References:
[1] Lagarda, M., García-Llatas, G., Farré, R., Analysis of phytosterols in foods. Journal of pharmaceutical and biomedical analysis 2006, 41 , 1486-1496.
[2] Weete, J. D., Abril, M., Blackwell, M., Phylogenetic distribution of fungal sterols. PloS one 2010, 5 , e10899.
[3] Michellod, D., Bien, T., Birgel, D., Violette, M., et al. , De novo phytosterol synthesis in animals. Science 2023,380 , 520-526.
[4] Piironen, V., Lindsay, D. G., Miettinen, T. A., Toivo, J., Lampi, A. M., Plant sterols: biosynthesis, biological function and their importance to human nutrition. Journal of the Science of Food and Agriculture 2000, 80 , 939-966.
[5] Salehi-Sahlabadi, A., Varkaneh, H. K., Shahdadian, F., Ghaedi, E., et al. , Effects of Phytosterols supplementation on blood glucose, glycosylated hemoglobin (HbA1c) and insulin levels in humans: a systematic review and meta-analysis of randomized controlled trials.Journal of Diabetes & Metabolic Disorders 2020, 19 , 625-632.
[6] Moreau, R. A., Whitaker, B. D., Hicks, K. B., Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Progress in lipid research 2002, 41 , 457-500.
[7] Bacchetti, T., Masciangelo, S., Bicchiega, V., Bertoli, E., Ferretti, G., Phytosterols, phytostanols and their esters: from natural to functional foods. Mediterranean Journal of Nutrition and Metabolism 2011, 4 , 165-172.
[8] Dash, R., Mitra, S., Ali, M. C., Oktaviani, D. F., et al. , Phytosterols: Targeting neuroinflammation in neurodegeneration.Current Pharmaceutical Design 2021, 27 , 383-401.
[9] Hannan, M. A., Sohag, A. A. M., Dash, R., Haque, M. N., et al. , Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 2020,69 , 153201.
[10] Kuryłowicz, A., Cąkała-Jakimowicz, M., Puzianowska-Kuźnicka, M., Targeting abdominal obesity and its complications with dietary phytoestrogens. Nutrients 2020, 12 , 582.
[11] Burčová, Z., Kreps, F., Greifová, M., Jablonský, M., et al. , Antibacterial and antifungal activity of phytosterols and methyl dehydroabietate of Norway spruce bark extracts. Journal of biotechnology 2018, 282 , 18-24.
[12] Chen, L., Deng, H., Cui, H., Fang, J., et al. , Inflammatory responses and inflammation-associated diseases in organs.Oncotarget 2018, 9 , 7204.
[13] Scolaro, B., Andrade, L. F. d., Castro, I. A., Cardiovascular disease prevention: The earlier the better? A review of plant sterol metabolism and implications of childhood supplementation.International Journal of Molecular Sciences 2019, 21 , 128.
[14] Ramprasath, V. R., Awad, A. B., Role of phytosterols in cancer prevention and treatment. Journal of AOAC International 2015,98 , 735-738.
[15] Suttiarporn, P., Chumpolsri, W., Mahatheeranont, S., Luangkamin, S., et al. , Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice. Nutrients 2015, 7 , 1672-1687.
[16] Yang, Y., He, W., Jia, C., Ma, Y., et al. , Efficient synthesis of phytosteryl esters using the Lewis acidic ionic liquid.Journal of Molecular Catalysis A: Chemical 2012, 357 , 39-43.
[17] Tan, Z., Le, K., Moghadasian, M., Shahidi, F., Enzymatic synthesis of phytosteryl docosahexaneates and evaluation of their anti-atherogenic effects in apo-E deficient mice. Food chemistry2012, 134 , 2097-2104.
[18] Shi, H., Li, S., Liu, J., Wang, S., et al. , Green and efficient synthesis of pine sterol oleate catalyzed by SO3H-functionalized ionic liquid. Journal of Chemical Technology & Biotechnology 2022, 97 , 3083-3090.
[19] Lortie, R., Enzyme catalyzed esterification.Biotechnology Advances 1997, 15 , 1-15.
[20] Maldonado, R. R., Burkert, J. F. M., Mazutti, M. A., Maugeri, F., Rodrigues, M. I., Evaluation of lipase production by Geotrichum candidum in shaken flasks and bench-scale stirred bioreactor using different impellers. Biocatalysis and Agricultural Biotechnology2012, 1 , 147-151.
[21] Zheng, M.-M., Lu, Y., Dong, L., Guo, P.-M., et al. , Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters. Bioresource Technology 2012, 115 , 141-146.
[22] Zeng, C., Qi, S., Li, Z., Luo, R., et al. , Enzymatic synthesis of phytosterol esters catalyzed by Candida rugosalipase in water-in-[Bmim]PF6 microemulsion.Bioprocess and biosystems engineering 2015, 38 , 939-946.
[23] Hu, L., Llibin, S., Li, J., Qi, L., et al. , Lipase-catalyzed transesterification of soybean oil and phytosterol in supercritical CO2. Bioprocess and biosystems engineering 2015, 38 , 2343-2347.
[24] Chen, B., Jia, Y., Zhang, M., Li, X., et al. , Facile modification of sepiolite and its application in superhydrophobic coatings. Applied Clay Science 2019, 174 , 1-9.
[25] Cabrera, M. P., da Fonseca, T. F., de Souza, R. V. B., de Assis, C. R. D., et al. , Polyaniline-coated magnetic diatomite nanoparticles as a matrix for immobilizing enzymes. Applied Surface Science 2018, 457 , 21-29.
[26] Zhao, K., Cao, X., Di, Q., Wang, M., et al. , Synthesis, characterization and optimization of a two-step immobilized lipase.Renewable energy 2017, 103 , 383-387.
[27] Tran, D.-T., Chen, C.-L., Chang, J.-S., Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. Applied Energy2016, 168 , 340-350.
[28] Basso, A., Hesseler, M., Serban, S., Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. Tetrahedron 2016, 72 , 7323-7328.
[29] Singh, A. K., Mukhopadhyay, M., Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis. Bioprocess and biosystems engineering 2018,41 , 115-127.
[30] Fu, D., Li, C., Lu, J., ur Rahman, A., Tan, T., Relationship between thermal inactivation and conformational change of Yarrowia lipolytica lipase and the effect of additives on enzyme stability.Journal of Molecular Catalysis B: Enzymatic 2010, 66 , 136-141.
[31] Hilterhaus, L., Thum, O., Liese, A., Reactor concept for lipase-catalyzed solvent-free conversion of highly viscous reactants forming two-phase systems. Organic Process Research & Development 2008, 12 , 618-625.
[32] Boudrant, J., Woodley, J. M., Fernandez-Lafuente, R., Parameters necessary to define an immobilized enzyme preparation.Process Biochemistry 2020, 90 , 66-80.
[33] Guo, J., Chen, C.-P., Wang, S.-G., Huang, X.-J., A convenient test for lipase activity in aqueous-based solutions. Enzyme and Microbial Technology 2015, 71 , 8-12.
[34] Pencreac’h, G., Baratti, J. C., Activity of Pseudomonas cepacia lipase in organic media is greatly enhanced after immobilization on a polypropylene support. Applied Microbiology and Biotechnology1997, 47 , 630–635.
[35] Li, Y., Li, B., Zhao, X., Tian, N., Zhang, J., Totally waterborne, nonfluorinated, mechanically robust, and self-healing superhydrophobic coatings for actual anti-icing. ACS applied materials & interfaces 2018, 10 , 39391-39399.
[36] Xu, F., Li, D., Chen, W., Gao, S., Formation of hydrophobic silica coatings on stones for conservation of historic sculptures.Chinese Journal of Chemistry 2010, 28 , 1487-1490.
[37] Zhang, W., Zhang, Y., Lu, Z., Nian, B., et al. , Enhanced stability and catalytic performance of laccase immobilized on magnetic graphene oxide modified with ionic liquids. Journal of Environmental Management 2023, 346 , 118975.
[38] Feng, K., Hung, G.-Y., Liu, J., Li, M., et al. , Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes.Chemical Engineering Journal 2018, 331 , 744-754.
[39] Wu, S., Wang, C., Jin, Y., Zhou, G., et al. , Green synthesis of reusable super-paramagnetic diatomite for aqueous nickel (II) removal. Journal of Colloid and Interface Science 2021,582 , 1179-1190.
[40] Peng, X., Yuan, Z., Zhao, H., Wang, H., Wang, X., Preparation and mechanism of hydrophobic modified diatomite coatings for oil-water separation. Separation and Purification Technology 2022,288 , 120708.
[41] Zhang, Y., Zhang, J., Wang, A., From Maya blue to biomimetic pigments: durable biomimetic pigments with self-cleaning property.Journal of Materials Chemistry A 2016, 4 , 901-907.
[42] Fernández‐Lorente, G., Palomo, J. M., Fuentes, M., Mateo, C., et al. , Self‐assembly of Pseudomonas fluorescens lipase into bimolecular aggregates dramatically affects functional properties.Biotechnology and bioengineering 2003, 82 , 232-237.
[43] Martins, A. B., Friedrich, J. L., Cavalheiro, J. C., Garcia-Galan, C., et al. , Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene–divinylbenzene beads. Bioresource technology 2013,134 , 417-422.
[44] Wiemann, L. O., Nieguth, R., Eckstein, M., Naumann, M., et al. , Composite particles of novozyme 435 and silicone: advancing technical applicability of macroporous enzyme carriers.ChemCatChem 2009, 1 , 455-462.
[45] dos Santos, J. C., Garcia-Galan, C., Rodrigues, R. C., de Sant’Ana, H. B., et al. , Stabilizing hyperactivated lecitase structures through physical treatment with ionic polymers. Process Biochemistry 2014, 49 , 1511-1515.
[46] Santos, J. C. S. d., Barbosa, O., Ortiz, C., Berenguer‐Murcia, A., et al. , Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 2015,7 , 2413-2432.
[47] Rodrigues, R. C., Virgen-Ortíz, J. J., Dos Santos, J. C., Berenguer-Murcia, Á., et al. , Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances 2019, 37 , 746-770.
[48] Verdasco-Martin, C. M., Garcia-Verdugo, E., Porcar, R., Fernandez-Lafuente, R., Otero, C., Selective synthesis of partial glycerides of conjugated linoleic acids via modulation of the catalytic properties of lipases by immobilization on different supports.Food Chemistry 2018, 245 , 39-46.
[49] Kurtovic, I., Nalder, T. D., Cleaver, H., Marshall, S. N., Immobilisation of Candida rugosa lipase on a highly hydrophobic support: A stable immobilised lipase suitable for non-aqueous synthesis.Biotechnology Reports 2020, 28 , e00535.
[50] Sousa, R. R., Silva, A. S. A., Fernandez-Lafuente, R., Ferreira-Leitão, V. S., Solvent-free esterifications mediated by immobilized lipases: A review from thermodynamic and kinetic perspectives. Catalysis Science & Technology 2021, 11 , 5696-5711.
[51] Hari Krishna, S., Karanth, N., Lipases and lipase-catalyzed esterification reactions in nonaqueous media. Catalysis Reviews2002, 44 , 499-591.
[52] Dossat, V., Combes, D., Marty, A., Lipase-catalysed transesterification of high oleic sunflower oil. Enzyme and Microbial Technology 2002, 30 , 90-94.
[53] Ghamgui, H., Karra-Chaabouni, M., Gargouri, Y., 1-Butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme and Microbial Technology 2004, 35 , 355-363.
[54] Sandoval, G., Condoret, J., Monsan, P., Marty, A., Esterification by immobilized lipase in solvent‐free media: Kinetic and thermodynamic arguments. Biotechnology and bioengineering 2002,78 , 313-320.
[55] Castillo, E., Torres-Gavilán, A., Sandoval, G., Marty, A., Thermodynamical methods for the optimization of lipase-catalyzed reactions. Lipases and Phospholipases: Methods and Protocols2012, 383-400.
[56] Adlercreutz, P., Immobilisation and application of lipases in organic media. Chemical Society Reviews 2013, 42 , 6406-6436.
[57] Goldberg, M., Thomas, D., Legoy, M.-D., Water activity as a key parameter of synthesis reactions: the example of lipase in biphasic (liquid/solid) media. Enzyme and microbial technology 1990,12 , 976-981.
[58] Colombié, S., Tweddell, R. J., Condoret, J. S., Marty, A., Water activity control: A way to improve the efficiency of continuous lipase esterification. Biotechnology and bioengineering 1998,60 , 362-368.
[59] Lopresto, C. G., Calabrò, V., Woodley, J. M., Tufvesson, P., Kinetic study on the enzymatic esterification of octanoic acid and hexanol by immobilized Candida antarctica lipase B. Journal of Molecular Catalysis B: Enzymatic 2014, 110 , 64-71.
[60] Vadgama, R. N., Odaneth, A. A., Lali, A. M., Green synthesis of isopropyl myristate in novel single phase medium Part I: Batch optimization studies. Biotechnology Reports 2015, 8 , 133-137.
[61] Kuperkar, V. V., Lade, V. G., Prakash, A., Rathod, V. K., Synthesis of isobutyl propionate using immobilized lipase in a solvent free system: optimization and kinetic studies. Journal of Molecular Catalysis B: Enzymatic 2014, 99 , 143-149.
[62] Scillipoti, J., Nioi, C., Marty, A., Camy, S., Condoret, J.-S., Prediction of conversion at equilibrium for lipase esterification in two-phase systems. Biochemical engineering journal 2017,117 , 162-171.
[63] Martins, A. B., Schein, M. F., Friedrich, J. L., Fernandez-Lafuente, R., et al. , Ultrasound-assisted butyl acetate synthesis catalyzed by Novozym 435: Enhanced activity and operational stability. Ultrasonics sonochemistry 2013, 20 , 1155-1160.
[64] Romero, M., Calvo, L., Alba, C., Daneshfar, A., Ghaziaskar, H., Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme and microbial technology2005, 37 , 42-48.
[65] Khan, N. R., Rathod, V. K., Enzyme catalyzed synthesis of cosmetic esters and its intensification: A review. Process Biochemistry 2015, 50 , 1793-1806.
[66] Cui, C., Guan, N., Xing, C., Chen, B., Tan, T., Immobilization of Yarrowia lipolytica lipase Ylip2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor.Colloids and Surfaces B: Biointerfaces 2016, 146 , 490-497.
[67] Zhang, S., Hou, H., Zhao, B., Zhou, Q., et al. , Hollow mesoporous carbon-based enzyme nanoreactor for the confined and interfacial biocatalytic synthesis of phytosterol esters. Journal of Agricultural and Food Chemistry 2023, 71 , 2014-2025.