References
Affholder, A., Guyot, F., Sauterey, B., Ferrière, R., Mazevet, S., 2021.
Bayesian analysis of Enceladus’s plume data to assess methanogenesis.
Nat. Astron. 5, 805–814.
Ash, J.L., Egger, M., Treude, T., Kohl, I., Cragg, B., Parkes, R.J.,
Slomp, C.P., Lollar, B.S., Young, E.D., 2018. Exchange catalysis during
anaerobic methanotrophy revealed by 12CH2D2 & 13CH3D in methane.
bioRxiv 377531.
Cao, X., Bao, H., Peng, Y., 2019. A kinetic model for isotopologue
signatures of methane generated by biotic and abiotic CO2 methanation.
Geochim. Cosmochim. Acta 249, 59–75.
Charlou, J.L., Donval, J.P., Konn, C., OndréAs, H., Fouquet, Y.,
Jean‐Baptiste, P., Fourré, E., 2010. High production and fluxes of H2
and CH4 and evidence of abiotic hydrocarbon synthesis by
serpentinization in ultramafic‐hosted hydrothermal systems on the
Mid‐Atlantic Ridge. Divers. hydrothermal Syst. slow spreading Ocean
ridges 188, 265–296.
Etiope, G., 2017. Methane origin in the Samail Ophiolite: comment on
“Modern water/rock reactions in Oman hyperalkaline peridotite aquifers
and implications for microbial habitability”[Geochim. Cosmochim. Acta
179 (2016) 217–241]. Geochim. Cosmochim. Acta.
Etiope, G., Judas, J., Whiticar, M.J., 2015. Occurrence of abiotic
methane in the eastern United Arab Emirates ophiolite aquifer. Arab. J.
Geosci. 8, 11345–11348.
Fritz, P., Clark, I.D., Fontes, J.-C., Whiticar, M.J., Faber, E., 1992.
Deuterium and 13C evidence for low temperature production of hydrogen
and methane in a highly alkaline groundwater environment in Oman. Proc.
- Int. Symp. Water-Rock Interact. 7, 793–796.
Früh-Green, G.L., Kelley, D.S., Lilley, M.D., Cannat, M., Chavagnac, V.,
Baross, J.A., 2022. Diversity of magmatism, hydrothermal processes and
microbial interactions at mid-ocean ridges. Nat. Rev. Earth Environ.
1–20.
Fu, Q., Sherwood Lollar, B., Horita, J., Lacrampe-Couloume, G.,
Seyfried, J.W.E., 2007. Abiotic formation of hydrocarbons under
hydrothermal conditions: Constraints from chemical and isotope data.
Geochim. Cosmochim. Acta 71, 1982–1998.
Giunta, T., Young, E.D., Labidi, J., Sansjofre, P., Jézéquel, D.,
Donval, J.-P., Brandily, C., Ruffine, L., 2022. Extreme methane clumped
isotopologue bio-signatures of aerobic and anaerobic methanotrophy:
Insights from the Lake Pavin and the Black Sea sediments. Geochim.
Cosmochim. Acta 338, 34–53.
Giunta, T., Young, E.D., Warr, O., Kohl, I., Ash, J.L., Martini, A.,
Mundle, S.O.C., Rumble, D., Pérez-Rodríguez, I., Wasley, M., Larowe,
D.E., Gilbert, A., Sherwood Lollar, B., 2019. Methane sources and sinks
in continental sedimentary systems: New insights from paired clumped
isotopologues 13CH3D and 12CH2D2. Geochim. Cosmochim. Acta 245,
327–351.
Horibe, Y., Craig, H., 1995. DH fractionation in the system
methane-hydrogen-water. Geochim. Cosmochim. Acta 59, 5209–5217.
https://doi.org/http://dx.doi.org/10.1016/0016-7037(95)00391-6
House, C.H., Wong, G.M., Webster, C.R., Flesch, G.J., Franz, H.B.,
Stern, J.C., Pavlov, A., Atreya, S.K., Eigenbrode, J.L., Gilbert, A.,
2022. Depleted carbon isotope compositions observed at Gale crater,
Mars. Proc. Natl. Acad. Sci. 119, e2115651119.
Klein, F., Grozeva, N.G., Seewald, J.S., 2019. Abiotic methane synthesis
and serpentinization in olivine-hosted fluid inclusions. Proc. Natl.
Acad. Sci. 201907871.
Kueter, N., Schmidt, M.W., Lilley, M.D., Bernasconi, S.M., 2019.
Experimental determination of equilibrium CH4–CO2–CO carbon isotope
fractionation factors (300–1200 C). Earth Planet. Sci. Lett. 506,
64–75.
Labidi, J., Young, E.D., Giunta, T., Kohl, I.E., Seewald, J., Tang, H.,
Lilley, M.D., Früh-Green, G.L., 2020. Methane thermometry in deep-sea
hydrothermal systems: evidence for re-ordering of doubly-substituted
isotopologues during fluid cooling. Geochim. Cosmochim. Acta 288,
248–261.
Landwehr, J.M., Coplen, T.B., Stewart, D.W., 2014. Spatial, seasonal,
and source variability in the stable oxygen and hydrogen isotopic
composition of tap waters throughout the USA. Hydrol. Process. 28,
5382–5422.
McCollom, T.M., 2016. Abiotic methane formation during experimental
serpentinization of olivine. Proc Natl Acad Sci U S A 113, 13965–13970.
https://doi.org/10.1073/pnas.1611843113
McCollom, T.M., 2013. Laboratory simulations of abiotic hydrocarbon
formation in Earth’s deep subsurface. Rev. Mineral. geochemistry 75,
467–494. https://doi.org/10.2138/rmg.2013.75.15
McCollom, T.M., Lollar, B.S., Lacrampe-Couloume, G., Seewald, J.S.,
2010. The influence of carbon source on abiotic organic synthesis and
carbon isotope fractionation under hydrothermal conditions. Geochim.
Cosmochim. Acta 74, 2717–2740.
https://doi.org/http://dx.doi.org/10.1016/j.gca.2010.02.008
McCollom, T.M., Seewald, J.S., 2007. Abiotic synthesis of organic
compounds in deep-sea hydrothermal environments. Chem. Rev. 107,
382–401.
McCollom, T.M., Seewald, J.S., 2006. Carbon isotope composition of
organic compounds produced by abiotic synthesis under hydrothermal
conditions. Earth Planet. Sci. Lett. 243, 74–84.
Miller, H.M., Matter, J.M., Kelemen, P., Ellison, E.T., Conrad, M.E.,
Fierer, N., Ruchala, T., Tominaga, M., Templeton, A.S., 2016. Modern
water/rock reactions in Oman hyperalkaline peridotite aquifers and
implications for microbial habitability. Geochim. Cosmochim. Acta 179,
217–241. https://doi.org/http://dx.doi.org/10.1016/j.gca.2016.01.033
NASEM, 2022. Origins, worlds, and life: a decadal strategy for planetary
science and astrobiology 2023-2032.
Nothaft, D.B., Templeton, A.S., Boyd, E.S., Matter, J.M., Stute, M.,
Paukert Vankeuren, A.N., Team, O.D.P.S., 2021. Aqueous geochemical and
microbial variation across discrete depth intervals in a peridotite
aquifer assessed using a packer system in the Samail Ophiolite, Oman. J.
Geophys. Res. Biogeosciences 126, e2021JG006319.
Proskurowski, G., Lilley, M.D., Kelley, D.S., Olson, E.J., 2006. Low
temperature volatile production at the Lost City Hydrothermal Field,
evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229,
331–343.
Röckmann, T., Popa, M.E., Krol, M.C., Hofmann, M.E.G., 2016. Statistical
clumped isotope signatures. Sci. Rep. 6, 1–14.
Rolston, J.H., Den Hartog, J., Butler, J.P., 1976. The deuterium isotope
separation factor between hydrogen and liquid water. J. Phys. Chem. 80,
1064–1067.
Seyfried Jr, W.E., Janecky, D.R., Berndt, M.E., 1987. Rocking autoclaves
for hydrothermal experiments II. The flexible reaction-cell system.
Hydrothermal Exp. Tech. 23, 216–239.
Sherwood Lollar, B., Frape, S.K., Weise, S.M., Fritz, P., Macko, S.A.,
Welhan, J.A., 1993. Abiogenic methanogenesis in crystalline rocks.
Geochim. Cosmochim. Acta 57, 5087–5097.
Sherwood Lollar, B., Lacrampe-Couloume, G., Voglesonger, K., Onstott,
T.C., Pratt, L.M., Slater, G.F., 2008. Isotopic signatures of CH4 and
higher hydrocarbon gases from Precambrian Shield sites: a model for
abiogenic polymerization of hydrocarbons. Geochim. Cosmochim. Acta 72,
4778–4795.
Sherwood Lollar, B., Westgate, T.D., Ward, J.A., Slater, G.F.,
Lacrampe-Couloume, G., 2002. Abiogenic formation of alkanes in the
Earth’s crust as a minor source for global hydrocarbon reservoirs.
Nature 416, 522.
Stolper, D.A., Lawson, M., Davis, C.L., Ferreira, A.A., Neto, E.V.S.,
Ellis, G.S., Lewan, M.D., Martini, A.M., Tang, Y., Schoell, M., 2014.
Formation temperatures of thermogenic and biogenic methane. Science
(80-. ). 344, 1500–1503.
Taenzer, L., Labidi, J., Masterson, A.L., Feng, X., Rumble III, D.,
Young, E.D., Leavitt, W.D., 2020. Low Δ12CH2D2 values in microbialgenic
methane result from combinatorial isotope effects. Geochim. Cosmochim.
Acta 285, 225–236.
Taran, Y.A., Kliger, G.A., Cienfuegos, E., Shuykin, A.N., 2010. Carbon
and hydrogen isotopic compositions of products of open-system catalytic
hydrogenation of CO2: Implications for abiogenic hydrocarbons in Earth’s
crust. Geochim. Cosmochim. Acta 74, 6112–6125. https://doi.org/DOI:
10.1016/j.gca.2010.08.012
Waite, J.H., Glein, C.R., Perryman, R.S., Teolis, B.D., Magee, B.A.,
Miller, G., Grimes, J., Perry, M.E., Miller, K.E., Bouquet, A., 2017.
Cassini finds molecular hydrogen in the Enceladus plume: evidence for
hydrothermal processes. Science (80-. ). 356, 155–159.
Wang, D.T., Gruen, D.S., Lollar, B.S., Hinrichs, K.-U., Stewart, L.C.,
Holden, J.F., Hristov, A.N., Pohlman, J.W., Morrill, P.L., Könneke, M.,
2015. Nonequilibrium clumped isotope signals in microbial methane.
Science (80-. ). 348, 428–431.
Wang, W., Wang, S., Ma, X., Gong, J., 2011. Recent advances in catalytic
hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727.
Warr, O., Young, E.D., Giunta, T., Kohl, I.E., Ash, J.L., Lollar, B.S.,
2021. High-resolution, long-term isotopic and isotopologue variation
identifies the sources and sinks of methane in a deep subsurface carbon
cycle. Geochim. Cosmochim. Acta 294, 315–334.
Webster, C.R., Mahaffy, P.R., Atreya, S.K., Flesch, G.J., Mischna, M.A.,
Meslin, P.-Y., Farley, K.A., Conrad, P.G., Christensen, L.E., Pavlov,
A.A., 2015. Mars methane detection and variability at Gale crater.
Science (80-. ). 347, 415–417.
Welhan, J.A., Craig, H., 1979. Methane and hydrogen in East Pacific Rise
hydrothermal fluids. Geophys. Res. Lett. 6, 829–831.
https://doi.org/10.1029/GL006i011p00829
Yeung, L.Y., 2016. Combinatorial effects on clumped isotopes and their
significance in biogeochemistry. Geochim. Cosmochim. Acta 172, 22–38.
Young, E.D., 2019. A two-dimensional perspective on CH4 isotope
clumping: distinguishing process from source. Deep Carbon 388414.
Young, E.D., Kohl, I.E., Lollar, B.S., Etiope, G., Rumble Iii, D., Li,
S., Haghnegahdar, M.A., Schauble, E.A., McCain, K.A., Foustoukos, D.I.,
2017. The relative abundances of resolved 12CH2D2 and 13CH3D and
mechanisms controlling isotopic bond ordering in abiotic and biotic
methane gases. Geochim. Cosmochim. Acta 203, 235–264.
Young, E.D., Rumble III, D., Freedman, P., Mills, M., 2016. A
large-radius high-mass-resolution multiple-collector isotope ratio mass
spectrometer for analysis of rare isotopologues of O2, N2, CH4 and other
gases. Int. J. Mass Spectrom. 401, 1–10.