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S1. Statistical models

S1.1. Linear model

The linear model used in this study is a least square multi linear regression model.6

For this model, training is done on monthly mean time resolution at each grid cell on a7

normal one-by-one grid. The predictands are deseasonalized monthly mean ocean carbon8

flux time series at each ocean grid cell. For the linear model, the predictors are: SST,9

SSS, log(CHL), sfcWind squared, linear xCO2 trend, and detrended xCO2. Each of the10

predictors are monthly mean time series that are deseasonalized using a repeating seasonal11

cycle over 1990-2019 period. This combination of predictors was chosen to represent12

variability across different time scales. For instance, the linear atmospheric trend is the13

dominant driver of long term changes in ocean carbon flux, deviations of atmospheric14
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forcing from the trend are the main drivers of the decadal variability of the sink, and15

other predictors are believed to drive variabilities on inter-annual to sub decadal scales.16

After trial and error with different combinations of our five predictors, this combination17

yielded best skills of reconstruction. Moreover, a repeating seasonal cycle over the period18

of study is removed to acquire the deseasonalized time series to reduce the variability of19

the variables. This showed however, to only marginally increase the skills. Finally, the20

training was done once with CHL and once without CHL and the results were combined21

with priority given to the model with CHL. This step was taken to account for possible22

missing CHL data point as satellite imaging of surface chlorophyll concentrations is not23

possible in time and space grids where clouds block the surface ocean.24

S1.2. Neural Network model

NN models establish non-linear relationships between the target variable and the pre-25

dictors through the use of non-linear activation functions and interconnected networks of26

neurons. Here, the predictant is the annual mean ocean carbon flux anomaly relative to27

the 1990-2019 period coming from each of the six SeaFlux data products (Fay et al., 2021).28

The predictors are annual mean anomalies of SST, SSS, log(CHL), sfcWind square, xCO229

over the same period of time. These predictors are sufficient to reproduce the variability30

on different time scales on each data product with very high skill (Fig. S2). The NN31

model used in this study is a modified and simplified version of the SOM-FFN model32

from (Landschützer et al., 2016). The network was designed using Python Tensorflow as33

a dense fully connected Keras model with one hidden layer with sigmoid activation and34

an output layer with linear activation function. The criteria for the number of hidden35

layer neurons is not only minimizing the root mean square error in a randomly generated36



evaluation sample from training data, but more importantly, not overfitting over the fore-37

cast period, i.e., consistency of the forecast with the expected near term future behaviour38

of the global flux based on the evolution of the atmospheric forcing. More concisely, we39

already have observational references over the historical period. What we want are mod-40

els that are consistent with these observation based estimates over the historical period,41

yet, are not overfitting to the same period of training and are extendable to future time42

period for actual forecasts. This is the ultimate goal of decadal prediction systems. The43

number of neurons was set to 15 after trial and error with a variety of neuron numbers.44

Comparison with the linear model where a different combination for external forcing is45

utilized, serve as a validation tool for the products, and against what theory suggests.46

Unlike the linear model, the training resolution of the NN model is not grid scale.47

Here, data points are grouped into ocean biomes as used in the version 2021 of MPI-48

SOM-FFN product (Landschützer et al., 2020) and training is done at each biome. These49

biomes are acquired by a self organizing map that divides the ocean into 16 regions50

based on statistical similarities in the seasonal cycles of SST, SSS, mixed layer depth51

and surface partial pressure of CO2. The details of the SOM-FFN method can be found52

in (Landschützer et al., 2016). This choice was made because grid scale resolution does53

not provide enough data point for the complex NN model and would end up in large54

overfitting. On biome scale resolution, training with monthly timeseries was very costly55

in terms of computational resources. Hence, annual means were used. The output of the56

NN model is comparable with the simple linear model both over the 1990-2019 period57

and for forecasts (refer to the manuscript). Finally, the method is not limited to the58

choice of biomes. For instance, we used (Fay & McKinley, 2014) biomes and trained59



the network using MPI-SOM-FFN as the target (not shown here). The results showed60

similar skill of reconstruction on the global scale, while differences were more detectable61

on regional scales. Lastly, to avoid sharp changes over the edges of the biomes, a 3-by-362

lat-lon moving window spatial smoothing was applied to the NN outputs after biomes63

were combined (Landschützer et al., 2016).64

S2. Preprocessing of CanESM5 predictors

Except for the atmospheric CO2 concentrations that is the same xCO2 as seen by65

CanESM, when making historical, assimilation, hindcast, and forecast simulations using66

the statistical models, ensemble means of CanESM5 predictors from the corresponding67

model runs where selected. These predictors were regridded into normal one-by-one degree68

resolution for compatibility. The CHL obsearvational data used for training (table S1),69

only extends back to 1998. To acquire estimates prior to this date (1982-1998), the time70

series are extended using the mean seasonal cycle of the observed period (Landschützer71

et al., 2016). To maintain consistency between the data that is used for training the sta-72

tistical models and predictions using CanESM5 predictors, the same procedure is applied73

to CanESM5 CHL predictors.74

Studies with ESMs have shown that initialized hindcasts simulations have biases and75

systematic errors when compared to the observations as a function of lead time (Kharin et76

al., 2012). Consequently, post processing bias correction is common practice for seasonal77

to decadal predictions. For each of the physical predictors and as a function of the lead78

time (number of years between the initialization year and prediction year), we perform a79

grid wise mean and trend adjustment to the corresponding observational data. The mean80

adjustment corrects for the mismatch between the mean over the period of the prediction81



at each grid cell with the mean of observations. Additionally, ESM hindcasts drift towards82

the preferred state of the model as represented in the historical simulation (Kharin et al.,83

2012). To counter this, trend adjustment based on the lead time is done to adjust for the84

systematic drifts of the predictors as a function of lead time. Please refer to (Kharin et al.,85

2012) for further details on the bias correction scheme. For CHL, only mean adjustment86

to the observation is applied as CHL does not exhibit a clear trend.87
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Table S1. Observational products used for training

Variable Source
Sea surface temperature (Reynolds et al., 2002)
Sea surface salinity Hadley centre EN4a

Surface Chlorophyll − a concentration GlobColour project
Surface wind speed ERA5 b

Atmospheric CO2 concentrations NOAA ESRL
a (Good et al., 2013)

b (Copernicus Climate Change Service (C3S), 2017)
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Figure S1. Cross-correlation matrix for detrended global SeaFlux observation-based ocean

carbon flux products using ERA5 wind product.
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Figure S2. Time series of the detrended global ocean carbon flux reconstruction using ob-

servational predictors. Columns represent NN and linear models trained on individual products.

Numbers in the legends are correlation (first number) skills versus the same product as used

for training (dashed black lines), and root mean square error for the same time series (second

number).
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Figure S3. Detrended global ocean carbon flux skills based on bias corrected histori-

cal/hindcast predictors from CanESM5 (black dots) as well as raw CanESM5 scores (blue dots)

for the hybrid model trained and evaluated using SF-MEAN. The scores that are statistically

better than the raw CanESM5 score based on 1000 iteration bootstrap tests are shown with black

boxes and the lead years where scores are significantly better than the historical score are filled.

Colored dots are hidncast skills from ensemble means of all available CMIP6 models. The time

period of this analysis is 1990-2017 as this is the common time period to all available CMIP6

models and our hybrid models.
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Figure S4. Detrended global ocean carbon flux time series for assimilation, hindcast years 1, 2,

5, 10, and historical simulations from NN (left column) and Linear (right column) models trained

on SF-MEAN. The dashed line in the background is the detrended SF-MEAN and numbers in

legends are correlation coefficients (first number) and root mean square error of the time series

(second number). The plot shows how on longer lead times, the time series grow smoother and

more similar to the historical time-series. They indicate less year to year variability, and are

closer to the smooth decadal scale signal.
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Figure S5. Regional patterns of forecasted changes in the ocean carbon flux for bias corrected

CanESM5 (left column), hybrid NN model trained on SF-MEAN (middle column), and hybrid

linear model trained on SF-MEAN (right column), relative to each product’s 2019 projection.

Numbers above each panel are global ocean carbon flux anomaly relative each product’s 2019 in

Pg C yr−1 over the same time periods of the maps.


