s*cassandra

com\.datastax\.oss

Aiming to validate the observed patterns and run complementary analyses, we developed a Pattern Counter tool ‡. Besides
counting patterns from sequence lists, the tool generates support, confidence, and lift measures. We used this tool extensively
to filter the results obtained with association rules and sequential patterns and to validate them (see Section 2.4).

The complete experimental package, containing the data and scripts used in this research as well as the reproducibility
instructions, is available at the DB-Mining repository§.

2.3 Database Heuristics

We selected the top 50 DBMSs listed in the February 2022 DB-Engines ranking6, which ranks DBMSs according to their
popularity. To ensure a balanced analysis, we searched for the most popular DBMSs among relational and non-relational models.
We selected the top 26 relational DBMSs and the top 27 non-relational DBMSs. Although this totals 53, we have exactly
50 DBMS since three of them (Ignite, Virtuoso, and MarkLogic) appear in both categories (relational and non-relational).
Although we found some DBMSs that were a fork of another, such as MariaDB, which is a fork of MySQL, we considered
them separate DBMSs since they are considered as such by the ranking.

We analyzed the official documentation of the top 50 DBMSs looking for information about how they are accessed by Java
programs to conceive our heuristics. We considered five aspects: (i) What imports are required to use these DBMSs? (ii) Which
drivers are needed? (iii) How is the connection established? (iv) Which libraries are needed?

The first aspect aims to identify the required imports for using these DBMSs. Each DBMS has specific classes that must be
imported to enable their usage in Java projects. This aspect allowed us to identify most non-relational DBMSs. For instance,
Cassandra requires the statement "import.com.datastax," so we use this as a search string in our heuristic for Cassan-
dra. However, relational DBMSs utilize Java Database Connectivity (JDBC), which means a generic import is used for most
DBMSs of this type. For instance, Oracle, MySQL, and MS SQL Server are relational DBMSs that utilize JDBC. Therefore,
we disregarded the import strings heuristic for relational DBMSs that used generic imports to avoid false positives. The second
aspect aims to identify how the project loads the driver to access each DBMS. For example, for the Oracle DBMS, we use the
following search strings "oracle.jdbc.driver.OracleDriver" and "oracle.jdbc.OracleDriver." The third
aspect aims to identify how the connection string that points to the DBMS the project wants to connect to is created. Each
DBMS has its connection string, but in Java, relational DBMSs have certain features in common. For example, for the Oracle
DBMS, we use the following search string "jdbc:oracle". The fourth aspect aims to identify a DBMS usage by looking after
the libraries declared in the Maven descriptor. For example, we use the following search strings for the Oracle DBMS in our
heuristic to find Oracle database usage: "ojdbc" and "com.oracle."

We also discovered that some heuristics were common to multi-model DBMSs; for example, Virtuoso relational and Virtu-
oso non-relational DBMSs use the same libraries heuristics. Since we found 3 multi-model DBMSs—Ignite, Virtuoso, and
Marklogic—we separated the heuristics common to the two models. We combined them with the model-specific heuristics to
define which of the models was used by each project that adopts such DBMSs. Thus, each multi-model DBMS has two sets
of heuristics, one to identify its use as a relational DBMS and another for its use as a non-relational DBMS. In this way, to
identify the 50 selected DBMSs in our project corpus, we defined 53 sets of heuristics, balancing our search between the two
models: 26 sets of heuristics for relational DBMSs and 27 for non-relational.

We consider a given project adopts a certain DBMS when at least one of the respective heuristics is
found on that project source code. Going back to the Oracle example, if we find the string referring to the
driver, "oracle.jdbc.driver.OracleDriver" or oracle.jdbc.OracleDriver," or the connection string,

‡ https://patterncounter.readthedocs.io/en/latest/
§ https://gems-uff.github.io/db-mining
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T A B L E 3 Comparison between the results found by our Heuristics (H) and the project’s documentation (D or d). Cells in red indicate false positives.
Projects Oracle MySQL MS SQL Server PostgreSQL MongoDB IBM DB2 Redis Elasticsearch SQLite Access Maria DB Cassandra
Activiti d d d d d d d d

Che H H HD H H H
Skywalking Hd HD Hd Hd Hd d Hd HD d d Hd Hd

Storm d Hd d d HD d HD HD d d d HD
Pinpoint HD HD HD HD HD HD HD HD HD

"jdbc:oracle," or the strings referring to the libraries, "ojdbc" and "com.oracle," we assume that Oracle is used in
that project. The selected DBMS list with the respective heuristics is available at the replication package.

We manually validated the heuristics for the top 12 DBMSs on a sample of five randomly selected projects of our corpus. To
accomplish this, we analyzed the documentation of each project to determine which DBMSs they support. We, then, ran our
heuristics and compared the DBMSs we identified with the ones used by the projects according to their documentation.

Table 3 compares the results obtained by our heuristics and those found manually in the projects’ documentation. Each cell
(r, c) in this table contains an H when the DBMS on column c was found by our heuristics for the project at row r, and a
D when the DBMS on column c is specifically mentioned in the project’s documentation. Also, a cell contains a d when the
DBMS of column c may or may not be used for the project on row r. This happens when the project documentation mentions
the possibility of utilizing other DBMSs not explicitly mentioned (e.g. when they mention the possibility of using a JDBC
connection mechanism commonly used by relational DBMSs).

Cells marked with HD or Hd means the DBMS was found by our heuristics and was mentioned, specifically or as a pos-
sibility, in the project documentation, characterizing the true positives. Cells marked with a single d are not considered false
negatives since d are possibilities instead of obligations. Lastly, cells with a red H represent false positives since our heuristics
detected the corresponding DBMS, but it was not mentioned in the project’s documentation.

For example, the Activiti Project documentation mentions Oracle, MySQL, MS SQL Server, PostgreSQL, IBM DB2, and
H2 as examples of supported DBMSs, with H2 being the default option. It also states the support for Java Database Connectiv-
ity (JDBC), indicating that relational DBMSs are potential options for this project. Therefore, the fact that our heuristics did
not find signs of usage of one of the eight relational DBMSs we used in our validation step was not considered a false negative.
In the case of the Skywalking project, its documentation cites MySQL, H2, and Elasticsearch as existing implementations, and
it mentions the user may "implement [their] own." Thus, we considered that this project allows the implementation of other
DBMSs, and thus the heuristic results as correct — it found DBMSs that are not explicitly mentioned by the project’s documen-
tation, but we understand they are valid possibilities. Storm’s documentation mentions the integration with JDBC, Cassandra,
Redis, Elasticsearch, and MongoDB. Therefore, we considered relational DBMSs as possible options, and the results obtained
by our heuristics were considered correct. All the DBMSs mentioned in the documentation for the Pinpoint project were found
by our heuristics. Finally, for the Che project, we found evidence of Oracle, MySQL, PostgreSQL, MongoDB, Redis, and Elas-
ticsearch. Given that PostgreSQL is the only DBMS mentioned in the project’s documentation, the results indicating evidence
of the other DBMSs diverged, so we considered them false positives.

As shown in Table 3, we found evidence of the adoption of 29 DBMSs in the 5 projects, with only 5 false positives. This
corresponds to a precision of 82.75% with 100% recall. Therefore, we consider our heuristics adequate and sought mechanisms
to mitigate possible failures. For instance, we found situations where generic strings, such as DatabaseClient, CosmoClient,
and MongoClient, were present in the results. Although these examples could indicate the connection methods of different
DBMSs, the application developer might have created a method or variable containing these strings as substrings. To mitigate
this issue and focus specifically on identifying the connection establishment, we applied filters at the beginning and end of the
search string.

For the projects that mention JDBC connection support, we face a challenge since this type of connection can be used
generically without explicitly specifying the DBMSs. However, our heuristics are designed to be specific for each DBMS,
allowing us to identify clues even when the documentation mentions a generic JDBC connection. Therefore, when we found
a clue associated with a DBMS that was not specified in the documentation but is considered a possibility due to its usage of
the JDBC mechanism, we considered it a successful identification. This means that despite the project mentioning a generic
connection that could potentially obscure the specific DBMS being used, our DBMS-specific heuristics uncovered the clue
associated with the DBMS.
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2.4 Infrastructure

Most steps of our research were automatized to reduce error-prone and time-consuming manual executions and to increase the
reproducibility and auditability of the results. We first implemented a series of scripts and Jupyter notebooks for collecting,
filtering, and analyzing projects metadata from GitHub, as described in Section 2.1. Then, we implemented a script to download
the repositories of our corpus automatically.

The execution of each heuristic over the projects in our corpus was also automatized. This script first checks the existing
heuristics and decides whether a new execution is necessary. This step populates a relational DBMS with information about
the projects, the heuristics, and the execution of each heuristic for each project. Finally, we implemented a web application that
allows to manually validate the results. This application shows the pending matches and, for each match, the output generated
by git grep. The researchers could analyze the results and confirm it or not.

To mine association rules, we adopted the Apriori algorithm, a popular algorithm for extracting frequent item sets, proposed
by Agrawal et al.12 in 1994 and implemented by the MLExtend library. We then use it to find the correlation between the
DBMSs, i.e., which DBMSs are used together in a given project. This algorithm requires a one-hot data frame as input. Con-
sequently, we created three datasets containing the results of the heuristics discovered at three stages of the projects’ history
(beginning, middle and end) to capture the evolving DBMS adoption in the projects over time. To achieve this, we developed
Python scripts for building and pre-processing datasets, using scripts from the Pandas library for the pre-processing. Afterward,
we applied this algorithm to each dataset to generate the correlations between DBMSs.

To mine sequential patterns, we adopted the Prefixspan algorithm, the most popular pattern-growth algorithm for sequential
pattern mining13. Specifically, we used the implementation provided by the SPMF library. Given our objective of discovering
subsequences in sequential datasets14, we considered this algorithm as the most suitable choice. We aimed to identify the
DBMS that was most frequently replaced over time, treating each project as a sequence composed of 10 items. Each item
represents a slice of the project history (as explained in Section 2.2), indicating the DBMSs that were added, kept, or removed
from the project. Consequently, by combining the sequence records from all projects, we created a sequential dataset that served
as the input for the PrefixSpan algorithm. We also established three flags, namely Init, In, and Out, to indicate the addition or
removal of a DBMS. The rules we used to generate the input file are defined as follows:

• The existence of an Init flag indicates that the DBMS occurs in that project since its first slice. For example, to denote that
Oracle appears in the first slice of a given project, we add OracleInit.

• The existence of an In flag indicates the first occurrence of the DBMS in any slice other than the first. For example, if the
first appearance of SQLite in a given project occurs in its third slide, we add SQLiteIn.

• The existence of the DBMS in the previous slice and in the current slice indicates it was kept from one slice to the other.
We denote this by using the name of the DBMS. For example, if MariaDB was present in the third slice of a given project,
and it also appears in the fourth slide, we add MariaBD.

• The existence of an Out flag indicates the DBMS was removed from the project in that slice. For example, if Redis was
present in the fifth slice of a given project but was not found in the sixth slice, we add RedisOut.

Figure 2 shows an activity diagram illustrating how we identify the DBMSs in a given project slice, considering the DBMSs
added, kept, and removed, as explained above. We emphasize that this activity diagram describes only part of the process
implemented by our script that generates the data entry file required by SPMF. Using Zendesk’s Maxwell project as an example,
we came up with the following notation to represent how the established flags contributed to identifying the DBMS:

MySQLInit → MySQL → MySQL → MySQL → MySQL → MySQL → RedisIn MySQL → Redis MySQL → Redis MySQL → RedisOut MySQL

In this notation, slices are separated by an arrow (→). In the above example, MySQL was present in the first slice (MySQLInit)
and was kept as the only DBMS until the sixth slice (MySQL). In the seventh slice, Redis appears for the first time (RedisIn),
and MySQL is kept (MySQL). In the eighth and ninth slices, Redis and MySQL are still present (Redis MySQL). Finally, in
the last slice, Redis was removed (RedisOut) while MySQL was kept (MySQL).

For our analysis, we also needed to count the occurrences of a given DBMS in a sequence, allowing for both the validation
of the mined results and the execution of additional analyses. For that, we have developed a tool called Pattern Counter ¶.

¶ https://patterncounter.readthedocs.io/en/latest/
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F I G U R E 2 Activity Diagram for identifying the DBMSs in a given project slice

Pattern Counter allows counting patterns in a sequence of items using rules and variables. The tool uses the same input file we
generated to work with the SPMF library. In addition, Pattern Counter provides filtering capabilities, allowing data extraction
through various combinations of parameters.

2.5 Replacement Patterns

When examining two DBMSs X and Y , we can identify a potential replacement pattern. This replacement occurs when DBMS
X exists in a specific slice, then in a subsequent slice, X does not exist, but instead, DBMS Y appears, and Y is kept in a
subsequent slice. We can formalize this replacement using the following rule:

X → YInXOut → Y

where X and Y represent the DBMS, the suffix In represents the DBMS was added, the Out suffix represents the DBMS was
removed, the absence of In and Out represents the permanence of the DBMS, and → separates the slices.

For instance, consider the sequential pattern PostgreSQL → OracleInPostgreSQLOut → Oracle. This notation signifies that
PostgreSQL was present in a particular slice, and in a subsequent slice, PostgreSQL was replaced by Oracle, which was kept in
a following slice.

Another way to perceive a DBMS replacement is when DBMS X exists in a specific slice, then in a subsequent slice, DBMS
Y enters, and in a later slice, DBMS X is removed, while DBMS Y is kept. The following equation formalizes this situation:

X → YIn → XOutY

For example, consider the sequence Oracle → PostgreSQLIn → OracleOutPostgreSQL. This indicates that Oracle was
present in a particular slice, PostgreSQL entered in a subsequent slice, and in a following slice, Oracle was removed while
PostgreSQL remained. This formulation allows us to capture and analyze the replacement patterns among DBMSs over time.
By identifying such replacements, we gain insights into the dynamics of DBMSs’ usage and their transitions within the dataset.

3 RESULTS AND DISCUSSION

In this section, we report the results according to our research questions.
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F I G U R E 3 Most Popular DBMSs in Java projects

3.1 What are the most commonly used DBMSs during the projects’ life cycle? (RQ1)

In this question, we identify the most adopted DBMSs throughout the projects’ history, considering the established heuristics.
It is important to highlight that we consider that a project adopted a DBMS if it appeared in any segment of the project’s history,
even if it was no longer present in the final segment.

Figure 3 presents the most popular DBMSs in the projects of our corpus, considering the historical analysis performed across
all 10 slices of each project. As described in Section 2.3, we applied 53 sets of heuristics for the 50 surveyed DBMSs since
some are multi-model. We found evidence of the adoption of 46 DBMSs in 197 of the 317 projects in our corpus. The top
positions are occupied by MySQL, which appears in 107 projects, followed by a tie between H2 and PostgreSQL, appearing in
74 projects, then Oracle in 66 projects, Redis in 61 projects, and Ehcache in 57 projects. Thus, MySQL was present in about
54% of projects that use a DBMS, H2, and PostgreSQL occurred in about 37%, Oracle in about 33%, Redis in about 31%, and
Ehcache in about 29% of these projects. As can be noted, the relational (SQL) model is the most commonly used (78.17% of
the projects use a relational DBMS). Still, the non-relational (NoSQL) model is also present. We also found evidence of Ignite
being adopted by 2.17% of the projects in both categories: one project uses it as a relational database, and three projects use it
as a non-relational database.

We also observed that MySQL, PostgreSQL, and Oracle are among the most used DBMSs in the DB-Engines ranking6, even
considering the different contexts between this ranking and our research. On the other hand, H2 (Hypersonic 2) is our second
most adopted DBMS and occupies the 47th position in this ranking. It might have happened due to the simplicity of integration
of H2 in Java projects #.

# (http://www.h2database.com/html/history.html)
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F I G U R E 4 Venn Diagram to represent the adoption of data models in projects

Given the 46 DBMSs found, we observed that the adopted DBMSs are distributed as follows: 22 relational DBMSs (47.82%),
23 non-relational DBMSs (50.00%), and one multi-model DBMS (Ignite – 2.17%). This information reinforces the increasing
trend of non-relational model adoption among Java projects. According to Davoudian et. al15, non-relational DBMSs are not
designed to replace relational DBMSs but as a solution to the gaps regarding the need for scalability and availability that certain
distributed applications require. Another fact we identified in our research that corroborates the authors’ statement is presented
in the Venn Diagram shown in Figure 4, which shows the number of projects classified by the type of data model they adopt.

Out of the 197 projects in which we found evidence of the use of DBMSs, 56 adopt only the relational model, and 43 adopt
only the non-relational model. However, we found an intersection where both models are adopted (98 projects). Thus, 49.75%
of these projects adopt both data models, while 50.25% use only one of the models. The understanding that both models can
complement each other is reflected in about half of the projects that use a DBMS in our corpus.

Out of the 50 DBMS we searched for in our corpus, we did not find evidence of usage of 4 of them: FileMaker, RiakKV,
Marklogic, and Virtuoso. Marklogic and Virtuoso are multi-model, while FileMaker is a relational DBMS, and RiakKV is a
key-value DBMS (non-relational). We suspect that the absence of Marklogic, RiakKV, and Virtuoso in our corpus is related
to their low popularity. In fact, in the DB-Engines ranking6, they appear at the 52nd, 69th, and 75th positions, respectively∥.
Regarding the absence of FileMaker, we have not identified any explanation from the available data, as it is a well-established
Database Management System, holding the 23rd position in the aforementioned ranking.

Another interesting aspect concerns analyzing the characterization of the project domains (see Section 2.1) regarding adopt-
ing relational, non-relational, or both models. Figure 5 presents the analysis grouped by project domain and data model. The
intention of this analysis was to discover which data models are mostly used in the various project domains of our corpus. We
found 21 projects from the infrastructure management domain using Multi-Models, whereas only 7 projects used relational
models and 4 used non-relational models. The infrastructure management domain showed the highest adoption of multi-model
DBMSs. As examples, the Apache’s Dolphinscheduler project showed adoption of MySQL, H2, PostgreSQL, Oracle, MS
SQL Server, IBM DB2, Hive, ClickHouse, Redis, Ehcache, and HBase; the Netflix’s Conductor project showed adoption of
MySQL, PostgreSQL, Redis, Elasticsearch, and Cassandra; and the Apache’s Beam project showed adoption of MySQL, Post-
greSQL, Hive, Google BigQuery, ClickHouse, Snowflake, Redis, Ehcache, MongoDB, Elasticsearch, Google Cloud Data Store,
Hazelcast, HBase, Cassandra, DynamoDB, Solr, and InfluxDB.

We also observed that multi-model DBMSs surpass relational and non-relational models in the Software development, Pro-
gram analysis, Security, HPC, Monitoring, Automation, File management, and Collaboration domains. Thus, out of the 21
domains in our corpus, the usage of multi-model DBMSs is predominant in 9, corresponding to almost 43%. This discovery
reinforces the trend of using more than one distinct data model and that they can complement each other3. For instance, all
projects from the ERP, Cryptocurrency, and E-commerce domains use only multi-model DBMSs. We also observed that some
specific domains use only one of the models. In this sense, projects from the SCM and Personal Management domains only
use non-relational DBMSs, and projects from the Operating system domain only use relational models.

∥ Note that these positions refer to the BD-Engines ranking on February 2022, when we selected the DBMS that we would use in our research.
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F I G U R E 5 Distribution of DBMS models by project domains

RQ1: What are the most commonly used DBMSs during the projects’ life cycle?
Answer: MySQL, H2, and PostgreSQL are among the three most used relational DBMSs, while Redis and Cassan-
dra are the most used non-relational DBMSs. Approximately half of the projects (49.75%) adopted both relational
and non-relational databases. This co-ocurrance of models was especially prevalent in infrastructure management
projects.
Implications: Certain DBMSs have consistently maintained a high level of adoption, making them strong
candidates to consider when choosing a DBMS.

3.2 Which DBMSs are often used together? (RQ2)

With this question, we explored whether the DBMSs were used simultaneously within the same project and how often this
occurred. For this analysis, we adopted association rules to extract patterns that indicate the existence of concomitant use of
DBMSs in our corpus. To perform our historical analysis, we made a snapshot from the beginning, middle, and end of the
projects’ life cycles and compared the results obtained in these three moments (slices). We mined the three slices by applying
the Apriori algorithm and generated a heat map to represent the correlations between the DBMS in each slice, as is shown in
Figures 6, 7, and 8. We used a minimum frequency of five projects (minimum support of 5), which means we only considered
the correlations that occurred in at least five projects to characterize a pattern. Note that the upper diagonals of the heat maps
for each slice were eliminated due to redundancy. In addition, the blank cells in the lower diagonal have a frequency below five
projects.

Figure 6 presents an overview of the joint usage of 11 DBMSs early in the projects’ life cycle (corresponding to the slice
that cont first 10% commits as explained in Section2.2). Among the most used DBMSs, we find PostgreSQL and MySQL
in 27 projects, Oracle and MySQL in 20, and H2 and MySQL in 19. Notice that these are the same DBMSs most used
individually, as we discussed in Section 3.1. This demonstrates that certain DBMS combinations are preferred choices for
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F I G U R E 6 Correlation of the most frequent DBMSs at the beginning of the projects’ life cycle

developers and are widely adopted in various projects. Several factors can be attributed to the popularity of these combinations,
such as complementary features provided by these DBMSs, performance characteristics, integration facility, and even developer
familiarity. Thus, using these DBMSs together can provide more accurate solutions satisfying diverse requirements in different
projects.

Out of the 11 DBMSs found, 9 are relational, and only 2 are non-relational. Consequently, the most frequent combinations
involved relational DBMSs. Examples of combining relational and non-relational DBMSs are Ehcache and MySQL, which
appear in 10 projects, and MongoDB and MySQL, in 6 projects. No combinations among non-relational DBMSs were observed
in the projects, demonstrating that in the initial phase, the combinations between relational DBMSs are more commonly used
than non-relational DBMSs. A possible explanation is the age of the projects and the fact that non-relational DBMSs has gained
popularity over time.

Halfway through the life cycle of the projects, the amount of combined use of DBMSs more than doubled when compared
to the life cycle’s beginning. It went from 11 to 25 DBMSs, as shown in Figure 7. This means that the projects employed
more DBMSs together as they mature. This increase may be related to the more complex database needs arising as projects
undergo significant changes during their life cycle. Despite the increase in the variety of DBMS combinations, the most frequent
combinations remain consistent with those observed at the projects’ beginning. PostgreSQL and MySQL, H2 and MySQL, and
Oracle and MySQL remain the three most used combinations, significantly increasing to 44, 36, and 35 projects, respectively.
We also highlight the increase in the frequency of combinations involving MS SQL Server and the emergence of combinations
involving MariaDB and Redis. These may reflect the search for more customized solutions to the projects’ database needs as
they mature.

Moreover, the number of non-relational DBMSs increased to 10, i.e., five times more than the number found at the projects’
beginning, indicating that these DBMSs are gaining force as complementary alternatives to relational DBMSs in various project
scenarios. We noticed new usage combinations involving these DBMSs, such as Redis and MySQL in 20 projects, MongoDB
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F I G U R E 7 Correlation of the most frequent DBMSs in the middle of the projects’ life cycle

and PostgreSQL in 11 projects, and Elasticsearch and Redis in 10 projects. In addition, the frequency of combinations involving
Ehcache and MongoDB increased compared to the initial phase, Ehcache with MySQL in 19 and MongoDB with MySQL in 15
projects. Thus, we observed more combinations involving the two models and the emergence of combinations of non-relational
DBMSs. However, the combinations containing only relational DBMSs remain predominant in this phase.

According to Figure 8, the number of combined DBMSs increases to 29 at the end of the project life cycle, showing moderate
growth compared to the 25 DBMSs found at the middle of the project life cycle. However, the growth rate from the beginning
(11 DBMSs) to the middle (25 DBMSs) is significantly higher than that from the middle to the end. This demonstrates that until
the middle, there is a wider exploration that meets the projects’ demands. However, towards the end of the project life cycle,
the number of DBMS combinations stabilizes, perhaps due to identifying more efficient and effective DBMS combinations
leading to a more controlled growth.

MySQL, PostgreSQL, H2, and Oracle remain among the most frequent combinations throughout the projects’ life cycle.
Although Oracle lost its position to Redis, the combinations involving these DBMSs remain popular choices in various projects.
Interestingly, we could observe an increase in the number of projects adopting Redis together with other DBMS over time. Still,
we could also observe a decrease in the number of DBMSs used with Redis over time. The Redis combinations became more
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F I G U R E 8 Correlation of the most frequent DBMSs at the end of the projects’ life cycle

frequent among projects, indicating its increasing popularity in joint usage at the end of the projects life cycle. According to
Cattel2, Redis is a single-node key-value storage DBMS suitable for applications that search objects by a single attribute. Thus,
this increase in popularity may mean it is being used for simple data manipulation. Nevertheless, the amount of DBMSs used
in combination with Redis in the middle of the projects (MySQL, PostgreSQL, H2, Oracle, MS SQL Server, and MariaDB) has
reduced by half at the end of the projects (MySQL, PostgreSQL, H2). This decline may be related to projects replacing several
relational DBMS choices with fewer ones instead of necessarily meaning that Redis had influenced that reduction.

The combinations involving non-relational DBMSs—such as Ehcache, MongoDB, Elasticsearch, Cassandra, and HBase—
become more frequent from the middle to the end of the analyzed project histories. This growth is reflected in combinations
among the two models (for instance, Ehcache with MySQL in 29, MongoDB with MySQL in 20 projects, Elasticsearch with
PostgreSQL in 15 projects) and combinations containing only non-relational DBMSs, such as Cassandra with Redis in 12
projects, and HBase with MongoDB in 9 projects. This reaffirms an increasing trend of joint use of non-relational DBMSs in
the projects’ advanced stages.

Overall, these analyses indicate that the choice of DBMS combinations evolves over the projects’ life cycle, with certain
DBMSs gaining popularity while others seeing fluctuations in their usage patterns. Non-relational DBMSs, in particular, be-
came more prevalent in combinations as projects progress, possibly due to their advantages in handling certain data types and
workloads.
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T A B L E 4 Top 10 rules with highest lifts in the First Slice of the project life cycle

A B Sup(A) Sup(B) Sup(A→B) Conf(A→B) Conf(B→A) Diff Lift(A→B)
SAP Adaptive Server IBM DB2 7 9 5 0.71 0.56 0.16 15.63
IBM DB2 Oracle 9 25 9 1.00 0.36 0.64 7.88
MS SQL Server SQLite 8 16 5 0.63 0.31 0.31 7.70
MS SQL Server Oracle 8 25 7 0.88 0.28 0.60 6.90
SAP Adaptive Server Oracle 7 25 6 0.86 0.24 0.62 6.75
MS Access Oracle 6 25 5 0.83 0.20 0.63 6.57
MS Access H2 6 31 5 0.83 0.16 0.67 5.30
IBM DB2 PostgreSQL 9 36 8 0.89 0.22 0.67 4.86
MS SQL Server PostgreSQL 8 36 7 0.88 0.19 0.68 4.79
MS Access PostgreSQL 6 36 5 0.83 0.14 0.69 4.56

T A B L E 5 Top 10 rules with highest lifts in the Fifth Slice of the project life cycle

A B Sup(A) Sup(B) Sup(A→B) Conf(A→B) Conf(B→A) Diff Lift(A→B)
Firebird Informix 5 6 5 1.00 0.83 0.17 32.83
Firebird SAP Adaptive Server 5 12 5 1.00 0.42 0.58 16.42
SapHana SAP Adaptive Server 5 12 5 1.00 0.42 0.58 16.42
Informix SAP Adaptive Server 6 12 5 0.83 0.42 0.42 13.68
Solr Cassandra 7 11 5 0.71 0.45 0.26 12.79
Solr HBase 7 13 5 0.71 0.38 0.33 10.82
SapHana IBM DB2 5 19 5 1.00 0.26 0.74 10.37
Firebird IBM DB2 5 19 5 1.00 0.26 0.74 10.37
Hive HBase 9 13 6 0.67 0.46 0.21 10.10
Firebird SQLite 5 22 5 1.00 0.23 0.77 8.95
SapHana SQLite 5 22 5 1.00 0.23 0.77 8.95

We further analyzed whether using a particular DBMS increases the chance of using another one. To do this, we filtered the
rules with the highest lift values for the three moments in the project history, as shown in Tables 4, 5, and 6. In Table 4, we
find the rule Sap Adaptive Server → IBM DB2 with a lift of 15.63 in the first slice, the highest lift found early in the project
history. This means that using SAP Adaptive Server increases by 15.63 times the chance of using IBM DB2 and vice versa.
Besides, the rule’s confidence is 71% (Conf(A→B) = 0.71) when we have Sap Adaptive Server as antecedent and IBM DB2
as consequent, and about 56% (Conf(B→A) = 0.56) the other way around. The slight difference of 16% (Diff = 0.16) between
the confidences shows that both are close, so this rule has no majority direction. Thus, when SAP Adaptive Server is used,
there is a high chance of using IBM DB2 and vice versa. The next rule with a lift of 7.88 is IBM DB2 → Oracle with 100%
confidence (Conf(A→B) = 1.00) in this direction and 36% (Conf(B→A) in the opposite direction. This 64% difference (Diff
= 0.64) between the confidence measures indicates that using IBM DB2 leads to using Oracle, but not the other way around.
Thus, in 100% of the cases where IBM DB2 occurs, Oracle also occurs. Furthermore, it can be seen that having IBM DB2
increases the occurrence of Oracle by 7.88 times.

We noticed that during the middle of the projects’ life cycle, the lift values of the top 10 rules (Table 5) nearly doubled
when compared to the lift values of the top 10 rules (Table 4) identified at the beginning of the project’s life. The increased lift
suggests that specific DBMS correlations become stronger, indicating possible dependencies or synergies between them as the
projects mature. For example, the rule Firebird → Informix has a lift of 32.83 and 100% confidence (Conf(A→B) = 1.00) in
this direction, and 83% confidence (Conf(B→A) = 0.83) in the opposite direction. Due to the small difference between the two
confidences (Diff = 0.17), we cannot perceive a majority direction in this rule, only a balanced dependency in both directions.
This indicates a strong correlation between both DBMSs, meaning that when Firebird is chosen as a database, Informix will
likely be used in the same project, and the reciprocal is true.

Both rules, Firebird → Sap Adaptive Server and Sap Hana → Sap Adaptive Server present a lift value of 16.42. This indicates
that adopting Firebird or Sap Hana increases the Sap Adaptive Server adoption by 16.42 times and vice-versa. Additionally,
when Sap Adaptive Server is in the consequent (B), the confidence is 100% (Conf(A→B) = 1.00), while it is 42% (Conf(B→A)
= 0.42) when it is in the antecedent position (A). The significant difference (Diff = 0.58) between the confidences of these rules
indicates a strong dependency. In other words, the adoption of Firebird or Sap Hana is highly influenced by Sap Adaptive Server
adoption since in 5 of the 12 times it occurred, Firebird or Sap Hana occurred. Still, every time Firebird or Sap Hana occurred,
Sap Adaptive Server also occurred. Moreover, a few rules—Firebird → IBM DB2, DB2 SapHana → IBM DB2, Firebird →
SQLite, and SapHana → SQLite rules—although with lower lifts, present significant differences (Diff = 0.74; 0.74; 0.77; 0.77,



16 Maximino et. al.

T A B L E 6 Top 10 rules with highest lifts in the last slice of the projects’ life cycle

A B Sup(A) Sup(B) Sup(A→B) Conf(A→B) Conf(B→A) Diff Lift(A→B)
Snowflake Amazon Redshift 6 6 5 0.83 0.83 0.00 27.36
Snowflake Google BigQuery 9 6 5 0.83 0.56 0.28 18.24
Firebird Informix 9 8 6 0.75 0.67 0.08 16.42
Informix SAP Adaptive Server 9 12 7 0.78 0.58 0.19 12.77
Firebird SAP Adaptive Server 8 12 6 0.75 0.50 0.25 12.31
Google BigQuery Hive 9 11 5 0.56 0.45 0.10 9.95
SapHana IBM DB2 5 20 5 1.00 0.25 0.75 9.85
Firebird IBM DB2 8 20 8 1.00 0.40 0.60 9.85
Hive HBase 11 15 7 0.64 0.47 0.17 8.36
Amazon Redshift IBM DB2 6 20 5 0.83 0.25 0.58 8.21
Snowflake IBM DB2 6 20 5 0.83 0.25 0.58 8.21
SAP Adaptive Server IBM DB2 12 20 10 0.83 0.50 0.33 8.21

respectively) in even greater confidence values than the previous ones, demonstrating that these DBMSs also have a strong
dependency relationship. Again, Firebird and Sap Hana are only adopted when other DBMSs are adopted. This indicates that
Firebird and Sap Hana are not typically the initial choices for projects. Instead, they are combined with IBM DB2, SQLite,
and Sap Adaptive Server, suggesting Firebird and Sap Hana are suitable add-ons for these DBMSs, leading to their combined
adoption.

Finally, in Table 6, we present the top 10 rules with the highest lifts found at the end of the projects’ life cycle. We observe
that lifts remain high towards the end of the projects’ life cycles, demonstrating strong co-occurrences in adopting different
DBMSs. Another relevant aspect is the null difference (Diff = 0.00) to confidence in both directions of the first rule, Snowflake
→ Amazon Redshift, which makes it difficult to identify the dependency direction. In 83% (Conf(A→B) = 0.83) of the cases
where Snowflake occurred, Amazon Redshift also occurred, and vice versa. Besides, Snowflake increases the usage of Amazon
Redshift about 27 times and vice versa. Therefore, when one of these DBMSs is chosen, it highly influences the choice of the
other. In contrast, we have the Snowflake → IBM DB2 rule, with a significant difference (Diff = 0.58) between the confidences,
indicating a strong dependency of Snowflake on IBM DB2. This means that in 5 out of 20 of the cases where IBM DB2
was adopted, Snowflake was also adopted, and in the majority of cases (5 out of 6) where Snowflake was adopted, IBM DB2
was adopted. The DBMS adoption increases the adoption of the other by about 8 times. Snowflake also appears to be used
as a complementary DBMS, as it is always combined with other DBMSs, as already mentioned. According to Snowflake’s
documentation ∗∗, it is a relational DBMS that combines a completely new SQL query engine with an innovative architecture
natively designed for the cloud. The IBM documentation †† also mentions a data integration tool, DataStage, which allow it to
build reliable data pipelines, orchestrate data in distributed environments and move and transform data between cloud sources
and data warehouses, with a Snowflake connector, among other things. Possibly, because of these features, it has become a
suitable complement for some mature projects that needed to extend their support to cloud storage without compromising the
properties of the relational model.

We also noted a fluctuation in the lift values and confidence measures of some rules throughout the different stages of the
project history. For example, the rule SAP Adaptive Server → IBM DB2 appears with a lift of 15.63 and confidences of 71%
(Conf(A→B) = 0.71) and 56% (Conf(B→A) = 0.56) at the beginning of the project history. In the middle, the lift decreases
to 8.64, the A→B confidence increases to 83%, and the B→A confidence decreases to 53%. In the end, the lift decreases
slightly to 8.21, A→B’s confidence remains at 83%, but B→A’s confidence decreases to 50%. Similarly, the rule Firebird →
Informix, discovered in the middle of the project history, initially exhibits a high lift of 32.83 with 100% (Conf(A→B) = 1)
and 83% (Conf(B→A) = 0.83) confidences, but the lift decreases by half, 16.42, with confidences 75% (Conf(A→B) = 0.75)
and 67%(Conf(B→A) = 0.83) at the end. This fluctuation in lift values and confidence measures indicates that the associations
and dependencies between certain DBMS combinations are not static and may vary during the project life cycles. Various
factors might have influenced these variations, such as changes in project requirements, technological advancements, or shifts
in the development team’s preferences. Despite the decrease in the initial lift values, the highlighted rules continue to represent
significant associations between the aforementioned DBMS combinations. Thus, although the strength of the relationships may
change, there is still some level of dependency or association between certain DBMSs that may become more or less prevalent
as projects mature.

∗∗ https://docs.snowflake.com/en/user-guide/intro-key-concepts
†† https://dataplatform.cloud.ibm.com/docs/content/wsj/getting-started/get-started-datastage-snowflake.html?context=cpdaas&audience=wdp
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T A B L E 7 Similarities between DBMSs of the same vendors
Slice A B Sup(A) Sup(B) Sup(A→B) Conf(A→B) Conf(B→A) Diff Lift(A→B)
Fifth MariaDB MySQL 23 81 21 0.91 0.26 0.65 2.22
Last MariaDB MySQL 36 87 32 0.89 0.37 0.52 2.01
Last PostGIS PostgreSQL 6 61 6 1.00 0.10 0.90 3.23

We also observe that, in the early stage of the projects’ cycle, the usage of a relational DBMS combined with another
relational DBMS was more frequent. As observed in Table 4, they were contained in the 10 rules that are relational. However,
this situation differs from the middle to the end of the project life cycle because we find non-relational DBMSs in the rules
highlighted in Tables 5 and 6. However, it is important to consider that even among primarily relational DBMSs, there might
have been cases where a secondary model of one of the DBMSs is non-relational. For instance, Sap Adaptive Server and IBM
DB2 are primarily relational but support non-relational data models. Sap Adaptive Server also supports the Spatial Store data
types, while IBM DB2 supports the Document Store, RDF Store, and Spatial Store types. This may suggest that the joint
utilization of these DBMSs might be driven by the need for a specific data type not supported by the other DBMS, or to
complement certain capabilities that one of the DBMSs lacks. Additionally, the compatibility between the two DBMSs, both
developed in C/C++, might have facilitated their combined usage.

In our analysis (Table 7), we have observed the occurrence of rules where DBMSs from the same vendors are used together.
For instance, Maria DB and MySQL co-occur from the middle to the end of the projects’ life cycle. Similarly, in the end, we
noticed the co-occurrence of PostGIS and PostgreSQL. Although we address the evidence of MariaDB and MySQL usage in-
dividually in our study, we point out that MariaDB emerged as a fork of MySQL ‡‡ to maintain high fidelity and acceptance.
However, despite the current versions of MariaDB having additional functionality compared to MySQL, there remains a com-
mitment to maintaining compatibility between the two DBMSs §§. For this reason, the co-occurrence between the two DBMSs
is expected.

When analyzing the differences (Diff =0.65, 0.52) in confidence between the two rules involving MariaDB and MySQL
in the fifth and last slice, respectively, a strong dependence of MariaDB on MySQL is observed. At the projects’ mid-life
cycle (fifth slice), in 91% (Conf(A→B)= 0.91) of the cases where MariaDB occurred, MySQL also occurred, and in only 21%
(Conf(B→A)= 0.21) of the cases where MySQL occurred, MariaDB also occurred. Furthermore, MariaDB’s usage increased
MySQL’s usage by 2.22 times. By the end of the life cycle, the values vary slightly: the lift and A→B confidence decreases,
respectively, to 2.01 and 89% (Conf(A→B)), but the B→A confidence increases to 37%(Conf(B→A) = 0.37). The fluctuation
in these values indicates that the dependency loses a little strength but still remains significant. This suggests that projects tend
to use MariaDB and MySQL together at the end of their life cycle.

Another expected co-occurrence between DBMSs happens at the end of the project life cycle: PostGIS and PostgreSQL.
Since PostGIS is a spatial DBMS extension of PostgreSQL, it transforms PostgreSQL into a spatial DBMS by adding support
for three features: spatial types, spatial indexes, and spatial functions¶¶. The rule with PostGIS → PostgreSQL, whose confi-
dences are 100%(Conf(A→B) = 1.00) and 10%(Conf(B→A) = 0.10), also demonstrates a strong dependency of PostGIS on
PostgreSQL. Therefore, in 100% of the cases where PostGIS was used, PostgreSQL was also used, while in only 10% of cases
where PostgreSQL was used, PostGIS was also used. Furthermore, using PostGIS increases the chance of using PostgreSQL
by 3.23 times. Considering that PostGIS depends on PostgreSQL to work, this 100% confidence is expected. This informa-
tion suggests that the projects that require spatial database functionality will probably adopt PostGIS and PostgreSQL together,
reinforcing the idea that the co-occurrence between DBMSs is intended to meet the specific demands of the projects.

‡‡ https://mariadb.org/en/
§§ https://mariadb.com/kb/en/mariadb-vs-mysql-compatibility/
¶¶ https://postgis.net/
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RQ2: Which DBMSs are often used together?
Answer: We found co-occurrences involving 11 DBMSs at the project beginning, prevailing the combinations
among relational DBMSs: PostgreSQL and MySQL, Oracle and MySQL, and H2 and MySQL. In the middle of
the project life cycle, the number of DBMSs that appear in co-occurrence increases to 25. Ten of them include
non-relational DMBSs, such as Redis and MySQL, MongoDB and PostgreSQL, and Elasticsearch and Redis. The
combined usage of PostgreSQL and MySQL, Oracle and MySQL, H2 and MySQL get even more popular in the
middle of the life cycle. At the end of the project life cycle, the number of DBMSs used in combination with
others increased to 29 DBMSs, with MySQL, PostgreSQL, H2, and Oracle among the most popular relational
ones. However, Oracle lost its position to Redis. Our analysis also revealed that using some DBMSs increases
the chance of adopting another in parallel. This is the case for SapAdaptiveServer and IBMDB2, IBM DB2 and
Oracle at the beginning of the project life cycle, Firebird and Informix in the middle, and Snowflake and Amazon
Redshift towards the project life cycle end.
Implications: The results offer a valuable understanding of prevalent combinations and may help to perceive
potential synergies or challenges in utilizing DBMSs together.

3.3 Which DBMSs are frequently replaced by others? (RQ3)

In this question, we look for the existence of substitutions between DBMSs and quantify the frequency they occur throughout
the projects’ life cycle.

Figure 9 presents the frequency of DBMSs being kept or removed across the history of the projects. MySQL was kept
throughout the life cycle of 76 projects but removed in 31 projects. This means that about 39% of the projects in which we
found that a DBMS was used kept using MySQL, and it was removed in about 16%. The removals happened for the majority
of DBMSs surveyed, except for ClickHouse (7 projects), Etcd (5 projects), Realm (5 projects), MicrosoftAzureCosmosDB (4
projects), Ignite_NoSQL (3 projects), Netezza (3 projects), OrientDB (3 projects), CouchDB (2 projects), Impala (1 project),
MicrosoftAzureTavleStorage (1 project), and Ignite_SQL (1 project). As one of our goals was to understand the frequency of
DBMS replacements, the significant amount of removals we found had created the expectation that substitutions are frequent.
To investigate this, we utilized sequential patterns mining14. Each item set in the sequence corresponds to ten moments (slices)
of each of the 197 projects’ history. We thus have 197 sequences in total that were coded according to the patterns shown in
Section 2.5. After generating the patterns, we filtered out those that met the established patterns to characterize the replacements,
as discussed in Section 2.5.

Table 8 shows 20 sequential patterns demonstrating DBMS replacements, of which we highlight: PostgreSQL →
MariaDBInPostgreSQLOut → MariaDB with support = 3, indicating that three projects used PostgreSQL, in a later slice
they started using MariaDB and stopped using PostgreSQL, maintaining the MariaDB use in a later slice. The pattern
Oracle → MySQLIn → OracleOutMySQL with support = 3 indicates that three projects used Oracle; in a later slice, they started
using MySQL, stopped using Oracle, and kept using MySQL in a later slice. These two examples present replacement patterns
whose changes occur in different ways. While in the first example, MariaDB started at the same time that PostgreSQL left, in
the second example, MySQL enters at any moment, and at a later time when Oracle leaves, MySQL is maintained. Although
the patterns confirmed the replacement’s existence, they do not indicate that a specific substitution occurred frequently—since
each pattern demonstrates that DBMSs were replaced in at least 2 and at most 3 projects (Support = {2.3}).

Furthermore, we found 12 replacement patterns among relational DBMSs across 26 projects, 2 patterns of replacements
among non-relational DBMSs across 4 projects, and 6 patterns of replacements involving both models across 12 projects. This
indicates that in 70% of the cases, the replacements occur between DBMSs that have the same data model. This may mean
that data integrity is the most relevant criterion when choosing a replacement. Replacements among non-relational DBMSs
occur in only 10% of the cases, such as HBase → HBaseOutCassandraIn → Cassandra. This indicates that the substitution
between non-relational DBMSs is rarer, possibly because they provide different data types (graph, key-value, document, etc.),
so replacing them is not an easy task. Finally, in 30% of the cases, the replacements occur among distinct data models, as
MSSQLServer → RedisInMSSQLServerrOut → Redis. This may occur due to some new desirable property that the DBMS in
use could not provide, as reported by Gessert et al. 1.
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F I G U R E 9 Distribution of DBMS permanences and removals in the projects

As depicted in Table 8, it is possible to notice that some DBMSs are replaced by several others, so we analyzed the count
of all that were replaced (Occurrences per DBMS replaced8), regardless of the DBMS that replaced them. PostgreSQL was
replaced 11 times in 8 projects, being replaced 4 times by MySQL. In the opposite direction, PostgreSQL replaced MySQL, we
did not find a pattern within the defined support limit. This indicates that PostgreSQL tends to be more replaced than MySQL.
MySQL was removed 4 times in 4 projects. In 2 of them, it was replaced by H2, and in 2 projects by Redis. H2 was replaced by
MySQL 2 times in 2 projects, demonstrating that replacements may occur in both directions. Oracle is the second most replaced
DBMS (9 times in 6 projects), 3 times replaced by MySQL, with no replacements in the opposite direction. Next, we have
HBase being replaced 4 times in 4 projects, 2 times replaced by Cassandra, also with no replacements in the opposite direction.
The remaining DBMSs were replaced only 2 times: Ehcache, GoogleCloudDataStore, MS SQL Server, Sorl, and SQLite. Given
these results and the expectations generated by the significant amount of removals 9, we observe that substitutions between
DBMSs are not frequent but do occur.

Table 9 presents a more comprehensive analysis by counting all replacements found. This analysis aimed to investigate
the relevance of DBMS replacements, considering the frequency at which a particular DBMS was replaced, regardless of
the substituting DBMS. PostgreSQL totalizes 25 replacements across 11 projects. Oracle sums up 19 replacements across 8
projects. Notably, HBase, MySQL, EhCache, GoogleCloudDataStore, SQLite, MS SQL Server, H2, and Sorl exceeded three
times or more the number of the replacements shown in Table 8. This occurs because they are frequently replaced by another
DBMS only once in a single project, resulting in support value = 1. Since the minimum threshold for a pattern to appear in
Table 8 is set higher than 1, such occurrences are not included there. Thus, when we analyze only which DBMSs were replaced,
without considering by which other DBMS they were replaced, the numbers we get are possibly higher than those presented in
Table 8. In total, we observed 129 DBMSs being replaced.
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T A B L E 8 DBMS replacement patterns

Pattern Support Occurrences per DBMS
Ehcache → RedisIn EhcacheOut → Redis 2 2
GoogleCloudDatastore → MySQLIn → GoogleCloudDatastoreOut MySQL 2 2
H2 → MariaDBIn H2Out → MariaDB 2
H2 → MySQLIn → H2Out MySQL 2 4
HBase → MariaDBIn → MariaDB HBaseOut 2
HBase → HBaseOut CassandraIn → Cassandra 2 4
MS_SQL_Server → RedisIn MS_SQL_ServerOut → Redis 2 2
MySQL → H2In → H2 MySQLOut 2
MySQL → RedisIn MySQLOut → Redis 2 4
Oracle → MariaDBIn → MariaDB OracleOut 2
Oracle → MySQLIn → OracleOut MySQL 3
Oracle → PostgreSQLIn → OracleOut PostgreSQL 2 9
Oracle → SQLiteIn → OracleOut SQLite 2
PostgreSQL → CassandraIn → PostgreSQLOut Cassandra 2
PostgreSQL → MariaDBIn PostgreSQLOut → MariaDB 3
PostgreSQL → MySQLIn → PostgreSQLOut MySQL 2 11
PostgreSQL → OracleIn PostgreSQLOut → Oracle 2
PostgreSQL → PostgreSQLOut MySQLIn → MySQL 2
Solr → MariaDBIn → MariaDB SolrOut 2 2
SQLite → H2In → H2 SQLiteOut 2 2

T A B L E 9 Occurrences of DBMSs replacements and count of projects where other DBMSs replaced them

DBMS Occurrences Projects
PostgreSQL 25 11
Oracle 19 8
HBase 16 7
MySQL 15 7
Ehcache 11 9
GoogleCloudDataStore 11 6
SQLite 10 5
MS SQL Server 9 4
H2 8 5
Solr 5 3

In summary, we have identified that PostgreSQL is the DBMS mostly susceptible to replacements during the projects’ history.
Additionally, we observed that all replaced DBMSs have experienced more than one replacement in certain projects. This means
that when a DBMS is removed, it may be replaced by more than one alternative DBMS, either in the same slice or in later
slices of the project history. For example, in the Airsonic project, we discovered three distinct patterns of Oracle substitutions
for three different DBMSs: PostgreSQL, MySQL, and MariaDB.

Conversely, Table 10 presents the DBMSs that replaced others. This analysis aimed to find out which DBMS is mostly used
as a replacement, regardless of which DBMS it replaced. Redis replaced other DBMSs 17 times across 9 projects, MySQL
and MariaDB replaced other DBMSs 15 times across 10 and 8 projects, respectively. H2, Cassandra, and HBase replaced other
DBMSs 12, 11, and 7 times, respectively. Some DBMSs, on the other hand, have replaced other DBMSs, such as Amazon
Redshift, Couchbase, Ehcache, Realm, Solr, and Teradata, among others. From this viewpoint, we discovered the DBMS most
chosen to replace others with is Redis. The tendency for non-relational DBMSs to outperform relational DBMSs as a substitute
is also relevant. Figures 10 and 11, extracted from the DB-Engines website, presents this trend by showing the evolution in the
adoption of relational (10) and non-relational (11) DBMSs from 2012 to 2023 (note the logaritmic scale). Although a certain
stability is observed in using relational DBMSs, the growth of non-relational DBMSs is notable. This trend reinforces some
of Cattel’s predictions2 that NoSQL DBMSs would not be a "passing fad" due to their simplicity, flexibility, and scalability
as well as developers would accept these advantages to the detriment of ACID transactions. Thus, this growing preference for



Analyzing the Adoption of Database Management Systems Throughout the Life Cycle of Open Source Projects 21

T A B L E 10 Occurrences of DBMS substitutes and count of projects where they replaced other DBMSs

DBMS Occurrences Projects
Redis 17 9
MySQL 15 10
MariaDB 15 8
H2 12 7
Cassandra 11 4
HBase 7 4
MongoDB 5 4
Oracle 5 4
PostgreSQL 5 4
MS SQL Server 5 3
Elasticsearch 4 3
Hive 4 2
Join_Ignite_NoSql 4 2
DynamoDB 3 2
SQLite 3 2
GoogleCloudDatastore 2 2
ClickHouse 2 1
Hazelcast 2 1
IBM DB2 2 1
Amazon Redshift 1 1
Couchbase 1 1
Ehcache 1 1
Realm 1 1
Solr 1 1
Teradata 1 1

non-relational solutions can be related to the business’s need to deal with fast lookup or more complex querying capabilities
that require a greater volume of data1, such as textual searches or choosing a standard for exchanging data.

Comparing Tables 9 and 10, we observe PostgreSQL being replaced by other DBMSs 25 times but replacing other DBMSs
only 5 times, indicating a decrease in its adoption. MySQL was replaced by another DBMS 15 times and replaced by another
DBMS 15 times, too, while MariaDB replaced another DBMS 15 times but was not replaced. Besides, if we consider that
MySQL and MariaDB are the same DBMS (MariaDB is a fork of MySQL), we could infer that MySQL usage remained
steady or potentially increased. On the other hand, Redis was not replaced but substituted another DBMS 17 times, suggesting
a significant increase in its usage among the projects. This way, we can perceive which DBMSs tend to be discontinued and
which tend to be most selected by replacing others.

Nevertheless, despite discovering evidence of DBMS substitutions and some DBMSs being more prone to being replaced
than others, we did not observe frequent patterns of specific DBMSs always being substituted by others. The growing co-
occurrence among DBMSs, reported in subsection 3.2, may influence the situation, making migrations from one DBMS to
another unnecessary. This further supports the notion that DBMSs can complement each other, and the projects are utilizing
multiple DBMSs to meet their specific needs.
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F I G U R E 10 Relational DBMSs trend. Source: DB-Engines.

RQ3: Which DBMSs are frequently replaced by others?
Answer: Our results reveal 20 situations of DBMS replacements in projects. The most frequent occurred in only
3 projects: PostgreSQL was replaced by MariaDB and Oracle by MySQL. PostgreSQL was the DBMS that under-
went 11 replacements in 8 projects by 4 different DBMSs, including MySQL. In 70% of the cases, the replacements
occurred between DBMSs that have the same model. Of that, only 10% of the replacements involve non-relational
DBMSs. The remaining 30% of the replacements involve both data models. In a more comprehensive analysis,
considering only the replaced DBMS, including the patterns that occurred in only 1 project, we found PostgreSQL
and Oracle among the most susceptible to replacement. Also, considering just the DBMS that replaced another
one, we found Redis, MySQL, and MariaDB among the most used as a replacement.
Implications: Some DBMSs undergo frequent replacement by other DBMSs. Investigating the existence of
replacement patterns allows for knowing the DBMS migration trends in the projects.

4 THREATS TO VALIDITY

As with any empirical work, our study has limitations due to design decisions and the nature of this research. In this section,
we discuss the threats to the validity of our study.

Our corpus may not be representative of all Java open source projects that are popular, mature, and active. We tried to avoid
toy projects and inactive projects by filtering out projects with less than 1,000 stars, no pushes in the last 3 months (relative
to the time our search was done on GitHub), more than 10 contributors, and more than 1,000 commits in the default branch.
Also, the list of projects returned by our search query was manually inspected to filter out projects that did not contain end-user
applications. Although this analysis was conducted by two authors and revised by another two, there may exist misclassified
projects in our corpus.
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F I G U R E 11 Non relational DBMSs trend. Source: DB-Engines

Still, we collected metadata from the repositories from GitHub in March 2021 and downloaded the repositories to collect
data for our analysis in March 2022. Our analysis represents the project’s state during the data collection. After that time,
projects may have become inactive, may have been removed, or may have received several commits, which may have included
additional use of DBMSs that were not captured in our analysis.

We used DB Ranking to select the top 50 DBMSs of the ranking (as of February 2022), so our analysis does not cover all
existing DBMSs (the DB-Engines ranking includes 422 DBMSs as of September 2023). Also, popular DBMSs for Java projects
may have been left out of our analysis since we did not use Java popularity as a criterion to choose the DBMSs we would
search for in our corpus. This is due to two reasons. First, we could not find such information. Second, using a pre-compiled
list of DBMSs would possibly hide new insights, such as finding usage of a DBMS that is possibly out of the list (if such a list
existed). We believe the results of our analysis can be used to build such a list.

The heuristics proposed may not encompass all possible ways to identify DBMS connections and may result in false positives.
To assess the efficacy of the heuristics, we conducted a validation step for a subset of our heuristics using 5 projects. We
manually inspected the project’s website to find false positives and false negatives (see Table 3). We made several adjustments
in how we built our heuristics based on those results and reflected them in the remaining heuristics to guarantee a high level of
precision and recall for the analyzed DBMSs.

To find replacement patterns in the project life cycle, we sliced each project’s history into 10 pieces. For projects with a
long development history, this may mean we analyzed snapshots that are very large in size. For instance, project liferay/liferay-
portal has 866,693 commits, resulting in slices that are 86,669 commits apart from each other. We acknowledge that from one
snapshot to the other, DBMSs may have been added, replaced, or removed more than once. As a side effect, we may not have
a complete record of changes in our analysis.

We preferred to have a controlled and standard way to understand the history of changes in more projects to have an overall
idea of the landscape of DBMS adoption instead of conducting a comprehensive and more granular analysis at this point. Future
studies may go in-depth to analyze the changes in a more detailed fashion.

In our co-occurrence analysis, the fact that we found evidence of the use of more than one DBMS at the same time by a
given project may not mean they are in fact used together. It may simply mean the project was designed in a way that it could
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work with several DBMSs—but the user had to choose a single one at installation time. To make sure more than one DBMS is
used, we would need a deeper analysis of the source code, for example, to investigate which entities are stored in each DBMS.

We segmented each project’s history into ten distinct parts. It is worth noticing that these projects possess varying ages, and
as a result, each slice may not represent equivalent temporal durations across all projects. This discrepancy could introduce
potential biases since trends change over time. Future analyses might delve deeper into the temporal dimensions of the evolution
of the DBMSs to more accurately capture the progression and nuances over time.

5 RELATED WORK

In the literature, the related studies to our research deal with the correlation between source code changes and DBMS
changes4 5 16 17 18. Each brings a different contribution regarding both methods applied and the findings about the influence of
source code changes in DBMS changes and vice versa. However, none analyzes how DBMS changes occur throughout the
projects history.

Qiu et al.5 conducted an empirical study on ten applications using popular DBMSs to understand the coevolution between
database schemas and the source code of these applications. To this end, they analyze the entire history of these changes
over time, concluding that schemes often evolve and involve many changes. These changes lead to the need to co-evolve the
source code. Furthermore, they observed that each atomic schema change generates modifications in 10 to 100 source lines.
Regarding a valid database revision, the number of changed source lines grows exponentially to about 100 to 1,000, reaffirming
the influence of evolving database schemas on the source code of applications.

Goeminne et al.4 conducted a study to analyze coevolution between source code and related activities in a large, data-
intensive open-source system, the OSCAR application repository##. They concluded that there is a strong coevolution between
source code file changes and database-related file changes. However, the changes in the database technology used over the
project’s lifetime do not significantly impact the source code’s evolution. They also observed that all contributors changed the
source code and the database-related files, indicating that responsibilities were not distinctly separated between the different
contributors.

Scherzinger and Sidortschuck16 analyzed the coevolution of NoSQL DBMS schemas by investigating entity class declara-
tions in the commit history of ten projects. These projects were selected from a pool of 1,200 open-source Java projects hosted
on GitHub, specifically focusing on those with the largest DBMS schemas. By tracking the growth of the schemas and the
nature of their changes over these projects’ history, they found that denormalization, a technique used to improve query perfor-
mance in NoSQL databases, was common in these schemas. They also found evolutionary changes evidence in all the analyzed
projects. Moreover, they noted that the turnover rate in these schemas is higher than in studies dealing with the evolution of
relational schemas.

Vassiladis17 conducted a historical analysis on relational DBMS schemas across 195 open source projects to understand
how these schemas evolve. They analyzed the frequency of the changes in the project’s commit history and identified schema
families with similar evolution characteristics. They used this to define schema evolution patterns as well as evolution measures.
Given this, they discovered that schema evolution is absent in most projects, except those with active schema maintenance
profiles, refuting the belief that schema evolution is extensive.

Dimolikas et al.18 conducted a study on the evolution of DMBS schema tables, with a focus on the foreign key structures of
the related tables. They performed historical analysis on six relational schemas to extract information about table births, table
deaths, intra-table updates, and their foreign key relationships. Thus, they introduced a concise taxonomy of topological graph
patterns through their analysis to characterize table relationships. They discovered that the topological complexity hierarchy
significantly influences the tables’ behavior during evolution. Therefore, evolutionary behavior depends on this hierarchy.

While the mentioned studies look for more granular changes related to DBMS attributes, tables, and schemas, our study
differs by identifying changes in adopting different DBMSs. We discovered which DBMSs were or still are used during the
project life cycle by inspecting source code and investigating evidence of DBMS usage through heuristics based on DBMS con-
nections. Using Data Mining techniques, such as Association Rules and Sequence Patterns, we find the DBMS most commonly
used together and the most frequent DBMS substitutions. Thus, our study complements the existing literature and represents a
relevant contribution to understanding trends in DBMS adoption.

## https://github.com/scoophealth/oscar
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6 CONCLUSION

This paper presented a broad and unprecedented investigation of the adoption of the 50 top DBMSs over the life cycle of 317
Open Source Java projects. To do so, we sliced the project history into 10 commit intervals and applied heuristics to indicate
the presence of each DBMS in each slice. This information was processed to allow identification of which DBMSs were added,
removed, or kept in each slice. Then, we identified replacement patterns that allowed us to determine whether some DBMSs
were replaced by others. We also identified DBMSs that were used together in the project history.

We could observe that MySQL, H2, and PostgreSQL are among the three most used relational DBMSs, while Redis and
Cassandra are the most used non-relational DBMSs. Projects that belong to the infrastructure management domain mostly use
multi-model DBMSs.

The concomitant use of DBMSs grows as the projects mature. In the first slice of the project, we observed pair combinations
of 11 DBMSs, prevailing combinations among relational DBMSs (e.g., PostgreSQL and MySQL in 27 projects, Oracle and
MySQL in 20 projects, and H2 and MySQL in 19 projects). In the middle of the project history, we observed pair combinations
of 25 DBMSs. Ten involved non-relational DBMSs (e.g., Redis and MySQL appear in 20 projects, MongoDB and PostgreSQL
in 11 projects, and Elasticsearch and Redis in 10 projects). In the last slice of the project history, the number of DBMS pair
combinations increased to 29, with MySQL, PostgreSQL, H2, and Oracle among the relational ones, but Oracle lost its position
to Redis.

Additionally, we discovered 20 situations where DBMSs were replaced in projects. The most frequent replacement occurred
in only three projects, with PostgreSQL being replaced by MariaDB and Oracle by MySQL. PostgreSQL was also the DBMS
that underwent the most replacements: it was replaced eleven times in eight projects by four different DBMSs. MySQL was the
DBMS that most replaced PostgreSQL. Furthermore, 70% of the replacements occur between DBMSs of the same model, of
which only 10% is non-relational. We observed that, although DBMS replacements are not so frequent, they occur. We suppose
the low frequency in the DBMS replacements may be directly related to the current tendency to use more than one DBMS
together. According to Sahatqija et al3, one possible explanation is that non-relational DBMSs were not created to substitute
the relational ones but to complement them. This diminishes the need to migrate from one DBMS to another since two DBMSs
of distinct models can be used concurrently.

Our findings offer strategic insights for organizations considering migration between DBMSs—understanding the prevalent
frequencies and patterns of DBMS adoption can significantly inform such decisions. For professionals aspiring to specialize
in the area, understanding how DBMSs are adopted can shape their educational and career paths. Educational institutions and
training programs can utilize our results to refine their curriculum, emphasizing the most extensively adopted DBMSs and
prevalent migration scenarios. Finally, our findings can guide projects seeking to enhance their integration and compatibility
options, as well as DBMS tool developers, directing their efforts to broaden their potential user base.

We envision some interesting future work. One of them is confirming whether two DBMSs are, in fact, used together by
investigating which entities are stored in each DBMS. Using more than one DBMS in a given project may mean the project can
work with several DBMSs, but the user chooses a single one at installation time. To make sure more than one DBMS is used, we
would need a deeper analysis of the source code. Another interesting study would be to find out why certain DBMSs are used
together through qualitative analysis, for instance, by conducting interviews with the developers of the projects. Furthermore,
this research can be extended to projects developed in other programming languages to determine if there are differences in the
most used DBMS and which DBMSs are most commonly used together in each language.
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