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Abstract— Our automated deep learning-based approach identi-
fies consolidation/collapse in LUS images to aid in the diagnosis
of late stages of COVID-19 induced pneumonia, where consol-
idation/collapse is one of the possible associated pathologies.
A common challenge in training such models is that annotating
each frame of an ultrasound video requires high labelling effort.
This effort in practice becomes prohibitive for large ultrasound
datasets. To understand the impact of various degrees of labelling
precision, we compare labelling strategies to train fully supervised
models (frame-based method, higher labelling effort) and inaccu-
rately supervised models (video-based methods, lower labelling
effort), both of which yield binary predictions for LUS videos on
a frame-by-frame level. We moreover introduce a novel sampled
quaternary method which randomly samples only 10% of the LUS
video frames and subsequently assigns (ordinal) categorical labels
to all frames in the video based on the fraction of positively
annotated samples. This method outperformed the inaccurately
supervised video-based method of our previous work on pleural
effusions. More surprisingly, this method outperformed the su-
pervised frame-based approach with respect to metrics such as
precision-recall area under curve (PR-AUC) and F1 score that are
suitable for the class imbalance scenario of our dataset despite
being a form of inaccurate learning. This may be due to the com-
bination of a significantly smaller data set size compared to our
previous work and the higher complexity of consolidation/collapse
compared to pleural effusion, two factors which contribute to label
noise and overfitting; specifically, we argue that our video-based
method is more robust with respect to label noise and mitigates
overfitting in a manner similar to label smoothing. Using clinical
expert feedback, separate criteria were developed to exclude data
from the training and test sets respectively for our ten-fold cross
validation results, which resulted in a PR-AUC score of 73% and
an accuracy of 89%. While the efficacy of our classifier using the
sampled quaternary method must be verified on a larger consol-
idation/collapse dataset, when considering the complexity of the
pathology, our proposed classifier using the sampled quaternary
video-based method is clinically comparable with trained experts
and improves over the video-based method of our previous work
on pleural effusions.

I. INTRODUCTION

Lung ultrasound (LUS) imaging has been used for the detection of
highly contagious respiratory infections resulting from COVID-19 [1-
6], as it has proven to outperform X-ray imaging and to be on par
with computed tomography (CT) [7]. The portability of ultrasound
imaging allows for diagnosing patients with contagious illnesses or
restricted mobility, which makes it particularly useful for bed-side
examinations or even point-of-care testing in particular in the late

stages of COVID-19 induced respiratory disease. At the same time,
the non-ionizing nature of ultrasound imaging allows for monitoring
the progression of a given disease over time without exposing the
patient to harmful radiation.

COVID-19 can result in multiple pathologies and imaging patterns
being present as the disease progresses from early to late stages.
These pathologies/imaging patterns vary from slight irregular and/or
thickened pleural lining combined with the interstitial syndrome (i.e.
lung scarring) in early stages, to consolidated lung regions with more
pronounced pleural irregularities/thickening, interstitial syndrome,
and pleural effusion (i.e. lung filled with fluid instead of air) [8].

The workflow for COVID-19 diagnosis using ultrasound typically
consists of two steps: (1) a highly trained sonographer acquires the
LUS images using a well-defined protocol (for example the one
described in [9]), (2) followed by pathology interpretation. Both
steps require considerable time and resources due to the extensive
image acquisition training required [10] and the complexity of LUS
images interpretation. These challenging aspects of the labelling and
interpretation effort are time and resource expensive and can be
alleviated by using machine learning-based automatic approaches to
facilitate the training of a novice sonographer (or non-medical user)
in acquiring LUS images using a standardised, reproducible method
by guiding the user, for example, via displayed visual clues; and
aiding the LUS images interpretation for pathology diagnosis.

Ultrasound findings in COVID-19 respiratory infection are initially
pleural irregularities, followed by B-lines, pleural thickening and then
development of small sub-pleural consolidation, which are typical
of an interstitial pneumonitis from other contagions. If progression
occurs an acute respiratory distress syndrome pattern results and other
respiratory complications may occur such as pleural effusion, lobar
pneumonia and pneumothorax, all of which can be identified readily
with ultrasound [5].

Lung ultrasound may also be used to predict clinical response
to intensive therapies such as prone ventilation or high positive
end-expiratory pressure [11]. One of the principal hindrances to
increased use of ultrasound in assessment of patients with acute
respiratory illness is the reliance on the considerable training and
experience required to perform and interpret ultrasound. This has
been compounded during the COVID-19 pandemic as learning to
perform ultrasound requires direct supervision and frequent contact
with patients. Operator training and experience may be alleviated by
using machine learning-based automatic approaches to facilitate the
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training of a novice sonographer (or non-medical user) in acquiring
LUS images using a standardised, reproducible method by guiding
the user, for example, via displayed visual clues; and aiding the LUS
images interpretation for pathology diagnosis.

The related literature on automatic diagnosis of COVID-19 using
LUS images revolves around using Deep Learning (DL) algorithms
trained on COVID-19 images [12-15] and on imaging patterns such
as B-lines and pleural thickening that are associated with COVID-
19 [16-20]. These DL algorithms consist of convolutional neural
networks (CNNs), which are presently considered the state-of-the-
art for automated image analysis given their capability to extract low
and high-level image features automatically. La Salvia M et al. [16]
implemented a 4- (0-3) and a novel 7- class approach containing
additional classes variations (namely 0, 0*, 1, 1*, 2, 2*, 3) to train
a residual CNN where the classes vary from containing only A-
line and B-lines (score 0) to artefacts resulting from the pleura and
consolidated or tissue-like patterns (score 3). Alternatively, Arntfield
et al. [17] used B-lines from patients diagnosed either healthy, hydro-
static pulmonary oedema, or COVID to train a residual CNN similar
to [16] to automatically detect COVID-19. In contrast, Baloescu
C et al. [18] created a custom supervised CNN to automatically
assess and diagnose B-lines in non-COVID patients and compared
their algorithm results to well-known algorithms such as ResNet and
DenseNet.

Sadik F et al. [12], instead, proposed an approach where spectral
mask enhancement (SpecMEn) and contrast-limited-adaptive his-
togram equalisation (CLAHE) pre-processing steps were used to
enhance LUS images by reducing the noise present, before being
implemented into a DL CNN for COVID-19 classification. Alterna-
tively, Muhammad G et al. [13] made adjustments to a modified ResF
CNN by fusing or combining the multiple layers of the CNN and
directing them into their own classifier, which was then trained on
the publicly available POCUS dataset, consisting of healthy, COVID,
and pneumonia LUS images. The POCUS dataset was initially used
in the approach proposed by Born J. et al. [21] where their custom
3 class DL CNN (POCOVID-Net) consisting of a modified VGG-16
NN was used to detect COVID-19 in LUS images.
Other works include Roy S et al. [22] who developed a COVID-19
severity scoring algorithm trained on a LUS dataset of patients. This
dataset consisted of patients with mild (label = 1) to severe (label =
3) COVID-19 pathology which was validated in a frame and video
method by trained sonographers. These images and their associated
labels were used to train a DL algorithm in a weakly supervised
way by providing segmented and image-based annotated ground truth
labels to a Spatial Transform Network (STN) to automatically localise
and classify severity of COVID-19 on a frame-by-frame basis. A
class was assigned to each severity by providing a segmented ground
truth label and was fed into a STN that determined the spatial
relationship between the pathology and its location in each video and
associated frame. Finally, our group in a previous work [23] focused
on automatic identification and classification of pleural effusion using
a modified DL COVID severity algorithm implemented initially
by [22].

The approach proposed here further develops the pathology clas-
sification algorithm of [23] by identifying consolidation/collapse in
patients that only exhibit or contain this pathology and are represen-
tative of COVID-19 respiratory issues in late stages. The novelty of
this work includes the application to a unique consolidation/collapse
dataset and the development of the video-based method of our
previous work [23].

This development of the video-based method is based on the sam-
pling of frames from LUS videos and bears similarity to label smooth-
ing [24], a method that often improves the performance of classifiers

trained on noisy labels (i.e. labels that may be incorrect) [25]. The
opposing points of view for label smoothing are that (1) uniform
noise is being injected to the labels hence accentuating the problem
of noisy labels and that (2) the aforementioned smearing of label
noise may reduce overconfidence in any one training example [25].
In practice, however, label smoothing has been demonstrated to be
effective at improving classifier performance [25].

More concretely, the sampled video-based method is similar to
label smoothing in the sense that it “smears” the noise such that the
noise distribution is more uniform. One way this is done is through
sampling frames from a video then assigning a score from 0-3 (i.e.
quaternary labelling) depending on the number of frames containing
the pathology (i.e. 0 label: no frames with pathology, 1-3 labels:
increasing percentage of frames with pathology). The label selected
is then assigned to each frame within the video, thus significantly
reducing labelling time. Since a single label is being assigned to all
frames of the video, the labelling noise becomes more uniform.

II. MATERIALS AND METHODS

A. Dataset

This study was approved by The Melbourne Health Human Re-
search Ethics Committee (HREC/66935/MH-2020) and were per-
formed in accordance with the Declaration of Helsinki. Lung
ultrasound images used in this study were previously acquired
from a previous study where written informed consent was ob-
tained from all participants [26] (Melbourne Health Human Re-
search Ethics Committee approval HREC/18/MH/269, trial registra-
tion: http://www.ANZCTR.org.au/ACTRN12618001442291.aspx) of
patients admitted to hospital under an internal medicine unit with an
initial diagnosis of cardiorespiratory disease. Lung ultrasound was
performed using a Sonosite X-Porte portable ultrasound imaging
system (Fujifilm, Bothell, WA, USA) with a 1-5 MHz phased
array transducer. Lung ultrasound was standardized and followed the
iLungScan protocol as established by The University of Melbourne,
Ultrasound Education Group [27] and was performed by a physician
trained and experienced in point of care lung ultrasound (XC) [26]
and reviewed for diagnostic accuracy by an expert in lung ultrasound
(DC, AR or CR). Patients were in a supine position for the examina-
tion, which was performed on all 3 anatomical zones of both lungs
(Figure 1).

This dataset was collected following an in-house clinical proto-
col [28]. The protocol involved acquiring LUS imaging sequences
of patients from 6 distinguished scanning regions as shown in
Figure 1. The patients consisted of 10 unhealthy and 18 healthy
patients that were admitted to the internal medicine department at
the Royal Melbourne hospital where a cardiac, lung, femoral and
vein ultrasound sequence were taken to determine a cardiopulmonary
diagnosis.

All images (125 patients) were stored in DICOM format and inter-
pretation by the physician recorded on a standardized form. The avail-
able dataset of images (125 patients) were reviewed for selection of
images for inclusion in this study by experts in lung ultrasound (AR,
CR and DC) that contained normal lungs, collapse and consolidation.
A normal lung pattern was identified by the presence of normal
lung sliding or lung pulse, reverberation artifacts from the pleura,
and absence of atelectasis (collapse) or consolidation (Figure 2).
Discrimination between lung atelectasis (collapse) and consolidation
using lung ultrasound is not always possible and when present they
are usually both present. Hence, for this preliminary study they were
both considered as one pathology: collapse/consolidation. Discrimi-
nation between collapse and consolidation may be a future project.
Collapse/consolidation was defined as an area of increased tissue
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Fig. 1. Describes the scanning locations: (A) Right Anterior (RANT)
and Left Anterior (LANT); (B) Lateral Posterior Upper (LPU), Lateral
Posterior Lower (LPL), Right Posterior Upper (RPU), and Right Posterior
Lower (RPL); (C) Lateral view for LANT, LPU, and LPL.
Source: Adapted from [5].

density (tissue pattern) in the lung space that has the appearance of a
solid organ, such as the liver (‘hepatization’). Other features used to
assist in diagnosis of collapse/consolidation include air bronchograms
(hyperechoic dots) and loss of lung volume, however these were not
required for diagnosis.

Representative cases of LUS frames are given by Figure 2. Only
three of the six regions are depicted since the dataset only has
consolidation present in those regions.

A total of 28 patient were scanned resulting in 51 videos and
34318 frames and the distribution of unhealthy and healthy patients
in the dataset and the pathologies present are shown in Table II.
An unhealthy patient is defined when a video or frame that contains
signatures of consolidation and possibly of other lung pathologies is
present in the corresponding dataset; while a healthy patient is defined
as having neither consolidation or any other known respiratory issue
present imaging patterns (anatomical or artefactual) in the LUS
images and videos provided by Royal Melbourne Hospital [28].

In Table I, with respect to the first column (number of patients), the
columns under the heading pathology diagnosis show the pathologies
present, while the last 2 columns show the number of videos and
frames associated with the patients of each row. The last row of
the table shows the number of patients that do not have any of the
presented pathologies in the pathology diagnosis columns nor any
other pathology. These patients are considered the control group (i.e.
the healthy patients).

The class imbalance of the dataset is reflected in the fact that 89%
of the test set ground truths across folds are negatives, with true
negatives comprising the disproportionate majority of negatives for
each labelling method (Table II).

RANT RANT

RPL RPL

LPL LPL

Fig. 2. Examples of unhealthy (left column) and healthy (right column)
patients for 3 available scanning regions (viz. RANT, RPL, LPL). The
unhealthy patients are those for which consolidation is present, and are
depicted here with a red bounding box encompassing the pathology,
while the healthy patients are those for which no pathology is present.

1) Dataset exclusion criteria: The image quality for unhealthy
and healthy LUS videos/frames contributed to what patients and
their associated videos and frames would be included for both the
training of the algorithm and the ground truth labelling done by
the trained sonographers. Clinical experts, namely, an experienced
sonographer and a certified medical doctor, labelled the dataset
described in Section A to provide the DL model with ground truth
labels for training purposes. Each LUS frame was assigned a binary
label indicating if it contained clinical signs of consolidation/collapse
(Score 1) or not (Score 0).

An initial analysis of the dataset contained inconsistencies between
the diagnosis presented in the medical report upon validation from
an expert and provided a categorical division of a pathology given
per patient to a pathology given per patient per video. These images
along with images acquired from improper US probe placement or
containing heavy imaging artefacts were excluded from the con-
solidation/collapse dataset until they could be further reviewed and
validated. When the medical reports provided could be validated
and accounted for, these images were reintroduced into the consol-
idation/collapse overall dataset or if they did not meet the criteria
mentioned above, they were excluded from use for training the
algorithm.

A further exclusion criterion we refer to as the clinical criteria
presented in Section A2 takes the consolidation/collapse dataset after
the initial exclusion of images and provides a clinical labelling
that is further divided into 3 categories (Y/Y*/N). The original
consolidation/collapse dataset consisted of 11 patients or 41 videos
(5450 frames), from there, 10 patients or 36 videos (4910 frames)
remained from the initial exclusion criteria and finally after the
clinical criteria this led to a final consolidation/collapse training
dataset of 9 patients or 27 videos (3827 frames) and is shown in
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TABLE I
DESCRIBES THE PATHOLOGY DISTRIBUTION AMONG PATIENTS.

Pathology Diagnosis

Number of
patients Consolidation Collapse PE APO Interstitial

Syndrome
Number of

videos
Number of

frames

2 ✓ 7 1107
3 ✓ ✓ ✓ 10 1233
3 ✓ ✓ ✓ 10 1486
1 ✓ ✓ 2 291
1 ✓ ✓ 4 449

18 Healthy patients (no pathology present) 18 29167
Abbreviations: Acute Pulmonary Oedema (APO), Pleural Effusion (PE)

Section C.
2) Criteria for clinical significance of algorithm performance:

Once the performance of the algorithm was calculated these same
videos were once again given to a trained sonographer with the intent
of providing a video-based evaluation on a per patient per scanning
region following a set of criteria. These criteria are based on the
sonographer’s confidence level in determining if a scanning region
contains consolidation/collapse or not based on the video and frames
image quality that can be affected by many contributing factors.

This criterion along with the pathology identification protocol [28]
provided by the Royal Melbourne hospital has given a 3-scoring sys-
tem for identifying consolidation/collapse and anatomical landmarks
to determine LUS scanning position (ex. RANT, LANT, RPL, LPL,
etc) in already consolidation/collapse identified videos and is shown
in Table IV. These labels include Y, Y* and N representing the level
of confidence in identifying frames associated with each scanning
region on a per patient per video level. A label of N represents an
inconclusive decision in determining both the scanning region and
consolidation/collapse identification due to varying factors. Y* repre-
sents frames in the associated video having both a high confidence of
frames containing consolidation/collapse with the inclusion of frames
that are inconclusive in identifying anatomical landmarks. Finally, Y
represents frames with a clear determination of consolidation/collapse
being present and its associated anatomical markers.

B. Pre-processing

An open-source DICOM processing package (DICOM package
used in python called Pydicom) was used to extract the original pixel
data from the compressed DICOM format. Next, the various overlays
inside and outside the ultrasound sector, including text, watermarks,
and trademarks from the ultrasound imaging system, were replaced
with black background pixels. The final step included cropping the
images from 960 × 720 pixels to a size of 806 × 550 pixels which
contained the ultrasound sector to reduce the dataset size before being
input into the DL model and only include the relevant information
contained in the image.

C. Frame-based labelling strategy

In the case of unhealthy patients, if the presence of consolida-
tion/collapse could not be confidently identified in each frame using
the provided protocol [28], these frames were labelled indecisive
or inconclusive and were further examined by additional multiple
trained experts to determine whether these frames are representative
of the pathology. If an indecisive or inconclusive label was given
and caused by poor image quality arising from artefacts overlap-
ping/overshadowing the pathology due to inadequate ultrasound probe
placement, these images were not included in the training of the algo-
rithm. Table III represents the number of frames and their associated

scanning region locations of the consolidation/collapse dataset. The
training dataset for the unhealthy or consolidation/collapse consists of
the frames and scanning positions after the process of the exclusion
and clinical criteria has been applied. Where the healthy patients
consist of equivalent number of frames and respective scanning
regions.

In Table III, the number of frames considered, and their respective
anatomical scanning regions are shown before and after any criteria
were applied. These frames are used to train the algorithm by
providing the ideal representation of the imaging patterns presented
in LUS of patients/frames diagnosed with consolidation/collapse.

D. Video-based labelling strategies
Besides the standard frame-based labelling approach described in

Section C, video-based labelling strategies were also explored, as
described Section D, to reduce labelling time.

While the training of the frame-based model is considered su-
pervised learning, since frame-level predictions are evaluated using
frame-level labels during training, the training of the video-based
models is considered inaccurately supervised learning, a form of
weakly supervised learning. This is because it is possible for the
frame-level labels used for training to have errors [29]. Such errors
result because each video-based labelling strategy involves using a
subset of frames from each video to determine the single label that
is given to all frames of the video (Figure 3).

The all-or-nothing binary method takes a label/score of the video
given by a de-anonymised medical report and is used for all the
associated frames in that video. Whereas the sampled binary (0-1)
and quaternary (0-3) video-based methods take a random 10% sample
of all the labelled frames done by trained sonographers and give that
same label to the overall video that these frames were taken from.

1) All-or-nothing video-based labelling: For the all-or-nothing
video-based approach, each patient was provided with iLungScan™
(Heartweb Pty Ltd, ITeachU Ltd, ACN 146184812) reports from

LUS video

 

Frames
All-or-nothing binary method: medical report for the video → video label → frame labels

Sampled methods: 10% of frames labelled frame-by-frame → video label → frame labels

Frame based labelling methods (supervised): frame-by-frame labelling → frame labels 

Video-based labelling methods (inaccurately supervised):  video label → frame labels

Fig. 3. Video-based labelling strategies: the all-or-nothing binary video-
based method (Section II.D1) assigns the video label to all frames of the
video, and the sampled binary and quaternary video-based methods
(Section II.D2) take the label of a random 10% sample of the frames
associated with the video and assign that label to each frame of the
respective video.
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TABLE II
THE CLINICAL CRITERIA USED TO SCORE LUS VIDEOS THAT HAVE BEEN EVALUATED BY THE ALGORITHM BEFOREHAND. THE LABELLING SYSTEM

DETERMINES A CERTAIN CONFIDENCE OF AN EXPERIENCED SONOGRAPHER TO IDENTIFY THE OVERALL RATING OF A VIDEO BASED ON THE

CORRESPONDING CONSOLIDATION/COLLAPSE IMAGING PATTERN PER FRAME USING ANATOMICAL MARKERS, IMAGE QUALITY, AND OTHER

POSSIBLE OBSTRUCTIONS FOR APPROPRIATE IDENTIFICATION.

Y Y* N

Obstructions to
identification

Little to no
ambiguity or

obstructions to
view

Possible causes:
- Artefacts overlapping

- Poor ultrasound probe placement

Consolidation/collapse
identified Conclusive frames

Conclusive frames

Inconclusive frames
Inconclusive frames

Anatomical
landmarks/scanning

regions identified
Conclusive frames

Conclusive frames

Inconclusive frames
Inconclusive frames

Image quality Good to high Not optimal to
normal Not optimal / poor

TABLE III
DESCRIBES THE CONSOLIDATION/COLLAPSE DATASET DISTRIBUTION

BEFORE AND AFTER APPLICATION OF THE DATA EXCLUSION AND

CLINICAL CRITERIA.

Number of frames for training

RANT RPL LPL Total

Original data 807 3065 1578 5450

After exclusion criteria 507 2825 1578 4910

After clinical criteria 507 2071 1249 3827

LUS experts, developed by the Ultrasound Education Group at the
University of Melbourne and validated by other experts from the
University of Melbourne and QUT. These reports state the severity
of consolidation/collapse present (as well as other pathologies) in the
six scanning positions and are marked with a checkmark as shown
in Figure 4.

ANT     PU     PL ANT     PU     PL

Collapse

Consolidation

APO/Int.Synd.

Pneumothorax

Effusion

LungscanLungscan

Fig. 4. Example of the information provided by the medical report where
each LUS scanning region consists of a video that has been checked
marked if it contains a pathology.

This video-based labelling method was used in a previous work of
our group on pleural effusion [23] and has been implemented here
with a binary label based on the initial medical reports. Specifically,
a single binary label indicating whether consolidation/collapse was
present in an LUS video was obtained from the medical report, and
this label was used to label each of the frames within the video

(Figure 3).
Effectively, if a video frame contained a single video framed

exhibited signatures of consolidation/collapse, all the remaining
frames of the video would be incorrectly labelled as having con-
solidation/collapse. The all-or-nothing method was named after this
limitation, whereby videos containing few frames with consoli-
dation/collapse present produce more frames that are incorrectly
labelled than are correctly labelled. The shortcoming is addressed by
the sampled video-based labelling methods described in the following
section.

2) Sampled binary and sampled quaternary video-based la-
belling: For the sampled binary and sampled quaternary labelling
methods (Figure 5), a label was assigned to a video and extended
to its constituent frames based on the number of frames exhibiting
signatures of consolidation/collapses as a percentage of the total
number of frames (Figure 3). For these sampled labelling methods,
given an LUS video, 10% of its frames were randomly sampled. In
our case, labels were readily available for these sampled frames from
the frame-based labelling method (Section C). However, in practice,
a clinical expert would review the LUS video before stepping through
the sampled frames, assigning each frame a binary label of 0 (healthy)
or 1 (unhealthy).

After the 10% sampling of frames from an LUS video, all frames
of the video were then assigned the same label depending on
the proportion of unhealthy sampled frames, i.e. frames containing
signatures of pulmonary consolidation/collapse (Figure 5). For the
binary method, a label of 0 was given to all video frames if less
than half the sampled frames were unhealthy. Otherwise, a label of
1 was given. For the quaternary method, on the other hand, if the
proportion of unhealthy sampled frames was lower than 25%, a label
of 0 was given. Otherwise, a label of 1 was given for a proportion
less than 50%, and otherwise a label of 2 was given for a proportion
less than 75%. A label of 3 was given for the remaining interval of
75%-100% inclusive.

E. Cross-validation
As per [22] and [23], the train-test splits were performed at the

patient level during cross-validation, i.e. all the images of a given
patient were either included in the training or in the test set. The
patient split was performed by assigning a binary label of healthy
or unhealthy (i.e. 0 or 1, respectively) to each of the 28 patients
using the medical reports described in Section A. This could be done
unambiguously because there were no patients for whom a mixture
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LUS Video and Frames

10% of frames randomly sampled → Score derived from the sampled frames → Score given to all frames 

0 0 0 11 0 0000 0
1. Expert reviews the whole video 

    then labels each frame as having 

    consolidation present (1) or not (0)

2. The number of positive frames is 

    expressed as a fraction x of the

    total number of sampled frames

3. A score dependent on the number 

    of classes n is given by ⌊x · n⌋ 

0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00

0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00

Fig. 5. Illustrates the flowchart for the sampled binary and quaternary video-based labelling methods.

of healthy and unhealthy LUS videos was collected, as determined
by the medical reports.

Stratified 10-fold cross-validation was used. Each test set con-
tained video frames from exactly one patient for which consolida-
tion/collapse was present, with the remaining video frames belonging
to healthy patients for which no pathology was present. Since there
was a total of 9 patients for which consolidation/collapse was present,
one of the 10 folds had a test set containing only healthy patient video
frames and was hence excluded. Note that for the sampled labelling
methods of Section D2, the 10% sampling used to generate labels
was performed once initially, rather than once per fold.

The trade-off between the quantity and quality of training examples
is managed through the use of the N/Y/Y* video categories from
Section A2. Unlike the training examples from the videos labelled
N, the Y* videos were deemed of high enough quality to be used
for training in addition to the Y videos. However, since they did not
possess the near-perfect inter-observer agreement of the Y videos,
they were not considered of sufficient quality to be included in the
test set to evaluate the algorithm performance. Hence ultimately the
test set consisted solely of healthy videos and Y videos.

During the cross-validation process for training the algorithm, there
was an equivalent number of frames between healthy and unhealthy
frames that consisted of the same scanning region. Therefore, per
training fold the scanning regions used for healthy and unhealthy
frames was kept relatively the same to represent a training done on
a balanced dataset.

F. Deep learning model

A DL architecture consisting of a CNN and Spatial Transformer
Network (STN) [30] was employed. Specifically, it used a Reg-
ularised Spatial Transformer Network (Reg-STN) [22] to localise
signatures of pulmonary consolidation/collapse. The Reg-STN uses
ordinal labels (i.e. binary or quaternary labels in our case) as opposed
to the explicit consolidation/collapse locations per frame [22]. It
creates an image crop used by the CNN for feature extraction to
ultimately produce a prediction [22].

The algorithm was optimised using the same loss function as Roy S
et al. [22], who employed it for COVID-19 severity score estimation,
an ordinal regression [31] problem. This overall loss function, taking
the form of a sum of terms, incorporated as one of its terms a
soft ordinal regression (SORD) [32] cross-entropy loss function to
allow long-distance errors to be penalised harsher than low-distance
errors [22].

G. Training approach

Since the training and test sets were formed using stratified
cross-validation, their class distributions reflected that of the whole

dataset, with far healthier LUS frames than unhealthy frames. Hence,
following [23], a batch-level class balancing was implemented using
the weighted random sampler from PyTorch [33, 34]. As in [22], the
DL model was trained using an Adam optimiser with an learning rate
decay of 1 × 10−4, early stopping on the training loss, and online
data augmentation [22]. This training was run up to a maximum of
80 epochs, using a batch size of 32 and an initial learning rate of
1× 10−5. For the frame-based labelling, all-or-nothing video-based
labelling, and binary video-based labelling the number of classes of
the SORD loss function described in Section F was set to n = 2,
while for the quaternary video-based labelling method n = 4 was
used.

The network was trained on a single Nvidia Titan RTX GPU
with 24 GB of memory installed on a workstation running Linux
with 128GB of memory. The GPU workstation used an Intel i9-
9820X CPU with 20 cores running at 3.30 GHz (Lambda Labs, San
Francisco, CA, USA).

H. Evaluations
1) Evaluation metrics: The models trained using both the frame-

based labelling approach and the video-based labelling approaches
produced frame-level predictions, which were evaluated against the
frame-based binary ground truths as in [23].
To evaluate the quaternary method in a manner comparable to the all-
or-nothing and sampled binary methods, quaternary labels 0 and 1
were considered negatives (i.e. healthy) with the rest being considered
positives (i.e. unhealthy). That is, letting a denote the test set label
and p denote the prediction, a linear projection from the 4 × 4
quaternary confusion matrix [Qap] to the binary confusion matrix
was defined by the equations

TP = Q22 +Q23 +Q32 +Q33

FP = Q02 +Q03 +Q12 +Q13

FN = Q20 +Q21 +Q30 +Q31

TN = Q00 +Q01 +Q10 +Q11

which respectively define the true negatives TN, false positives FP,
false negatives FN, and true positives TP for the quaternary method.
Note that Qap = 0 when a = 1 or a = 2 since the frame-
based ground truths are binary. This method allowed metrics such
as accuracy, precision, recall, and F-score to be defined using binary
formulae for the quaternary method and thereby compared to the
same set of metrics applied to the frame-based method and the all-
or-nothing and sampled binary video-based methods. A classification
threshold of 0.5 was used to separate the positive and negative
classes to evaluate these metrics and was not calibrated because the
calibration would require us to reduce the size of our already small
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training and test set sizes to afford a validation set for threshold
tuning.

Given this imbalance, the appropriate classification threshold-
independent measure of skill is PR-AUC score, which does
not account for true negatives and thereby exaggerate classifier
performance, unlike ROC-AUC score [35]. Additionally, precision-
recall curves [35] were also used for evaluation. Each point on
a precision-recall curve corresponds to a possible value for the
classification threshold that separates negative and positive classes.
This threshold is applied to the predicted score for the positive class,
or the sum of the predicted scores for the positive classes (viz. 2
and 3) in the case of the quaternary method. Precision-recall curves
are summarised by the Precision-Recall curve Area Under Curve
score (PR-AUC), which corresponds to the average precision across
the precision-recall curve.

2) Evaluation of statistical significance: To evaluate the signifi-
cance of PR-AUC scores, the statistical procedure suggested by [36],
stratified bootstrapping, was used. Stratified bootstrapping involves
drawing n positive samples and m negative samples from the dataset
with replacement for each of I iterations to produce a distribution of
I bootstrapped PR-AUC scores. Stratification is necessary because
PR-AUC scores are sensitive to class imbalance [36], with the n : m
ratio giving the vertical centre point for a horizontal line, which is
the precision-recall curve for a classifier with no skill.

Specifically, for each fold, given the test set predictions for a pair
of labelling methods to be compared, a pair of PR-AUC scores was
obtained, whose difference we refer to as the observed difference. To
test if the two scores for each fold were significantly different from
each other, and hence test the null hypothesis that the performances of
the pair of labelling methods were insignificantly different, stratified
bootstrapping with 10,000 iterations was employed. For each fold,
two sets of bootstrapped PR-AUC scores, corresponding to a pair of
labelling methods, were obtained and used to form the distribution
of 10,000 PR-AUC score differences. Under the null hypothesis, the
two sets of PR-AUC scores would have been sampled from the same
distribution, so that the distribution of differences would have mean
zero; the alternate hypothesis, on the other hand, is that the respective
means of the two sets of bootstrapped scores are different. Hence,
to form a distribution able to test the null hypothesis, the observed
difference was subtracted from each of the 10,000 PR-AUC score
differences to form a mean-shifted distribution of differences, from
which a p-value was finally obtained by performing a t-test. Note
that an identical p-value, for a fold and pair of labelling methods,
could have been obtained by performing a paired-samples t-test on
the two mean-shifted distributions of PR-AUC scores, as opposed to
differences, corresponding to each labelling method.

Ultimately, recalling from Section E that one of the 10 folds
was excluded, for each pair of labelling methods, 9 p-values cor-
responding to 9 folds were obtained. Each p-value indicated whether
the pair of PR-AUC scores corresponding to the pair of labelling
methods for a given fold were significantly different. A Bonferroni
correction [37, 38] was used to correct for the multiple comparisons
problem, whereby the chance of falsely rejecting the null hypothesis
by chance alone increases with the number of repetitions of a
family of hypothesis tests testing the same hypothesis. Therefore,
a 5% chosen significance level was divided by 9 folds to yield a
0.56% Bonferroni-corrected significance level. Using this Bonferroni-
corrected significance, if the null hypothesis were true, 5% of the
tests performed are expected to have their null hypothesis rejected
by chance alone. Hence, out of the 9 p-values obtained to compare
labelling methods, it is sufficient that one of them (i.e. 11% of the p-
values) is below the Bonferroni-corrected significance level of 0.56%

to conclude that the labelling methods are significantly different.
3) Inter/Intra-observer Tests: To perform the inter/intra-observer

test metrics, two independent (1 MD from Royal Melbourne, 1 clini-
cally trained LUS sonographer) experts were tasked with performing
clinical labelling of the original consolidation/collapse (as described
in Table II of the original patient dataset) and the healthy patient data
was taken as is based on the provided medical reports. The labelling
done by each expert comprised of a per frame binary scoring system
where a score of 0 (no consolidation/collapse present) or a score of 1
(consolidation/collapse present) was assigned to all 12 patients from
Table II. The scope of a given score of 0 includes frames that are
conclusive for no pathology present and inconclusive or indeterminate
for pathology not being present and is further described (on a per
video basis) in Section A.

The inter/intra-observer agreement was calculated using a percent
agreement given by the Cohen kappa score [39]. This metric is cal-
culated by dividing the number of agreements between the observers
with the total number of the scores (simpler percent agreement) but
it takes into account with the consideration of taking into account the
probability of chance agreement between observers.

III. RESULTS

For the specific classification threshold of 0.5 that was used,
with respect to accuracy, the frame-based method performed best
(accuracy: 90.1%), with the video-based methods performing from
best (accuracy: 88.7%) to worst (accuracy: 87.2%) in the following
order: sampled quaternary, sampled binary, all-or-nothing binary (Ta-
ble V). However, given the class imbalance of the dataset (Table IV),
accuracy reflects the ability of each method to produce true negatives.
Indeed, the order of accuracies from the highest performing frame-
based method to the lowest performing all-or-nothing binary method
is identical to the order from highest to lowest of the percentage
of true negatives produced (Table IV). Hence F1 score is a more
suitable metric for evaluation. For the specific classification used,
with respect to F1 score, the video-based methods (inaccurately
supervised learning methods) outperformed the frame-based method
(supervised learning method) with the sampled quaternary video-
based method (F1 score: 67%) performing best and the frame-based
method (F1 score: 55%) performing worst (Table V).

When considering the class imbalance of the dataset, it is partic-
ularly important to calibrate the classification threshold [40]. Hence,
other Table V metrics are less informative than the PR-AUC score, a
classification threshold-independent metric. With respect to PR-AUC
score, the Table V methods performed from best to worst in the same
order as they performed for F1 score with the sampled quaternary
video-based method performing best (PR-AUC score: 73%) and
the frame-based method performing worst (PR-AUC score: 60%).
Additionally, with respect to PR-AUC score, the sampled quaternary
method outperformed the sampled binary method by 11% and the
all-or-nothing binary method by 9% (Table V).

The precision-recall curves of the best and worst folds are judged
using PR-AUC score and given by Figure 6. Recall that PR-AUC
score is sensitive to the ratio between consolidation containing ground
truth frames to the total number of the frames, which defines the
precision-recall curve for a classifier with no skill. This ratio across
folds (mean/std (%): 11.6 ± 8.1) has maximum 29.1% and minimum
1.4%.

As described in Section H2, a Bonferroni-corrected significance
level of 0.56% was used to assess for each pair of labelling methods,
the 9 p-values corresponding to 9 folds. In all cases, the percentages
of folds for which the null hypothesis was rejected were significantly
greater than the 5% rate expected due to chance if the scores
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Fig. 6. The best and worst fold test set precision-recall curves across the 10 folds for which videos labelled N (Section II.A2) were excluded
from the training, and for which videos labelled Y* were excluded from the test set. These are given with their associated average precisions given
by the Area Under Curve (AUC) scores, for models trained using the various labelling methods: the sampled quaternary and binary video-based
methods, the all-or-nothing binary video-based method, and the frame-based method. One of the 10 folds, which contained only healthy frames,
was excluded from the results.

corresponding to a pair of labelling methods were insignificantly
different. More concretely, the sampled quaternary method was found
to be significantly different compared to the sampled binary method
(mean/std p: 0.12 ± 0.29) for 50% of folds, the all-or-nothing
binary method (mean/std p: 0.17 ± 0.29) for 50% of folds, and
the frame-based method (mean/std p: 0.17 ± 0.3) for 60% of folds.
Additionally, the sampled binary method was found to be significantly
different compared to the all-or-nothing binary method (mean/std p:
0.24 ± 0.26) for 30% of folds, and the frame-based method (mean/std
p: 0.16 ± 0.27) for 60% of folds. Finally, the frame-based method
was found to be significantly different from the all-or-nothing binary-
based method (mean/std p: 0.19 ± 0.36) for 70% of folds.

The metrics for the analysis of inter-observer agreement is given
by Table VI. In the columns under the heading data after criteria,
the inter-observer metrics (viz. Cohen kappa, % agreement) are used
to show the agreement between two experts in labelling frames
associated with imaging patterns from the consolidation/collapse
pathology. These metrics are calculated before and after the clin-
ical criteria had been applied to demonstrate to what degree the
experts agree on consolidation/collapse frames labelled Y (high
image quality, conclusively diagnosed pathology, clear anatomical

markers), labelled Y* (conclusively diagnosed pathology, exactly one
of: unclear anatomical markers or lower image quality), and labelled
N (e.g. lower image quality, inconclusively diagnosed pathology,
unclear anatomical markers). The expert 1 / algorithm and expert
2 / algorithm rows show the percent agreements of each expert’s
labels, and the classifier’s predictions for the test set, which includes
a mixture of healthy and unhealthy patients for each of the labelling
methods. Since the training of the algorithm excluded the frames that
did not satisfy the clinical criteria and were therefore labelled N, the
percent agreement and Cohen kappa scores are absent from these
rows.

The quaternary method performs the best in terms of percent
agreement with the worst performing method being the all-or-nothing
video-based method (Table VI). This metric along with the other
metrics (e.g. PR-AUC, accuracy) show that the performance of the
algorithm is at least on par if not at certain times slightly better than
the trained experts after the application of the data exclusion criteria
and the clinical criteria.
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TABLE IV
THE MEAN/STD TEST-SET CONFUSION MATRIX FOR THE 10-FOLD CROSS VALIDATION TEST-SET RESULTS WITH VIDEOS LABELLED N

(SECTION II.A2) EXCLUDED. POSITIVES CORRESPOND TO FRAMES FROM LUS VIDEOS THAT CONTAIN SIGNATURES OF CONSOLIDATIONS (AND

ASSOCIATED IMAGING PATTERNS) WHILE NEGATIVES CORRESPOND TO FRAMES THAT DO NOT.

Mean / std (%) with Y* frames excluded from the test set

Method TP FP FN TN

Frame-based 5.68 ± 4.66 5.93 ± 7.18 4.08 ± 5.52 84.31 ± 28.82

All-or-nothing binary
video based 6.75 ± 3.90 9.74 ± 13.80 3.01 ± 3.46 80.50 ± 31.80

Sampled binary video
based 6.73 ± 3.98 9.51 ± 11.43 3.03 ± 3.52 80.73 ± 30.94

Sampled quaternary
video based 7.59 ± 4.08 8.16 ± 11.72 2.17 ± 3.42 82.08 ± 33.69

One of the 10 folds, which contained only healthy frames, was excluded from the results. Here Y* frames are frames Y* videos (Section II.A2).

TABLE V
THE MEAN/STD TEST-SET METRICS FOR THE 10-FOLD CROSS VALIDATION, FOR WHICH VIDEOS LABELLED N (SECTION II.A2) WERE EXCLUDED.

Mean / std (%) with Y* frames excluded from the test set

Method PR-AUC Recall Precision F1-Score Accuracy

Frame-based 60.08 ± 39.38 63.28 ± 36.62 53.01 ± 37.44 54.69 ± 38.02 90.18 ± 9.35

All-or-nothing binary
video based 64.37 ± 39.32 69.18 ± 28.12 56.27 ± 37.86 59.10 ± 34.96 87.21 ± 17.07

Sampled binary video
based 62.39 ± 40.09 69.22 ± 28.30 52.75 ± 36.37 55.92 ± 32.31 87.41 ± 14.97

Sampled quaternary
video based 73.34 ± 30.37 83.67 ± 23.62 59.26 ± 28.14 66.78 ± 25.13 88.73 ± 15.87

One of the 10 folds, which contained only healthy frames, was excluded from the results. Here Y* frames are frames Y* videos (Section II.A2).

TABLE VI
METRICS FOR THE INTER-OBSERVER AGREEMENT ANALYSIS.

Cohen kappa score / % agreement

Comparison Data after criteria

Expert 1 / Expert 2 0.537 0.956 0.552 0.149
[Y/Y*/N]
(0.805)

[Y]
(0.99)

[Y*]
(0.91)

[N]
(0.58)

Frame-based All-or-nothing
video

Sampled binary
video

Sampled
quaternary
video

Expert 1 / Algorithm

{Y/Y*}
(90.088)

{Y}
(91.106)

{Y/Y*}
(87.626)

{Y}
(89.154)

{Y/Y*}
(87.823)

{Y}
(89.240)

{Y/Y*}
(89.791)

{Y}
(90.994)

Expert 2 / Algorithm

{Y/Y*}
(90.144)

{Y}
(91.602)

{Y/Y*}
(87.767)

{Y}
(89.186)

{Y/Y*}
(87.835)

{Y}
(89.202)

{Y/Y*}
(89.956)

{Y}
(91.026)

Key: (% agreement), [video quality], {clinical criteria (unhealthy/healthy dataset)}
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IV. DISCUSSION

In this paper, we utilised an automated deep learning-based ap-
proach that identifies consolidation/collapses in LUS images to aid
in the diagnosis of late stages of COVID-19 induced pneumonia. Here
we extend our previous work on pleural effusion pathology classifi-
cation [23] by proposing an improvement to its video-based method,
namely, through our sampled quaternary video-based method. We
have evaluated this quaternary method by comparing it with the
frame-based method and video-based method of our previous pleural
effusion work and with the sampled binary video-based approach.

There is a trade-off between the quantity and quality of training
data: By increasing the quality of the dataset by excluding videos, we
reduce our dataset size. This trade-off was managed by excluding N
but not Y* video frames from the training set, preferring instead of
excluding only Y* from the test set. This exclusion of Y* from the
test set was done because, in order to evaluate how well the compared
classifiers fare against the challenge of label noise, the test sets ground
truths must be virtually free of it. For images that do not fall under the
Y criteria (Section A2), the inter-observer agreement varies greatly
as the diagnosis of a given frame with consolidation/collapse gets
more inconclusive as the contributing factors begin to accumulate
These contributing factors range from varying image quality, location
of key anatomical markers, artefacts hindering or obstructing the
associated imaging pattern found with consolidation/collapse, and
improper or poor placement of US probe resulting in unusable or
highly questionable image.

While it is hard to gauge the performance of the model with
respect to false positives and false negatives, since those metrics
are with respect to a specific classification threshold of 0.5, domain
knowledge may be leveraged. In the case of false positives, for
which the algorithm predicted the frame as containing consolida-
tion/collapse when there was none, the algorithm sometimes labels
possible artefacts that resemble consolidation/collapse or liver like
features if located in the RPL scanning region. A possible approach
to addressing this issue is by providing the anatomical information
of the liver and accounting for that during the trainings.In the case
of false negatives, for which the algorithm predicted the frame as
being free from consolidation/collapse when it was instead present,
the misclassified frames were sometimes drawn from LUS videos for
which the consolidation/collapse was hidden beneath an inflated lung
and was only visible when the patient exhaled. This limitation could
be addressed similarly to the false positive case, by accounting for
patient inhales/exhales during training. Alternately, patient breathing
rhythm could be accounted for automatically by an algorithm that
accounts for the temporal relationship between frames.

To evaluate our classifiers in a classification-threshold independent
manner, the PR-AUC score was used in place of the more common
ROC-AUC score. This is because the dataset employed had an
imbalanced class distribution [35]. The imbalanced class problem
was exacerbated by the fact that in the case of the quaternary
labelling method, there are three decision thresholds to be calibrated
as opposed to one. While this is a limitation in our case, it may be
argued that in cases where decision threshold calibration is feasible,
the extra degrees of freedom of the quaternary method allows a more
fine-tuned threshold calibration compared to the binary methods.

The fact that the sampled quaternary method outperformed the
sampled binary method with respect to the PR-AUC score is expected,
and in fact this quaternary method performed best overall in this
respect. This is because the quaternary approach performs a smoother
transition between healthy and non-healthy classifications by provid-
ing 4 classes rather than 2. This increase in class granularity may be
limiting the maximum ascent in training loss per training iteration

due to the inherent error of video-based labelling in comparison to
frame-based labelling. More concretely, the fact that the overall loss
function used incorporated a SORD cross-entropy loss function as
one of its terms allows long-distance errors to be penalised harsher
than low-distance errors. This is beneficial because, just as some
predicted severity scores are closer to the true severity score in [22],
some predicted sampled quaternary video-based method labels are
more representative of the true number of frames with signatures of
consolidation/collapse than others. This contrasts with cases where
the classes are independent of each other.

In our findings, the inaccurately supervised learning of the video-
based methods outperformed the supervised learning of the frame-
based method with respect to PR-AUC score. This may be explained
in terms of the bias-variance trade off, with the video-based methods
shifting the trade off towards bias and the frame-based method
shifting it towards variance. Indeed, for the video-based methods,
a single label is being assigned to all frames of the video, so that
the degrees of freedom the model has to overfit the noisy labelling
data is reduced. Instead, a more uniform labelling noise is introduced
across the frames of a video, which may be reducing the over-
confidence of the video-based classifier has on any single frame.
The quaternary method may be facilitating this reduction of over-
confidence by preventing an overly high degree of noise from being
injected uniformly across the labels of a video, as may be the case
for the binary approaches. In this sense, our quaternary method is
similar to label smoothing, a regularisation method that reduces over-
confidence by smoothing labels and label noise, which been shown to
be effective for datasets with incorrect labels present. Note, however,
that the frame-based method still performed best in terms of accuracy,
which may be due to the loss function used optimising error as
opposed to a metric similar to PR-AUC score or F1 score that is
more suitable for class imbalance scenarios.

While the sampled quaternary method outperformed the all-or-
nothing binary method, there is a trade-off in terms of labelling
effort. If medical reports are readily available, then the all-or-nothing
method would not require additional labelling effort or clinical
expertise. Hence, if the reduction in labelling time is of a higher
priority than classification accuracy, then the all-or-nothing method
may be preferred. The labelling effort of the sampled quaternary
and sampled binary methods, on the other hand, are identical: this
is because the labelling effort depends only on the percentage of
frames sampled (10% in our case). Indeed, the sampled binary and
quaternary methods are flexible in the sense that the trade-off between
labelling effort and classification accuracy is easy to adjust: the higher
the percentage of frames sampled, the higher the labelling effort.

The key limitation of our work was the limited size of high-quality
training examples. Future work could address this limitation through
transfer learning, a more sophisticated approach to data augmentation
than the online data augmentation that was used, or by applying
our classifier to a larger and higher quality dataset. Each of these
approaches mitigate overfitting, while the latter approach reduces the
dataset label noise. Since overfitting and label noise are posited as the
reason why our video-based approaches outperform the frame-based
method, the suggested future work could provide evidence that our
video-based approaches indeed mitigate label noise or overfitting in
a manner similar to label smoothing. Additionally, due to the large
number of healthy training examples and limitations on expert time,
the Section A2 Y/Y*/N categorisation was not applied to the healthy
examples. Future work could apply this categorisation to both the
healthy and unhealthy videos.
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V. CONCLUSION

Our work provides a tool for automatic consolidation/collapse
identification of LUS video frames during point-of-care testing. Out
of the labelling methods considered, the video-based methods were
intended to reduce labelling effort while minimising the resulting loss
of accuracy.

The video-based methods outperformed the frame-based method.
This may be a result of overfitting due to variance due to our small
dataset size or label noise. Specifically, our video-based methods may
be more robust label noise and variance than the frame-based method.
That is, in the bias-variance trade-off the frame-based method shifts
the trade-off towards variance while the video-based method shifts
the trade-off towards bias. It is expected that if the classifier was
run on a larger dataset of higher quality, the frame-based method
would outperform the video-based methods. However, this must be
confirmed through future work.

The best performing method was the sampled quaternary method,
which employed a novel training approach using four classes, and
performed better than the medical report based all-or-nothing method
of [23]. However, if medical reports corresponding to LUS videos are
readily available, then the all-or-nothing method may be preferred for
scenarios where a reduction in labelling time is prioritised higher than
classification accuracy.

VI. DATASET AVAILABILITY

The datasets used and/or analysed during the current study are
available from the corresponding author(s) on reasonable request.
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