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Abstract 32 

 33 

The hot springs are known to host a variety of organisms, such as Cyanobacteria, Archaea, 34 

and Eukaryotes. The growth and survival of these life forms in extreme environments, where 35 

spring water temperature and associated minerals play a significant role, provide analogous 36 

conditions like Mars and thus attract researchers to find the possible existence of life beyond 37 

the Earth. Many studies have therefore been conducted from the hot springs to understand the 38 

controlling factors for these organisms’ survival, mainly Cyanobacteria, which are believed 39 

to be true thermophiles. However, little is known about diatoms, especially from the hot 40 

springs of India, as most of the studies have concentrated on the diversity and distribution of 41 

Cyanobacteria. Here, we present a study of diatoms using a geothermal vent sinter from the 42 

Puga hot spring of Ladakh, India. Our results suggest that the diatoms preserved in the 43 

geothermal vent sinter are less abundant with low diversity and, therefore, represented by a 44 

few species only. By correlating the ecological preferences of diatom species with the sinter’s 45 

morphological characteristics and geochemical analyses, we conclude that these diatom 46 

species could be manifested through a secondary deposit on the geothermal vent sinter from 47 

the adjacent cold waters of the Puga hot spring. We propose that the temperature gradient 48 

could be a key parameter for the occurrence and survival of diatoms in the Puga geothermal 49 

vent sinter rather than the gushed hot water. Consequently, the mere presence of diatoms 50 

around the hot spring vent cannot be directly linked to their survival in extreme, i.e., hot 51 

water conditions. Therefore, eukaryotic forms like diatoms from the hot springs should be 52 

used with caution to elucidate the existence of life in extreme (hot water) conditions. In 53 

contrast, cold conditions around the hot spring may be the primary drivers for diatoms’ 54 

survival, which can be used to infer astrobiological implications. 55 

 56 

 57 

 58 

Keywords: Extreme environment, terrestrial analogue, diatom abundance, 59 

physicochemical analysis.            60 
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1. Introduction 65 

 66 

Hot springs receive heated deep water source where lithology, flow rates, depth of 67 

penetration of water into the crust, and the availability of heat source control the temperature 68 

and ionic composition of water (Ashton and Schoeman, 1984; Nicholson, 1993). The hot 69 

springs were known to host the discovery of a third domain of life, the Archaea (Barns et al., 70 

1994, 1996). Some algae and microbes are thermophilous in nature and can survive in the 71 

water temperatures >50°C (Glazier, 2012). Beside this, hyperthermophiles (some algae and 72 

microbes) can survive in water temperatures >80°C (Stetter, 1999).  73 

 74 

Diatoms are unicellular eukaryotic golden brown algae, which usually survive in the 75 

temperature range of 10°C to 45°C (Round et al., 1990). However, diatoms are found to 76 

survive in both extremes i.e., “hot waters” (temperature >50°C - Beowulf Spring, 77 

Yellowstone National Park, U.S.A., Hobbs et al., 2009) and “cold waters” (temperature <0°C 78 

- Polar regions, Armand et al., 2005; Martin and Mcminn, 2018). Such a great adaptability 79 

makes diatoms a useful tool to understand life in extreme conditions (both hot and cold 80 

conditions). Consequently, diatoms have been studied from the hot springs worldwide in 81 

terms of their occurrence; abundance, species richness, and adaptability (see Table 1). 82 

However, questions remained open that whether diatoms could actually flourish in such hot 83 

waters or colder diatom species can adapt in hot spring environment (Nikulina and Kociolek, 84 

2011)? Moreover, the role of diatoms for astrobiological implication has been proposed from 85 

the Sabkha Oum Dba, Western Sahara, Morocco, where mat-forming benthic diatoms and 86 

cyanobacteria formed microterracing geomorphic features with the help of saline water and 87 

relatively dry season with no importance of temperature (Barbieri and Cavalazzi, 2018). 88 

Likewise, diatoms have been recorded from a temperate salt-pan site, Cervia salterns, Italy 89 

where salinity played an important role for the occurrence of diatoms (Barbieri and 90 

Cavalazzi, 2022).   91 

 92 

The hot springs of the Ladakh region are of great interest for understanding the life in 93 

extreme conditions as these springs are boiled at a much lower temperature compared to other 94 

locations on the Earth (Phartiyal et al., 2021). These hot springs are known to host a variety 95 

of organisms including thermophilic bacteria and some eukaryotic organisms like diatoms. 96 

The Puga hot spring of Ladakh is an ideal site to understand the signatures of life forms 97 
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surviving in extreme conditions where life forms have been reported to survive in the vicinity 98 

of terrestrial hot springs (Sarkar et al., 2022 and references therein). However, records of 99 

diatoms are sparse from these important sites in India, where some taxonomy and diversity 100 

related studies of diatoms have only been carried out from some hot springs (Pardhi et al., 101 

2023). We present here diatom data preserved in the sinter sample of Puga hot spring, Ladakh 102 

along with the morphological and geochemical characterization of the sinter deposit. Our 103 

study aims to answer some key questions: 1) Can diatoms flourish in the hot waters of Puga 104 

hot spring? 2) What are the controlling factor(s) for their growth and abundance? 3) Whether 105 

Ladakh’s diatoms can be used for astrobiological implications or not?   106 

 107 

2. Study area 108 

 109 

Ladakh is the most remote region of Jammu & Kashmir State, which has a dry cold climate 110 

with minimum winter temperatures of −40°C. Most of the area of Ladakh is situated at >3500 111 

m above sea level. The Puga Valley of Ladakh is known for its geothermal power generation 112 

and is located in the Indus Valley in the eastern Ladakh region of the NorthWest Himalayas. 113 

Puga is situated in the Tso Morari area (also spelt Tso Moriri), south of the Indus Suture 114 

Zone, having hot springs, mud pools, and sulfur and borax deposits covering an area of ca.15 115 

km2 (Craig et al., 2013; Dutta et al., 2023; Fig. 1). The water temperature of the Puga hot 116 

spring at the geothermal site is 84°C, whereas 5°C in the cold regions (Craig et al., 2013). 117 

The host lithology of the basement rock is comprised of crystalline Limestone, Marble, 118 

carbonaceous shale, Green chert, Mafic to ultramafic rocks etc. (Dutta et al, 2023). 119 

 120 

Materials and methods 121 

 122 

A geothermal sinter sample was collected by one of the authors (Binita Phartiyal) from the 123 

Puga hot spring of the Ladakh, India (33°13′39.38′′N, 78°18′22.98′′E, 4414 m.a.s.l., Fig. 1). 124 

The thin sections (30 μm thick) of the sinter sample were prepared in the section cutting 125 

laboratory of the Birbal Sahni Institute of Palaeosciences (BSIP) for studying the 126 

morphological features. Such morphological features were studied through digital scanning 127 

and petrography. The thin sections were digitally scanned utilizing an automated slide 128 

scanner (Model: Grundium Ocus130 MGU-00001) at Vertebrate Palaeontology and 129 

Preparation Laboratory, BSIP. 130 
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 131 

Fig. 1. DEM map showing the location of the investigated hot spring site Puga in the Ladakh 132 
region of northern India (a), Panoramic view of the sample collection site at Puga showing the 133 
hot spring vent (b), and the digital photograph of the investigated sinter sample (c). 134 

 135 

A JEOL FESEM 7610F electron microscope was used to analyze the surface morphology and 136 

elemental composition of the sinter sample. To investigate the morphological traits, 137 

specimens were examined at various magnifications with a secondary electron detector at 5 138 

kV and 15 kV acceleration voltages. TEAM software was used to capture EDS spectra from 139 

an EDAX Octane Plus detector at 15 kV accelerating voltage. 140 

 141 

To study the diatoms in detail, we extracted the diatoms from the sinter sample. The weighed 142 

sinter sample (2-3 g) was processed for the removal of organic material and carbonates (if 143 

any) following the methods of Battarbee et al. (2001) and Crosta et al. (2020). The diatom 144 

counting was performed following the standard procedure described by Crosta and Koç 145 

(2007) using an Olympus light microscope. 146 

 147 

The elemental compositions of the sinter sample were studied in X-ray fluorescence (XRF) 148 

laboratory at BSIP, Lucknow. For glass bead preparation, 10 gm Lithium tetraborate and 1 149 

gm, (74 µm size) sample was correctly mixed in the agate motor pestle and then fused at 150 

1100oC in the platinum crucible at 15 minutes (Watanabe, 2015; Chaddha et al., 2022). The 151 
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molten material was then allowed to cool on the platinum holder and then analyzed on the 152 

Wroxy application by the XRF machine at BSIP, Lucknow. 153 

 154 

The Accelerator Mass Spectrometry (AMS) radiocarbon ages of the sinter sample were 155 

obtained using the methods detailed in Bhushan et al. (2019a, 2019b), and calibrated using 156 

Calib8.2; IntCal20  (Reimer et al., 2020). The average radiocarbon age of the sinter sample 157 

represent ~37538 cal yr BP. Such ages of the sinter sample represent the ages of the basement 158 

rock (mainly limestone) from where the water gushed from the vent and eventually deposited 159 

in the form of sinter.          160 

 161 

3. Results and discussion 162 

 163 

3.1. Digital scanning of the thin sections 164 

 165 

The digital scanning of the thin sections of the sinter sample from Puga hot spring, Ladakh 166 

revealed branching spicules (having both laminated and featureless cores surrounded by 167 

cortex) of opal silica (Fig. 2). In general, the sinter samples from the hot spring across the 168 

globe are known to showcase ‘Spicules’ and ‘Spicule-columns’ as internal structures with 169 

both branching and non-branching spicules composed of opal silica displaying a ‘Cortex’ 170 

encasing a laminated or unlaminated ‘Core’ (refer to Fig. 4 in Jones and Renaut, 2003). 171 

Although, the published literature generally agrees that the ‘Spicules’ are smaller (in 172 

diameter) compared to ‘Columns’ (Campbell et al., 2015 and references therein), varied 173 

definitions of these structures have been proposed based on the dimensional dataset (Walter, 174 

1979; Braunstein and Lowe, 2001; Jones and Renaut, 2003). Interestingly, the diameter of the 175 

observed spicules is generally <250 microns (Fig. 2) i.e., at least 50% less as compared to the 176 

spicules previously recorded in the sinter samples from the Yellowstone National Park, 177 

Wyoming, North America (Walter, 1979; Braunstein and Lowe, 2001) and the 178 

Whakarewarewa-Orakeikorako geothermal areas, North Island, New Zealand (Jones and 179 

Renaut, 2003). This is plausibly due to less availability of silica at Puga hot spring in 180 

comparison to the above-mentioned sites.  181 

 182 

 183 

 184 
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 185 
 186 
Fig. 2. Digital photograph of the thin section of the sinter sample showcasing the typical 187 
closely packed upward expanding and branching spicules of opal silica. 188 

 189 

3.2. Petrography 190 

 191 

Petrographic investigation was performed for the sinter sample by using thin sections. 192 

Overall, the texture of the petrographic thin section resembles with multi-oriented random set 193 

of elongated flares/crystals of calcite along with overgrowth (Fig. 3A). Oriented 2-set of 194 

cleavages within the calcite were rarely observed (Fig. 3A and 3C). Secondary overgrowth 195 

was prominently seen in the absence of set of cleavages (Fig. 3A and 3C). Patches of drusy 196 

calcite were also observed over primary calcification (Fig. 3A). Very meager amount of 197 

amorphous silica/silica gel encountered within the gap between elongated flares/crystal of 198 

calcite, which suggest the presence of amorphous silica in the system (Fig. 3B). Bulbous 199 

shaped incremental growth can be seen within the primary growth of calcite (Fig. 3C), which 200 

complement the physical feature of the sinter sample collected. 201 

 202 

 203 
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 204 

 205 
Fig. 3. Photomicrograph of Sinter: Photomicrograph of primary calcite in form of elongated 206 
flares (yellow arrow) and secondary overgrowth (green arrow) over it, Drusy calcite (pink arrow) 207 
(Under cross Nicol) (A); Photomicrograph of ‘A’ (under plane polarized light) (B); Elongated 208 
space between two primary flare/crystal of calcite filled with amorphous silica (see yellow arrow) 209 
(C); Photomicrograph of ‘B’ (under plane polarized light) D); Photomicrograph showing bulbous 210 
shaped incremental growth within the primary calcite crystal (in yellow arrow) (E); 211 
Photomicrograph of ‘E’ (under plane polarized light) (F). 212 
 213 

3.3. Surface morphology and elemental analysis 214 

 215 

Secondary electrons were used through FESEM-EDS (Field Emission Scanning Electron 216 
Microscopy-Energy Dispersive X-Ray Spectroscopy) to study the surface morphological and 217 
elemental variations between the host (sinter sample) and diatoms present in the sinter sample 218 
(Fig. 4). There is a significant distinction between the lighter shade of diatoms immersed in 219 
the extracellular polymeric substances (EPS) biofilm type morphology (Alleon et al., 2021)  220 
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 221 
Fig. 4. Presence of Diatoms embedded in the microbial extracellular polymeric substance (EPS) 222 
demonstrating clear demarcation between calcic rich sinter substrate (a); abundance of diatoms 223 
visible on the sinter substrate (b); and multi-spot elemental analysis demonstrating the elemental 224 
contrast in the diatom rich layer and the calcic sinter (c, d). 225 
 226 

and the darker sinter substrate hosting the diatoms. EDS analysis confirms the diatoms' and 227 

sinter's distinct texture and elemental makeup (Fig. 4c,d). Multi-spot elemental analysis 228 

demonstrates an enrichment of Si in the diatom rich layer, as well as Na and Cl, as described 229 

by spots 1 and 2 (Fig. 4c) (Fig. 4d). The presence of Na in the sinter sample might be owing 230 

to the crystallisation of Ca-rich sinter from the mother liquid, which is Puga's Na-Cl-HCO3 231 

rich spring water (Dutta et al., 2023). Notably, there is a difference in the presence of P in the 232 

diatom rich layer spots 1 and 2 (Fig. 4c). This P enrichment might be attributed to the 233 

presence of microbial EPS (Duan et al., 2023; Zhou et al., 2017) on the sinter. Furthermore, 234 

the presence of Mg in the sample suggests that EPS produced by bacteria include organic 235 

molecules that accelerate the incorporation of Mg in the carbonate mineral (Al Disi et al., 236 

2019). As a result, the appearance of diatoms on the sinter could be due to a secondary 237 

process that possibly occurred when the hot water from the spring cools owing to the 238 



This is a working manuscript, under preparation for submission to a peer-reviewed journal. 
 

Page 10 of 25 
 

temperature gradient, precipitation, and crystal development of Ca-rich sinter around the hot 239 

spring vent. 240 

 241 

3.4. Diatoms  242 

 243 

The diatom assemblage comprised of four species, namely, Achnanthidium minutissimum 244 

(Kütz.) Czarn. 1994; Nitzschia palea (Kutz.) W. Sm. 1856; Rhopalodia gibba (Ehrenberg) O. 245 

Müller 1895; and Denticula thermaloides Van de Vijver & Cocquyt 2009 (Fig. 5). 246 

Achnanthidium minutissimum dominated the diatom assemblage followed by Nitzschia palea, 247 

Rhopalodia gibba, and Denticula thermaloides. 248 

 249 

Achnanthidium minutissimum is a freshwater slightly motile benthic diatom species found in 250 

the inland waters of lakes and rivers (Potapova and Hamilton, 2007; Wojtal et al., 2011). 251 

Achnanthidium minutissimum was reported from a glacial lake Hausburg Tarn from Mount 252 

Kenya (Cocquyt 2007). Therefore, this species doesn’t show any relation with the Puga hot 253 

water. Nitzschia palea is also a benthic diatom species which is moderately motile and 254 

ubiquitous in nature. It has been suggested that diatom genus Nitzschia is a pollution 255 

indicator (Palmer, 1969) and therefore represent organic pollution in the studied area where 256 

heavy metal pollution or nutrient enrichment could have favored the growth of this diatom 257 

(Chen et al., 2014; Lowe, 2003; Taylor and Coqcuyt, 2016; Singh et al., 2020). It is worth 258 

noting that the Puga area of Ladkah is an interesting site for the tourists, which could be the 259 

possible reason for such anthropogenic signatures. Therefore, Puga area of Ladakh should be 260 

protected and conserved for its geoheritage.  261 

 262 

Rhopalodia gibba is an endosymbiontic diatom species containing cyanobacterial inclusions 263 

(Floener and Bothe, 1980; Kneip et al., 2008; Prechtl et al., 2004). The occurrence of this 264 

species in the Puga sinter sample points towards an association with the cyanobacteria which 265 

is substantiated by the nutrient enrichment indicated through diatom species Nitzschia palea 266 

in our sample. Owing to the endosymbiotic in nature by hosting cyanobacterial inclusions, 267 

the occurrence of Rhopalodia gibba in the Puga hot spring sinter sample may hint towards 268 

astrobiological implication of this diatom species. However, Rhopalodia gibba is an inland 269 

diatom species found usually in rivers and lakes (Patrick and Reimer, 1975) rather than being 270 

endemic to hot springs. Therefore, attribution of this species with the Puga sinter sample 271 

could be due to the secondary deposition through the adjacent environment where 272 
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temperature gradient and nutrient enrichment possibly supported the growth of Rhopalodia 273 

gibba.    274 

 275 

The diatom species Denticula thermaloides was discovered by Van de Vijver and Cocquyt 276 

(2009) from La Calera hot spring of Peru by scraping off algal material from stones. In 277 

Ladakh, this species has been recorded as an epiphyte in the stream, pool, and also from the 278 

Chumathang Hot Springs (Pardhi et al., 2023). Thus, Denticula thermaloides seems to show 279 

variable habitats (from stream and pool to hot springs) as well as microhabitats (from 280 

epilithic to epiphytic). The preferential temperature data for Denticula thermaloides is 281 

lacking and could not be measured from the type locality due to the logistical constraints 282 

(Van de Vijver and Cocquyt, 2009). If this species only occur in the hot springs then it could 283 

have been considered as a true thermophile. However, occurrence of this species in streams 284 

and pools along with the hot springs’ stones and plants doesn’t compassionating this species 285 

to be a true thermophilic organism. We therefore suggest that the occurrence of Denticula 286 

thermaloides in the sinter sample of Puga hot spring could be sourced from the adjacent 287 

epilithic/epiphytic environment where cooler waters might have favored the growth of this 288 

diatom species rather than the hot water gushed from vent. 289 

 290 

Most of the studies on diatoms from the hot springs used the epilithic/epiphytic samples, 291 

microbial mats/algal mats, and water samples and therefore considered temperature as a 292 

controlling factor for diatoms (see Table 1). However, the location of the water sampling is 293 

crucial in terms of proximity to the hot spring vent and away from the vent at the downstream 294 

as hot spring environment has high temperatures at the source (near the vent) which is 295 

changing to lower temperatures at the downstream (Cousins et al., 2018). Our observations 296 

are in agreement with the study of Negus et al (2020), which suggested a key role of 297 

temperature gradient in defining the diatom occurrence and community structure in the hot 298 

spring. The hot spring complex in tropical north Queensland, Australia with the water 299 

temperature of 62.7°C at the hot spring vent whereas water temperature of 26°C at the 300 

downstream showed a strong anti-correlation with the richness of diatoms being no diatoms 301 

in the hot water at the vents (Negus et al., 2020), which was also observed by previous 302 

studies (Pentecost, 2005; Sterrenburg et al., 2007). The inverse relationship of warmer 303 

temperature and diatom richness have also been recorded from the hot springs of South 304 

Africa (Jonker et al., 2013); Kenya (Owen et al., 2004); Iceland, New Zealand, and Kenya 305 

(Owen et al., 2008); Kamchatka Peninsula (Nikulina et al., 2019); and Odisha, India (Bhakta 306 
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et al 2016). The water temperature of 84°C in the thermal region, whereas the water 307 

temperature of 5°C in the cold region of the Puga hot spring (Craig et al., 2013), supports that 308 

cold water diatom species found in the Puga sinter sample could have resulted from 309 

secondary deposition rather than flourishing in hot water gushed from the vent.  310 

 311 

 312 

Fig. 5. Diatom species found in the sinter sample of the Puga hot spring: Achnanthidium 313 
minutissimum (A-E), Nitzschia palea (F and G), Rhopalodia gibba (H), and Denticula 314 
thermaloides (I). 315 
 316 
 317 
 318 
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3.5. Elemental composition 319 

 320 

To understand the elemental composition of the collected sinter deposit of the Puga hot 321 

spring, X-ray fluoroscence technique was employed, which shows that the sample mainly 322 

consists of CaO>MnO>MgO (Fig. 6) whereas other major oxides are present in the traces and 323 

therefore classified as travertine. The surface water which enters through the zildat fault, 324 

when heated by the geothermal processes under the subsurface, reacts with the existing rocks 325 

(Crystalline Limestone, Marble, carbonaceous shale, Green chert, Mafic to ultramafic rocks 326 

etc.) (Dutta et al, 2023). The brine that comes out through the Puga hot spring is rich in Na-327 

Cl-HCO3 (Dutta et al, 2023), precipitating as CaCO3 near the hot spring on cooling, as the 328 

temperature gradient is higher in the Ladakh region. Interestingly, the presence of a highly 329 

enriched sulfur value of 3460 ppm as compared to sulfur values in Bulk continental crust 330 

(BCC), which are 404 ppm (Rudnick and Fountaion 1995) shows ~9 times enrichment in the 331 

analyzed sintered sample, pointing  toward the interaction of the fluids with the minerals such 332 

as thenardite, pyrite, jarosite, respectively (Dutta et al, 2023). 333 

 334 

 335 

Fig. 6. Elemental composition of the sinter sample of the Puga hot spring. 336 

 337 

 338 

 339 
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3.6. Implication of hot spring diatoms governed by temperature gradient for astrobiological 340 

studies 341 

 342 

The diatoms recovered from the sinter sample of Puga hot spring demonstrated the role of 343 

temperature gradient in defining the diatom occurrence and community structure. The 344 

occurrence and survival of diatoms in cold conditions of Antarctica suggested the potential 345 

role of diatoms for the astrobiological studies (Martin and McMinn, 2018) and therefore 346 

conditions of Ladakh having highest temperature of -27.9°C during winter and 34.8°C during 347 

summer (Chevuturi et al., 2018; Chaddha et al., 2021) can possibly present terrestrial 348 

analogues conditions to present day Mars surface conditions where diurnal temperature 349 

ranged between -80°C and -10°C (Atri et al., 2022).   350 

   351 

4. Conclusions 352 

 353 

The sinter sample from the Puga hot spring of Ladakh, India, utilized for the diatom analysis 354 

revealed less abundance of diatoms and low species diversity, characterized by a few species 355 

only. Achnanthidium minutissimum dominated the diatom assemblage followed by Nitzschia 356 

palea, Rhopalodia gibba, and Denticula thermaloides. The ecological preferences of these 357 

diatom species and their correlation with the previous studies suggest that these diatom 358 

species are signatures of secondary deposits on the sinter sample and substantiated with the 359 

sedimentological and geochemical data. Based on the habitat and microhabitat of diatom 360 

species found in the Puga sinter sample, we propose that the growth and abundance of 361 

diatoms in the Puga hot spring is controlled by the temperature gradient with no sign of 362 

survival and adaptation of diatoms in extreme “hot water” environment. Therefore, 363 

eukaryotic forms like diatoms from the hot springs should be used with caution for 364 

elucidating the existence of life in extreme (hot water) conditions and for the astrobiological 365 

implications. 366 
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Table 1. Summary of important studies on hot springs diatoms carried out worldwide. 698 

S.
N. 

Location Type of sample Water 
temperature 

range 

Factors influenced 
diatoms’ 

Occurrence/abundance/di
versity  

Reference 

1.  Hot springs of 
Ladakh, India 

Water and 
diatom samples 

30°C to 80°C Taxonomic survey of 
diatom assemblages was 
performed only.  

Pardhi et al., 
(2023) 

2. Lake Shala and 
inflowing 
hotsprings of 
Ethiopia. 

Water and 
diatom samples 

22°C to 26°C High phosphate, sodium 
(Na+), carbonate (CO32-), 
bicarbonate (HCO3-), and 
chloride (Cl-) contents 

Wagaw et al. 
(2022) 

3.  La Montagne and 
Mariol minerals 
springs of 
Auvergne 
(France). 

epilithic and 
epipelic diatom 

11.50°C to  
17.03°C 
 

Environmental variables – 
Physical (conductivity, pH, 
dissolved oxygen, and 
temperature), and chemical 
(ions concentrations and 
pollutants ions 
concentrations).  

Baker et al. 
(2022) 

4.  Comanjilla 
geothermal zone 
in northern 
Guanajuato, 
Mexico. 

Brown 
microbial mats 

45°C to 92°C Temperature, pH, 
dissolved solids, electrical 
conductivity, hardness, 
alkalinity, and silica 
concentrations. 

Puy-Alquiza 
et al. (2021) 

5.  Thermal spring in 
Azores 
Archipelago (Sáo 
Miguel Island, 
Atlantic Ocean). 

Water and 
diatom samples 

37°C to 39°C Narrow ecological 
preferences.  

Delgado et al. 
(2021) 

6.  Talaroo hot 
springs complex, 
Einasleigh 
River catchment, 
North 
Queensland, 
Australia 

Water and 
diatom samples 

62.7°C at the 
vents and 
26°C at the 
location 
furthest 
downstream. 

Lower temperature Negus et al. 
(2020) 

7.  Malki, Upper 
Paratunka, and 
Dachnie thermal 
springs, 
Kamchatka 

Composite wet 
soil samples 

65.9°C 
(Malki), 
39.5°C 
(Upper 
Paratunka), 
and 30-50°C  
(Dachnie)  

High temperature, 
mineralization, 
and soil moisture.  

Fazlutdinova 
et al. (2020) 

8.  Mineral springs 
of Sainte 
Marguerite, 
France 

Scrapped 
samples of 
diatoms from 
fine sediments, 
stones, 
travertine, and 

4.3°C to 
29.1°C  

Physical and chemical 
characteristics and mainly 
due to the presence or 
absence of nutrients. 

Beauger et al. 
(2020) 
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metal pipes.  
9.  Hot springs of 

four geothermal 
fields (Malkinsky, 
Nachikinsky, 
Paratunsky, and 
Mutnovsky) in 
the south-eastern 
Kamchatka. 

Algobacterial 
mats. 

28°C to 98°C Acidic water with the 
chemical type: SO4-HCO3-
Na-Ca and temperature 
higher than >55 °C resulted 
in reduced diatoms. 

Nikulina et al. 
(2019) 

10. Maquinit Hot 
Spring in Coron, 
Palawan, 
Philippines. 

Cyanobacterial 
mats and water 
samples. 

38°C-41°C Physico-chemical 
parameters such as alkaline 
pH (pH 7.6 - 7.7), high 
salinity (40 ppt), low 
thermophile water 
temperature (ca 41°C), and 
no /or low sulfur content. 

Martinez-Goss 
et al. (2019) 

11.  Thermo-mineral 
springs in 
Auvergne 
(France) and 
Sardinia (Italy). 

Scrapped 
samples of 
diatoms from 
rock/cobbles 
and fine 
sediments.  

Hot springs of 
Auvergne 
(France) – 
temperature 
range is 
13.3°C to 
32.6°C (Hot 
springs of 
Auvergne, 
France) and 
11.2°C to 
71.5°C (Hot 
springs of 
Sardinia, 
Italy).  
 

pH, conductivity and 
HCO3-were the most 
significant environmental 
variables. 

Lai et al. 
(2019) 

12. Hot spring of 
northern 
Thailand. 

Periphytic 
(epipelic and 
epilithic) 
diatom samples. 

37°C to 85°C Silicon dioxide (SiO2), pH, 
conductivity, water 
temperature, and total 
hardness were the main 
factors for diatoms. 

Pumas et al. 
(2018) 
 
 

13. Tha Pai Hot 
Spring, Mae 
Hong Son 
Province, 
Thailand 

Diatom 
sample/culture 
sampls 

39 to 45°C, 
culture 
sample can be 
maintained at 
30°C 

Alkaline pH of 9 can 
promote the heat tolerance 
of diatom Achnanthidium 
exiguum.  

Pruetiworanan 
et al. (2018) 

14. Thermal springs 
of Pamir 
mountains, 
Tajikistan. 

Algological 
samples 

10°C to 86°C  Low–saline, low–alkaline, 
middle oxygenated clear 
fresh water with low 
organical pollution and 
oligo–to meso–eutrophic 
state. 

Niyatbekov 
and Barinova 
(2018) 
 

15. High-altitude 
geothermal field 

Algal samples  6.8˚C - 10˚C 
for rivers and 

Conductivity, total 
phosphorous, NO3−, 

Angel et al. 
(2018) 
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in the Central 
Andean dry Puna 
ecoregion or 
southern 
Altiplano. 
 

swamps, and 
30˚C - 37.5˚C 
(for fumaroles 
stations.  

HCO3−, Mg2+, temperature, 
dissolved oxygen, and 
ionic gradient.  

 

16. Thermo-mineral 
springs in Galicia, 
NW Spain (3 hot 
springs and 2 cold 
springs).  

Scraped diatom 
samples from 
the stones, 
edges, and 
bottom of the 
springs. 

37˚C - 44˚C 
(for hot 
springs, 
namely,  As 
Burgas, 
Outariz, and  
Cuntis), and 
13˚C - 20˚C 
(for cold-
water springs, 
namely 
Guitiriz and 
Augas Santas 
of Pantón.  

Conductivity, temperature, 
and hydrogen sulphide 
concentration. 

Leira et al. 
(2017) 

17. Thermal springs 
of Pamir 
mountains, 
Tajikistan. 

Algological 
samples 

10°C to 86°C Altitude, temperature and 
pH.  

Barinova and 
Niyatbekov 
(2017) 

18.  Hot springs  
of Odisha, India 
 

Epilithic and 
biofilm samples 

35°C to 60°C Temperature gradient Bhakta et al. 
(2016) 

19.  Fluvial tufas of 
the Mesa River, 
Iberian Range, 
Spain 

Tufa surface Water 
temperature at 
or close to 
resurgence 
points is 13-
14°C in the 
Mesa river at 
site Mochales 
and between 
20-32°C in 
the 
low-thermal 
springs near 
Jaraba.  

HCO3-, pCO2, Ca2+, and 
TDIC negatively affect 
diatom richness whereas 
abundance is positively 
related to the presence of 
mosses and algae. 

Beraldi-
Campesi et al. 
(2016) 
 

20. Thermal springs 
in Limpopo 
Province, South 
Africa 

Algal mat 40°C to 67°C Diatoms occurred at 
temperature <45°C.  

Jonker et al. 
(2013) 

21. Hot springs in 
eastern Russia 

Periphytic 
algae/Algal 
samples/water 
samples 

24°C to 
101°C 

Water temperature  Nikulina and 
Kociolek 
(2011) 

22. Beowulf Spring, Surface 67°C Temperature and pH Hobbs et al. 
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Yellowstone 
National 
Park, U.S.A. 

sediment 
samples 

(2009) 

23. Hot 
Springs of 
Iceland, New 
Zealand, and 
Kenya 

Water samples 21°C to 99°C Alkalinity, pH, and 
conductivity 

Owen et al. 
(2008) 
 

24. Hot springs of 
Kenya Rift Valley 

Surface 
sediments,  
rock scrapings, 
and vegetation 
samples 

32°C to 60°C pH, temperature, and 
specific conductivity, with 
other environmental 
variables such as Si and 
nitrate being of secondary 
importance. 

Owen et al. 
(2004) 
 

25. Thermal spring 
complex at Gross 
Barmen near 
Okahandja in 
South West 
Africa/Namibia 

Water samples 
and diatom 
samples 

25.6°C to 
65°C 

Water temeprature Schoeman and 
Archibald 
(1988) 
 


