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Abstract18

The historical global temperature record is an essential data product for quantifying the19

variability and change of the Earth system. In recent years, better characterization of20

observational uncertainty in global and hemispheric trends has become available, but the21

methodologies are not necessarily applicable to analyses at smaller regional areas, or monthly22

or seasonal means, where station sparsity and other systematic issues contribute to greater23

uncertainty. This study presents a gridded uncertainty ensemble of historical surface temper-24

ature anomalies from the Goddard Institute for Space Studies (GISS) Surface Temperature25

(GISTEMP) product. This ensemble characterizes the complex spatial and temporal cor-26

relation structure of uncertainty, enabling better uncertainty propagation for climate and27

applied science at regional and sub-annual scales. This work details the methodology for28

generating the uncertainty ensemble, presents key statistics of the uncertainty evolution29

over space and time, and provides best practices for using the uncertainty ensemble in fu-30

ture studies. Summary statistics from the uncertainty ensemble agree with the previous31

GISTEMP global uncertainty assessment, providing confidence in both.32

1 Introduction33

In recent years, better characterization of uncertainty in observed global and hemi-34

spheric temperature trends has become available (Lenssen et al., 2019; Morice et al., 2020;35

Huang et al., 2020; Rohde & Hausfather, 2020), but the methodologies are not necessar-36

ily applicable to smaller spatiotemporal scales such as regional or monthly averages, where37

station sparsity and other systematic issues contribute to greater uncertainty. This study38

describes an ensemble of temperature reconstructions for the Goddard Institute for Space39

Studies (GISS) Surface Temperature product (GISTEMP) product (Hansen et al., 2010;40

Lenssen et al., 2019) which spans the possible regional and monthly uncertainty while prop-41

erly accounting for the underlying spatiotemporal correlation structure.42

Previous work quantified uncertainty in the GISTEMP estimate of large-scale annual43

mean series and developed critical components necessary for quantifying the uncertainty44

in the GISTEMP historical surface temperature record (Lenssen et al., 2019). Critically,45

Lenssen et al. (2019) formalized the various sources of uncertainty in the GISTEMP pro-46

cedure and divided total uncertainty into independent, quantifiable components that rep-47

resented the major sources of uncertainty in the land and ocean analyses. In the Land48

Surface Air Temperature (LSAT) record, the primary sources of uncertainty are sampling49
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uncertainty and station homogenization uncertainty. Sampling uncertainty is an umbrella50

term for uncertainties introduced into global and regional means due to incomplete spatial51

and temporal coverage. Station homogenization uncertainty accounts for possible errors52

arising from the adjustment of single station records to correct artificial break points due53

to changes in observing methods or station locations. Using this framework, operational54

GISTEMP now provides an estimate of global mean uncertainty.55

Extending the results of Lenssen et al. (2019) to regional and monthly mean tempera-56

ture is a significant undertaking. There are two primary difficulties: (1) moving from global57

and large-scale spatial means to small-scale spatial means and (2) quantifying the temporal58

dependence of the uncertainty to provide accurate estimates of the uncertainty in changes59

in the mean. The temporal structure of the uncertainty is the most important problem,60

and is particularly important to capture correctly for accurate uncertainty quantification61

in global and regional trends. The simple 95% confidence intervals for the global mean62

discussed in Lenssen et al. (2019) do not include information about the temporal structure63

of uncertainty. It is well known that significant temporal autocorrelation in uncertainty64

exists, primarily driven over the land surface by the homogenization of the station record65

(Menne et al., 2018). The temporal structure of this homogenization uncertainty is highly66

persistent and not well represented by common statistical models for time series such as67

auto-regressive or more complex ARIMA models.68

Creating ensembles of equally likely realizations of the global temperature record is69

the current best practice for quantifying and presenting uncertainty in gridded monthly70

historical temperature analyses (Morice et al., 2012, 2020; Huang et al., 2020). The Hadley71

Centre with HadCRUT4 (Morice et al., 2012) and HadCRUT5 (Morice et al., 2020) as well72

as NOAA’s GlobalTemp Version 5 (Huang et al., 2020) have shifted their global tempera-73

ture uncertainty products from simple confidence intervals to such uncertainty ensembles.74

In addition, the newer deep neural network (DNN)-based infilling of HadCRUT5 by the75

German Climate Computation Center (DKRZ), or the DKRZ-DNN global product, uses76

the HadCRUT5 ensemble to quantify uncertainty in their infilling method (Kadow et al.,77

2020). Each of these ensembles represent the complex and persistent temporal structure of78

the uncertainties inherent in the global temperature record, enable more accurate estimates79

of uncertainty in global and regional temperature change, and make it straightforward to80

include observational uncertainty in subsequent analyses.81
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This study presents a monthly, gridded GISTEMPv4 uncertainty ensemble from 1880-82

2020. Following the operational GISTEMP analysis, Land Surface Air Temperature (LSAT)83

is calculated from station records from NOAA NCEI’s Global Historical Climatology Net-84

work (GHCN) monthly version 4 (GHCNm v4; (Menne et al., 2018)). Sea Surface Tempera-85

ture (SST) data from NOAA’s Extended Reconstructed Sea Surface Temperature version 586

(ERSSTv5; (Huang et al., 2017)) is merged with the LSAT analysis to form the GISTEMP87

global land-ocean analysis (Hansen et al., 2010; Lenssen et al., 2019).88

One of the primary motivations behind the GISTEMP uncertainty ensemble is to89

increase the awareness of observational uncertainty in studies relying on historical tempera-90

ture data. The global historical temperature record, and GISTEMP in particular, is widely91

accessed, cited, and used in subsequent studies: From the 10-most cited papers that cite92

Lenssen et al. (2019), direct applications of GISTEMP include: the validation of historical93

runs of global general circulation models (Swart et al., 2019; Held et al., 2019; Danabasoglu94

et al., 2020; Notz & SIMIP Community, 2020), retrospectively evaluating past climate model95

projections (Hausfather et al., 2020), verifying estimates of climate sensitivity (Tokarska et96

al., 2020), quantifying changes in mean climate and extremes over the historical period97

(Myhre et al., 2019), and estimating the cost of carbon emission in the global economy98

(Carleton et al., 2020). Despite the scientific and societal importance of the problems ad-99

dressed in these studies, and their reliance on the historical global temperature record, none100

of them include observational uncertainty as part of their methodologies.101

A potential reason for the near ubiquitous omission of observational uncertainty in102

analyses involving historical climate data is the lack of accessible, interpretable, and easily-103

implemented uncertainty products. Observational ensembles are a large step forward, as104

posterior distributions of a key result in an analysis that relies on historical temperature105

can be constructed nearly trivially by running the analysis of interest on each uncertainty106

ensemble member. However, these ensembles are relatively new, only appearing in the107

last decade, with very few studies utilizing them as yet. Thus, this study also includes a108

description of easy-to-implement best practices for including observational uncertainty in109

studies that use historical surface temperature products.110

The remainder of this paper is organized as follows. Section 2 outlines the source data111

used for the analyses. Section 3 provides a brief background on the LSAT uncertainty model112

discussed in detail in (Lenssen et al., 2019). Section 4 presents the methods used to generate113
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the GISTEMP uncertainty ensemble. Section 5 summarizes the statistical properties of the114

GISTEMP uncertainty ensemble. Section 6 discusses the implications of the results and115

provides best practices for implementing the GISTEMP uncertainty ensemble in future116

studies.117

2 Input Data118

2.1 LSAT Data: GHCNm Version 4119

The GHCNm version 4 dataset is a quality-controlled collection of station-based land120

temperature records at the monthly temporal resolution (Menne et al., 2018). All station121

records included in the dataset are processed to correct for irregularities arising due to122

change of station location, measurement method, and surrounding land cover. In addition to123

a single authoritative station record, GHCNm v4 also contains a 100+ member uncertainty124

ensemble that spans the parametric uncertainty arising from choices in the homogenization125

procedure as detailed in Menne et al. (2018). This study uses the GHCNm v4 ensemble to126

capture the station and bias uncertainties as is discussed further in Section 3.127

2.2 SST Data: ERSSTv5128

The latest version of NOAA’s gridded sea surface temperature analysis, ERSSTv5, is129

used to quantify the historical monthly SST anomalies globally (Huang et al., 2017). The130

product is distributed on a 2◦×2◦ grid that is interpolated to the 8000 GISTEMP equal area131

boxes to be compatible with the operational GISTEMP python analysis. The uncertainty132

quantification in ERSSTv4/v5 breaks down ocean uncertainty into parametric uncertainty,133

or uncertainty arising from choices the ERSST method, and reconstruction uncertainty, or134

uncertainty arising from estimating global SST from limited SST records. The ERSSTv5135

uncertainty model contains small updates to the parameters from the ERSSTv4 uncertainty136

method, but is otherwise identical (Liu et al., 2015; Huang et al., 2016, 2017). ERSSTv5137

provides a 1,000 member uncertainty ensemble of gridded SST fields as well as a 500 member138

operational uncertainty ensemble, enabling other operational products to take advantage of139

their uncertainty assessment.140
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LSAT Uncertainty

Station Uncertainty

Measurement Error Inhomogeneity

Bias Uncertainty

UHI

Sampling Uncertainty

Incomplete Coverage

Figure 1. Decomposition the total LSAT uncertainty into the three major categories and the

most common sources. The connections on the chart denote dependence, implying statistical inde-

pendence between cells that are not connected.

2.3 ERA5 Reanalysis141

This study uses the monthly ECMWF Reanalysis version 5 (ERA5) from 1951-2020142

as an approximate, full-coverage historical LSAT record (Hersbach et al., 2020). The 2 m143

temperature field is averaged to the final 2◦ × 2◦ GISTEMP uncertainty ensemble grid to144

facilitate direct comparison between ERA5 and GISTEMP. ERA5 is chosen as the reanalysis145

as a it best replicates the observed global mean over its period (Lenssen et al., 2019; Hersbach146

et al., 2020). As shown in Lenssen et al. (2019), global and large-scale GISTEMP uncertainty147

estimates derived from ERA5 agree with the JRA-55 and MERRA2 reanalyses.148

3 LSAT Uncertainty149

There are three major, statistically independent, categories of uncertainty that arise150

in the LSAT record (Figure 1). A brief introduction to these uncertainties is provided151

though see Morice et al. (2012), and Lenssen et al. (2019) for more details. The uncertainty152

ensemble model accounts for station and bias uncertainties through the GHCNm v4 ensemble153

as detailed in Section 4.1 and sampling uncertainties following the methodology outlined in154

Section 4.2.155

Station uncertainty arises from errors in the temperature record of a single station.156

The first sources of station uncertainty are instrumental errors from limited thermometer157

precision. These are relatively small and uncorrelated in space and time, making them158

essentially a non-issue for monthly records (Morice et al., 2012). The other and more159

significant sources of station uncertainty are inhomogeneities, or non-climatic shifts in mean160
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in station records. These can arise from local microclimate shifts or changes in the station161

measurement method. As mentioned in Section 2.1, the GHCNm dataset attempts to detect162

and correct for these inhomogeneities, but this is a difficult problem, and uncertainty due163

to statistical estimation of these corrections adds uncertainty to estimates of regional and164

global temperature while reducing any bias (e.g. (Hausfather et al., 2013)).165

Bias uncertainty refers to anthropogenic changes in local climate that are not repre-166

sentative of changes in the regional or global climate system. Generally, this category of167

uncertainty refers to the enhanced warming observed in cities commonly referred to as the168

urban heat island (UHI) effect. Again, the GHCNm dataset accounts for these, but correc-169

tions add uncertainty to the surface temperature record. This issue has also been tackled170

in GISTEMP through the use of nightlights to characterize the more urban environments171

(Hansen et al., 2010).172

Sampling uncertainty arises from estimating regional and global temperature due to173

limited spatial and temporal coverage. The distribution of the global observation network174

does not fully cover the land surface and has changed over time. GISTEMP uses the spatial175

correlation of temperature anomalies to increase the coverage (Hansen et al., 2010; Cowtan176

et al., 2018). By interpolating the station-level anomalies, GISTEMP is able to make a177

more accurate estimate of the global temperature, but at a cost of introducing uncertainty178

into fine-scale regional means.179

Due to the different sources and relative contributions of these uncertainties, represent-180

ing uncertainty at each location and month as independent or correlated Gaussian random181

variables is an incomplete method. In particular, uncertainty arising due to errors in the182

homogenization process have long-term persistence that are not well-suited to ARIMA time183

series models. Construction of an LSAT uncertainty ensemble using an iterative process184

where each step accounts for one of the two major categories of uncertainty, is better able to185

better represent the spatiotemporal structure of the uncertainties, and can be understood186

in isolation.187

4 Methods188

4.1 GHCN-ERSST-GISTEMP Ensemble189

The core of the GISTEMP uncertainty is the GHCN-ERSST-GISTEMP ensemble190

which is generated by running 100 potential station records from the GHCNm v4 uncertainty191
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Figure 2. Organization of the analysis from the raw NOAA data in the upper-left corner to the

final country-level mean estimates in the bottom-left corner. The legend in the upper-right denotes

the primary language or datatype of each node.

paired with 100 of the ERSSTv5 uncertainty ensemble members. These station record-ocean192

record pairs are then run through the operational Python GISTEMP analysis code (Barnes193

& Jones, 2011). This process is outlined visually in the code flowchart (Figure 2) through194

steps at the top of the chart leading up to the block labeled “Run GISTEMP with NOAA195

Ensemble Data.” The GHCN ensemble is 100 possible station records in the same format as196

the version of GHCN used in production GISTEMP. Temperature fields and mean time series197

are calculated as described in Chapter 1 (Hansen et al., 2010; Lenssen et al., 2019). The 100198
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member GHCN-ERSST-GISTEMP ensemble accounts for all quantified SST uncertainty as199

well as homogenization and bias LSAT uncertainty. Thus, all that remains is to quantify200

the LSAT sampling uncertainty arising from limited station coverage as detailed in Section201

4.2.202

Managing the output of the ensemble members to ensure computations are working203

as intended and output is documented appropriately, is a critical part of the workflow.204

The steps in the flowchart prior to the “Run GISTEMP with GHCN/ERSST Ensemble”205

block describe the data and code management processes needed to organize the analysis206

on the NASA Center for Climate Simulations (NCCS) high performance cloud computing207

environment. By porting the analysis, the GHCN-ERSST-GISTEMP ensemble is able to be208

generated in under an hour as opposed to the days it would take to run on a typical laptop.209

4.2 Sampling Uncertainty Ensemble210

The 100 member GHCN-ERSST-GISTEMP ensemble detailed above in Section 4.1211

accounts for the station and bias uncertainties. To incorporate the sampling uncertainty,212

2 possible realizations of the sampling uncertainty are simulated and added to each of the213

100 members of the GHCN/GISTEMP, resulting in a final uncertainty ensemble of 200214

members. This step is performed in R (R Core Team, 2020) and is denoted by the blue215

“Estimation and Simulation of Sampling Uncertainty” on the analysis flowchart (Figure 2).216

The sampling uncertainty is quantified using an improved version of GISTEMP sam-217

pling uncertainty analysis detailed in Lenssen et al. (2019). The ERA5 reanalysis from218

1950-2020 is used as an approximate historical climate with full global coverage. For each219

decade from 1880-2020, a proxy station record is created by masking full-field ERA5 record220

to match the station coverage for that decade. That is, a station mask is created for221

1880− 1889, 1890− 1899, . . . , 2000− 2009, 2010− 2020 where the last proxy station record222

includes 2020. Following Lenssen et al. (2019), a grid-cell is considered covered in a decade223

if it has a station with coverage for at least 5 of the 10 years. Annual coverage requires a224

station has coverage for at least 3 seasons which requires at least two months in the season.225

The GISTEMP interpolation step with 1,200km smoothing is applied to the masked226

ERA5 data resulting in estimates of regional temperature on a 2◦ × 2◦ grid. The true227

temperature anomaly fields from ERA5 are differenced to calculate reconstruction error228

fields for each time-step in the ERA5 record. These reconstruction error fields are an229
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estimate of the uncertainty in the LSAT field due to limited station coverage as well as230

uncertainty introduced by the GISTEMP interpolation method.231

Due to the interpolation in the GISTEMP method, the reconstruction error fields have232

spatial structure that must be accounted for. Here, the empirical reconstruction error fields233

are used as draws from the sampling uncertainty distribution as they inherently contain234

the correct spatial correlation structure. As the sampling uncertainty is independent to the235

homogenization uncertainty, the monthly empirical reconstruction error fields are added to236

each of the gridded GHCN-ERSST-GISTEMP ensemble members discussed in Section 4.1.237

The sampling uncertainty also has temporal persistence due to autocorrelation in the238

monthly temperature anomaly fields. To conservatively account for this temporal persis-239

tence, a random block of length 1–12 months is selected from the empirical reconstruction240

error fields. This method is an extension of the 12 month persistence of uncertainty used in241

the HadCRUT5 method (Morice et al., 2020) which reduces artifacts in time series calcu-242

lated using the uncertainty ensemble. Note that the month of the empirical reconstruction243

error field is selected to align with the month of the GISTEMP ensemble as the underlying244

temperature variability and therefore uncertainty varies seasonally.245

4.3 Calculation of Global and Large-Scale Series Ensembles246

One would naively expect to be able to use the ensemble to calculate the magnitude of247

uncertainty in a time series such as the global annual mean by simply calculating the time248

series of interest in each of the 200 GISTEMP uncertainty ensemble members. However,249

this method does not account for the uncertainty in such series due to grid cells that do250

not have estimates. To include this uncertainty, an additional 200 member GISTEMP251

uncertainty ensemble is created that includes this uncertainty by modifying the sampling252

uncertainty step discussed above. As before, the empirical reconstruction error fields are253

added to the GHCN-ERSST-GISTEMP ensemble at each monthly time step for grid-cells254

where GISTEMP is making estimates. However, for grid-cells where GISTEMP does not255

make estimates due to limited station or ship coverage, the missing value is replaced with256

the “true” value from ERA5 from the same ERA5 time-step that was used for the empirical257

reconstruction error field. This method both includes the uncertainty added to large-scale258

series by not making temperature anomaly estimates at all locations in the interpolation259

step, as well as includes the correct spatial structure by ensuring this uncertainty comes260
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from the same underlying “true” temperature field that was used to estimate the sampling261

uncertainty.262

This full-coverage uncertainty ensemble fully captures the uncertainty of global and263

other large scale means. The GISTEMP averaging procedure is applied to each of the264

200 members, resulting in a 200 member ensemble each of global, hemispheric, band, and265

land-only/ocean-only monthly and annual temperature series.266

4.4 Decomposition of the LSAT Uncertainty267

The full-coverage GISTEMP uncertainty ensemble described in Section 4.3 also allows268

the decomposition of global annual LSAT uncertainty into sampling and homogenization269

for comparison with Figure 4 of Lenssen et al. (2019). The global annual LSAT homoge-270

nization uncertainty is calculated as the spread of the 200 members land-only global annual271

mean temperature anomaly from the GHCN-ERSST-GISTEMP, excluding any addition of272

sampling uncertainty. The global annual LSAT sampling uncertainty is calculated as the273

spread of 200 members simulated following the full-coverage GISTEMP sampling ensem-274

ble detailed above where empirical reconstruction error values are used when GISTEMP275

provides an estimate and ERA5 values of corresponding ERA5 time-steps are used when276

GISTEMP does not provide an estimate.277

5 Results and Discussion278

The global and hemispheric annual mean series are calculated with the GISTEMP279

uncertainty ensemble by applying the GISTEMP averaging scheme to each of the 200 gridded280

ensemble members. The ensemble median matches very well with operational GISTEMP for281

each of these series (Figure 3). The 95% confidence intervals of mean series are constructed as282

the empirical 95% confidence interval from the 200 annual mean series. The 95% confidence283

interval of the ensemble mean and hemispheric series covers the operational series at every284

time point, which along with the near-perfect agreement between the ensemble median and285

the operational series, validates the GISTEMP uncertainty ensemble’s ability to accurately286

replicate the global mean calculation.287

The ensemble estimate of uncertainty in the global annual mean is uniformly lower288

than the analysis of Lenssen et al. (2019) (Figure 4). This could be due to either lower SST289

or LSAT uncertainty or a positive correlation between the SST and LSAT, assumed zero in290
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Figure 3. A comparison of the global and hemispheric annual mean series as calculated from

operational GISTEMP and the GISTEMP ensemble. The solid red line is the median of the

GISTEMP ensemble.

the Lenssen et al. (2019) analysis. The SST uncertainty is quantified by the same ERSSTv5291

ensemble used in the first analysis and can’t be the source of the discrepancy. Decompos-292

ing the ensemble global annual land surface uncertainty into its two components suggests293

that much smaller homogenization uncertainty is the primary reason for the smaller global294

uncertainty estimate presented here (Figure 5). This is expected as the homogenization295

uncertainty in the global mean in Lenssen et al. (2019) was quantified on a 5◦×5◦ grid, but296

did not include any additional smoothing or corrections. However, the GISTEMP averaging297
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Figure 4. The global annual mean 95% confidence intervals for the new GISTEMP ensemble,

the same calculation as performed in Lenssen et al. (2019), and the two products that publish

operational confidence intervals.

method includes all station information within 1,200 km when estimating the temperature298

anomaly of a gridbox as well as corrects all station records to account for mean-shift biases299

by comparing nearby station records over complete time periods (Hansen & Lebedeff, 1987).300

This additional homogenization step dramatically reduces the homogenization uncertainty,301

particularly in the early part of the record.302

The estimate of the uncertainty in the global annual mean temperature anomaly from303

the GISTEMP ensemble is close to the other major global analyses that publish uncertainty304

estimates (Figure 4): HadCRUT5 (Morice et al., 2020), NOAA GlobalTemp (Huang et al.,305

2020), Berkeley Earth (Rohde & Hausfather, 2020), and DKRZ-DNN (Kadow et al., 2020).306

The GISTEMP Ensemble estimate closely mirrors that of NOAA GlobalTemp as expected307

due to the shared source data uncertainty quantification between the two products. The308

largest deviation in products is the very large uncertainty in HadCRUT5 during the WWII309

period in the early 1940s. This large uncertainty is a conservative estimate of the large biases310

found in SST data during this period that have not yet been incorporated in operational311

ship record databases (Chan et al., 2019).312

The GISTEMP ensemble provides uncertainty at monthly temporal resolution, allow-313

ing analyses of uncertainty in monthly mean temperature change. Monthly uncertainties314
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Figure 5. (a) The annual LSAT uncertainty (2σ) decomposed into the sampling and homoge-

nization uncertainty components. The dark lines show the calculation from the ensemble analysis

and the thin lines show the Lenssen et al. (2019) calculation. (b) The difference of the LSAT

uncertainties between the ensemble and the global analysis of Lenssen et al. (2019).

are slightly smaller in the NH winter ( 0.06ºC) than the summer months ( 0.08ºC), be-315

cause of the greater uncertainty in SH winters – particularly in Antarctica which has the316

worst coverage and largest homogenization uncertainty. We see that the uncertainty in the317

January and July global mean temperature series is again much smaller than the warming318

signal (Figure 6). Using the July 2020 uncertainty estimate as the approximate uncertainty319

of the GISTEMP July 2023 anomaly of 1.18 ◦C, we conclude that July 2023 is the warmest320

global month on record with nearly 100 % certainty.321

Decomposing the annual LSAT mean into the homogenization and sampling com-322

ponents reveals that the LSAT uncertainty, at least globally, it dominated by sampling323

uncertainty for the majority of the record (Figure 5). In the Lenssen et al. (2019), homog-324

enization and sampling uncertainty in the global LSAT mean were calculated separately325

and then combined assuming independence. However, it is shown here that the additional326

homogenization done in GISTEMP when averaging multiple station records reduces homog-327

enization uncertainty to levels substantially smaller than raw GHCN, at least at the global328

scale.329
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Figure 6. The global mean January and July time series and 95% confidence intervals for (a)

the global mean temperature anomalies with respect to a 1950-1979 climatology and (b) the global

mean anomaly scaled by the seasonal cycle using ERA5 to estimate the seasonal cycle of global

temperature.

Sampling uncertainty is the dominant source of uncertainty for nearly the entire land330

surface (Figure 7), in agreement with the global LSAT decomposition. The sampling un-331

certainties are particularly dominant for regions with dense station coverage where homog-332

enization uncertainties are nearly zero. The only area where homogenization uncertainty333

dominates is the central Amazon and parts of Antarctica, both regions with known major334

inhomogeneities and very few nearby station observations to use in correction methods.335

Looking at the GISTEMP latitudinal band mean estimates from the uncertainty en-336

semble, large uncertainty in the polar regions appears to be driving the global uncertainty337

(Figure 8). This uncertainty is driven by land and sea ice regions near the poles (Figure338

9). Again, there is very good agreement between the operational and ensemble GISTEMP339

with the ensemble confidence interval always covering the operational series. In general, the340
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Figure 7. The log ratio of sampling and GHCN uncertainty for (a) January 2020 and (b)

July 2020. Red regions show where sampling uncertainty dominates and blue regions show where

homogenization uncertainty dominates.

land surface has greater uncertainty than the ocean at the monthly scale, except during the341

observationally sparse 1940s (Figure 9).342

The GISTEMP uncertainty ensemble allows easy investigation of the spatial pattern343

of uncertainty at any month in the record. the uncertainty for January 1910, 1940, and 1970344

look broadly similar with generally greater uncertainty over land than the ocean, in regions345

of high temperature variability such as the (particularly winter) mid and high latitudes, and346

in regions with sparse station coverage (Figure 9).347

The availability of a few uncertainty ensembles allows comparison of the GISTEMP en-348

semble with estimates from HadCRUT5, NOAA GlobalTemp, and DKRZ-DNN (Figure 10).349

Note that each ensemble member from all products have been regridded to the HadCRUT5350

5◦ × 5◦ grid before calculating the standard deviation to facilitate comparison. Comparing351

GISTEMP and HadCRUT5, it is immediately evident that GISTEMP generally estimates352

larger uncertainty over land, particularly in the polar regions. This result is expected as353

HadCRUT5 estimates the sampling and interpolation uncertainty through posterior draws354

from the stationary Gaussian Process used to interpolate data to grid boxes that don’t have355

reporting stations. However, this stationary Gaussian Process uses one set of parameters356

fit to the entire entire globe and, as such, overestimates the signal-to-noise ratio over the357

polar regions where there is both less information of the true spatial field, greater underly-358

ing variance in the true temperature field, and a shorter spatial autocorrelation (Morice et359

al., 2020). By using the empirical estimates of the sampling uncertainty in the GISTEMP360

ensemble, this non-stationarity is avoided and provides a better estimate of the point-wise361
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uncertainty. However, these apparently large differences do not imply large differences in362

global annual mean uncertainty (Figure 4) due to the relatively small area of the polar363

regions.364
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Figure 8. A comparison of the annual mean series from the 8 GISTEMP latitudinal bands as

calculated from operational GISTEMP and the GISTEMP uncertainty ensemble. The solid red

line is the median of the GISTEMP ensemble. Note the different y-scale on the top-left NH Polar

plot.
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Figure 9. The standard deviation of the GISTEMP uncertainty ensemble for three monthly

fields. The corresponding histogram to each field is shown to the right. The visualization has been

capped at a standard deviation of 3.5 to avoid the very large Antarctic uncertainty dominating the

maps.
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Figure 10. Comparison of all global gridded ensemble uncertainty products total uncertainty

for January 2000

–20–



manuscript submitted to JGR: Atmospheres

6 Discussion and Conclusions365

Here, an uncertainty ensemble for the GISTEMP temperature product has been pre-366

sented and analyzed. Accounting for all sources of uncertainty at the monthly level increases367

enables inclusion of historical temperature uncertainty in future studies. The median es-368

timates from the GISTEMP uncertainty ensemble agree very well with operational GIS-369

TEMP and the resulting global mean uncertainty agrees with the calculation of Lenssen et370

al. (2019). This work is a major step forward in the GISTEMP uncertainty model, enabling371

the inclusion of observational uncertainty in studies on historical global change.372

Uncertainty ensembles of gridded products and key time series make including obser-373

vational uncertainty in subsequent analyses simple. Given an analysis developed using the374

operational version of GISTEMP, the only additional step is to rerun the analysis on each375

member of the uncertainty ensemble. Then, results can be summarized using the mean or376

median estimate of the result of interest as well as empirical confidence intervals. Includ-377

ing uncertainty in surface temperature data is particularly important in regions with high378

uncertainty such as the polar regions as well as areas with lower forced signals, such as379

investigations of warming over the eastern tropical pacific and the southern ocean.380

This release of an additional uncertainty ensemble form a major global temperature381

product highlights the need for post-analysis of the available surface temperature uncertainty382

products. Critical future work includes a comprehensive assessment of the similarities and383

differences between the 4 temperature ensembles presented here. Such an analysis should384

investigate both the statistics of the ensembles as well as the results from using these 4385

ensembles to answer critical questions about our climate system such as the rate of arctic386

warming (Rantanen et al., 2022) or the time of emergence of forced signals.387

It is the authors’ hope that the release of the GISTEMP uncertainty ensemble, along-388

side the already existing HadCRUT5, NOAA GlobalTemp, and DKRZ DNN uncertainty389

ensembles, will prompt the community to incorporate observational uncertainty in future390

studies involving historical surface temperature data whenever possible.391

7 Open Research392

The final gridded and series ensembles are available on the GISTEMP website https://393

data.giss.nasa.gov/gistemp/ as well as AWS cloud storage. The operational GISTEMP394

code used to create the GHCN-ERSST-GISTEMP is also available on the GISTEMP web-395
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site. All of the R analysis code is available on github at https://github.com/nlenssen/396

gistempAWS. The full code base, source data and intermediate analyses are available on an397

AWS instance upon request.398
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Figure 8.
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