Reference
1. Uzunparmak B, Sahin IH: Pancreatic cancer microenvironment: a current dilemma . Clin Transl Med 2019, 8 (1):2.
2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM: Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States . Cancer Res 2014, 74 (11):2913-2921.
3. Rahib L, Wehner MR, Matrisian LM, Nead KT: Estimated Projection of US Cancer Incidence and Death to 2040 . JAMA Netw Open 2021, 4 (4):e214708.
4. Siegel RL, Miller KD, Fuchs HE, Jemal A: Cancer Statistics, 2021 . CA Cancer J Clin 2021, 71 (1):7-33.
5. Advancing on pancreatic cancer . Nat Rev Gastroenterol Hepatol 2021, 18 (7):447.
6. Murphy JE, Wo JY, Ryan DP, Clark JW, Jiang W, Yeap BY, Drapek LC, Ly L, Baglini CV, Blaszkowsky LS et al : Total Neoadjuvant Therapy With FOLFIRINOX in Combination With Losartan Followed by Chemoradiotherapy for Locally Advanced Pancreatic Cancer: A Phase 2 Clinical Trial . JAMA Oncol 2019, 5 (7):1020-1027.
7. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN et al : Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine .N Engl J Med 2013, 369 (18):1691-1703.
8. Tempero MA, Malafa MP, Al-Hawary M, Behrman SW, Benson AB, Cardin DB, Chiorean EG, Chung V, Czito B, Del Chiaro M et al :Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology . J Natl Compr Canc Netw 2021,19 (4):439-457.
9. Hao S, Xu S, Li L, Li Y, Zhao M, Chen J, Zhu S, Xie Y, Jiang H, Zhu Jet al : Tumour inhibitory activity on pancreatic cancer by bispecific nanobody targeting PD-L1 and CXCR4 . BMC Cancer 2022,22 (1):1092.
10. Sterner RC, Sterner RM: CAR-T cell therapy: current limitations and potential strategies . Blood Cancer J 2021,11 (4):69.
11. Bear AS, Vonderheide RH, O’Hara MH: Challenges and Opportunities for Pancreatic Cancer Immunotherapy . Cancer Cell2020, 38 (6):788-802.
12. Sherman MH, Beatty GL: Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance . Annu Rev Pathol2023, 18 :123-148.
13. Mitsis M, Drosou P, Tatsis V, Markopoulos GS: Neutrophil Extracellular Traps and Pancreatic Cancer Development: A Vicious Cycle .Cancers (Basel) 2022, 14 (14).
14. Manz MG, Miyamoto T, Akashi K, Weissman IL: Prospective isolation of human clonogenic common myeloid progenitors . Proc Natl Acad Sci U S A 2002, 99 (18):11872-11877.
15. Hidalgo A, Chilvers ER, Summers C, Koenderman L: The Neutrophil Life Cycle . Trends Immunol 2019,40 (7):584-597.
16. Furze RC, Rankin SM: Neutrophil mobilization and clearance in the bone marrow . Immunology 2008, 125 (3):281-288.
17. Borregaard N: Neutrophils, from marrow to microbes .Immunity 2010, 33 (5):657-670.
18. Pillay J, den Braber I, Vrisekoop N, Kwast LM, de Boer RJ, Borghans JA, Tesselaar K, Koenderman L: In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days . Blood 2010,116 (4):625-627.
19. Galli SJ, Borregaard N, Wynn TA: Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils . Nat Immunol 2011, 12 (11):1035-1044.
20. Kolaczkowska E, Kubes P: Neutrophil recruitment and function in health and inflammation . Nat Rev Immunol 2013,13 (3):159-175.
21. Zarbock A, Ley K, McEver RP, Hidalgo A: Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow . Blood 2011,118 (26):6743-6751.
22. Campbell ID, Humphries MJ: Integrin structure, activation, and interactions . Cold Spring Harb Perspect Biol 2011,3 (3).
23. Ley K, Laudanna C, Cybulsky MI, Nourshargh S: Getting to the site of inflammation: the leukocyte adhesion cascade updated . Nat Rev Immunol 2007, 7 (9):678-689.
24. Agostini A, Orlacchio A, Carbone C, Guerriero I:Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought . Front Immunol 2022, 13 :876291.
25. Ohms M, Möller S, Laskay T: An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro . Front Immunol2020, 11 :532.
26. Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G:G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells . Blood 2006,108 (3):812-820.
27. Awane M, Andres PG, Li DJ, Reinecker HC: NF-kappa B-inducing kinase is a common mediator of IL-17-, TNF-alpha-, and IL-1 beta-induced chemokine promoter activation in intestinal epithelial cells . J Immunol 1999, 162 (9):5337-5344.
28. Weaver A, Goncalves da Silva A, Nuttall RK, Edwards DR, Shapiro SD, Rivest S, Yong VW: An elevated matrix metalloproteinase (MMP) in an animal model of multiple sclerosis is protective by affecting Th1/Th2 polarization . Faseb j 2005, 19 (12):1668-1670.
29. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP: IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages . J Immunol 1998,160 (7):3513-3521.
30. Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE et al : Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma . Gut 2018,67 (6):1112-1123.
31. Mo X, Wang N, He Z, Kang W, Wang L, Han X, Yang L: The sub-molecular characterization identification for cervical cancer .Heliyon 2023, 9 (6):e16873.
32. Das S, Shapiro B, Vucic EA, Vogt S, Bar-Sagi D: Tumor Cell-Derived IL1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer . Cancer Res 2020, 80 (5):1088-1101.
33. Chao T, Furth EE, Vonderheide RH: CXCR2-Dependent Accumulation of Tumor-Associated Neutrophils Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma . Cancer Immunol Res 2016,4 (11):968-982.
34. Iida-Norita R, Kawamura M, Suzuki Y, Hamada S, Masamune A, Furukawa T, Sato Y: Vasohibin-2 plays an essential role in metastasis of pancreatic ductal adenocarcinoma . Cancer Sci 2019,110 (7):2296-2308.
35. Siolas D, Vucic E, Kurz E, Hajdu C, Bar-Sagi D:Gain-of-function p53(R172H) mutation drives accumulation of neutrophils in pancreatic tumors, promoting resistance to immunotherapy . Cell Rep 2021, 36 (8):109578.
36. Shi T, Li X, Zheng J, Duan Z, Ooi YY, Gao Y, Wang Q, Yang J, Wang L, Yao L: Increased SPRY1 expression activates NF-κB signaling and promotes pancreatic cancer progression by recruiting neutrophils and macrophages through CXCL12-CXCR4 axis . Cell Oncol (Dordr) 2023,46 (4):969-985.
37. Niu N, Shen X, Zhang L, Chen Y, Lu P, Yang W, Liu M, Shi J, Xu D, Tang Y et al : Tumor Cell-Intrinsic SETD2 Deficiency Reprograms Neutrophils to Foster Immune Escape in Pancreatic Tumorigenesis . Adv Sci (Weinh) 2023, 10 (2):e2202937.
38. Liu X, Zhou Z, Cheng Q, Wang H, Cao H, Xu Q, Tuo Y, Jiang L, Zou Y, Ren H et al : Acceleration of pancreatic tumorigenesis under immunosuppressive microenvironment induced by Reg3g overexpression . Cell Death Dis 2017, 8 (9):e3033.
39. Huo Y, Zhou Y, Zheng J, Jin G, Tao L, Yao H, Zhang J, Sun Y, Liu Y, Hu LP: GJB3 promotes pancreatic cancer liver metastasis by enhancing the polarization and survival of neutrophil . Front Immunol 2022, 13 :983116.
40. Giese MA, Hind LE, Huttenlocher A: Neutrophil plasticity in the tumor microenvironment . Blood 2019,133 (20):2159-2167.
41. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM: Polarization of tumor-associated neutrophil phenotype by TGF-beta: ”N1” versus ”N2” TAN . Cancer Cell 2009,16 (3):183-194.
42. Andzinski L, Kasnitz N, Stahnke S, Wu CF, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S, Jablonska J:Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human . Int J Cancer 2016,138 (8):1982-1993.
43. Wang L, Liu Y, Dai Y, Tang X, Yin T, Wang C, Wang T, Dong L, Shi M, Qin J et al : Single-cell RNA-seq analysis reveals BHLHE40-driven pro-tumour neutrophils with hyperactivated glycolysis in pancreatic tumour microenvironment . Gut 2023,72 (5):958-971.
44. Sieow JL, Penny HL, Gun SY, Tan LQ, Duan K, Yeong JPS, Pang A, Lim D, Toh HC, Lim TKH et al : Conditional Knockout of Hypoxia-Inducible Factor 1-Alpha in Tumor-Infiltrating Neutrophils Protects against Pancreatic Ductal Adenocarcinoma . Int J Mol Sci2023, 24 (1).
45. Rubenich DS, de Souza PO, Omizzollo N, Lenz GS, Sevigny J, Braganhol E: Neutrophils: fast and furious-the nucleotide pathway .Purinergic Signal 2021, 17 (3):371-383.
46. Guo Z, Xu G, Xu J, Huang Y, Liu C, Cao Y: Role of Lipocalin-2 in N1/N2 Neutrophil Polarization After Stroke . CNS Neurol Disord Drug Targets 2023.
47. Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, Hudita A, Gan AM, Jakobsson G, Tucureanu MM et al :Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation . Front Immunol 2021,12 :708770.
48. García-Culebras A, Durán-Laforet V, Peña-Martínez C, Moraga A, Ballesteros I, Cuartero MI, de la Parra J, Palma-Tortosa S, Hidalgo A, Corbí AL et al : Role of TLR4 (Toll-Like Receptor 4) in N1/N2 Neutrophil Programming After Stroke . Stroke 2019,50 (10):2922-2932.
49. Lovászi M, Németh ZH, Pacher P, Gause WC, Wagener G, Haskó G:A(2A) adenosine receptor activation prevents neutrophil aging and promotes polarization from N1 towards N2 phenotype .Purinergic Signal 2022, 18 (3):345-358.
50. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, Weinrauch Y, Brinkmann V, Zychlinsky A: Novel cell death program leads to neutrophil extracellular traps . J Cell Biol 2007,176 (2):231-241.
51. Leliefeld PH, Koenderman L, Pillay J: How Neutrophils Shape Adaptive Immune Responses . Front Immunol 2015, 6 :471.
52. Schoeps B, Eckfeld C, Prokopchuk O, Böttcher J, Häußler D, Steiger K, Demir IE, Knolle P, Soehnlein O, Jenne DE et al : TIMP1 Triggers Neutrophil Extracellular Trap Formation in Pancreatic Cancer .Cancer Res 2021, 81 (13):3568-3579.
53. Grünwald B, Harant V, Schaten S, Frühschütz M, Spallek R, Höchst B, Stutzer K, Berchtold S, Erkan M, Prokopchuk O et al :Pancreatic Premalignant Lesions Secrete Tissue Inhibitor of Metalloproteinases-1, Which Activates Hepatic Stellate Cells Via CD63 Signaling to Create a Premetastatic Niche in the Liver .Gastroenterology 2016, 151 (5):1011-1024.e1017.
54. Yang J, Jin L, Kim HS, Tian F, Yi Z, Bedi K, Ljungman M, Pasca di Magliano M, Crawford H, Shi J: KDM6A Loss Recruits Tumor-Associated Neutrophils and Promotes Neutrophil Extracellular Trap Formation in Pancreatic Cancer . Cancer Res 2022,82 (22):4247-4260.
55. Boone BA, Orlichenko L, Schapiro NE, Loughran P, Gianfrate GC, Ellis JT, Singhi AD, Kang R, Tang D, Lotze MT et al : The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer . Cancer Gene Ther 2015, 22 (6):326-334.
56. Demkow U: Neutrophil Extracellular Traps (NETs) in Cancer Invasion, Evasion and Metastasis . Cancers (Basel) 2021,13 (17).
57. Wang G, Gao H, Dai S, Li M, Gao Y, Yin L, Zhang K, Zhang J, Jiang K, Miao Y et al : Metformin inhibits neutrophil extracellular traps-promoted pancreatic carcinogenesis in obese mice . Cancer Lett 2023, 562 :216155.
58. Boone BA, Murthy P, Miller-Ocuin J, Doerfler WR, Ellis JT, Liang X, Ross MA, Wallace CT, Sperry JL, Lotze MT et al :Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps . BMC Cancer2018, 18 (1):678.
59. Gupta VK, Sharma NS, Durden B, Garrido VT, Kesh K, Edwards D, Wang D, Myer C, Mateo-Victoriano B, Kollala SS et al :Hypoxia-Driven Oncometabolite L-2HG Maintains Stemness-Differentiation Balance and Facilitates Immune Evasion in Pancreatic Cancer . Cancer Res 2021, 81 (15):4001-4013.
60. Li TJ, Wang WQ, Yu XJ, Liu L: Killing the ”BAD”: Challenges for immunotherapy in pancreatic cancer . Biochim Biophys Acta Rev Cancer 2020, 1874 (1):188384.
61. Liu H, Shi Y, Qian F: Opportunities and delusions regarding drug delivery targeting pancreatic cancer-associated fibroblasts .Adv Drug Deliv Rev 2021, 172 :37-51.
62. Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E, Ziogas D, Psyrri A, Karamouzis MV: Immunotherapy for pancreatic cancer: A 2020 update . Cancer Treat Rev 2020,86 :102016.
63. Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV:Key role of pancreatic stellate cells in pancreatic cancer .Cancer Lett 2016, 381 (1):194-200.
64. Zhang Z, Zhang H, Liu T, Chen T, Wang D, Tang D:Heterogeneous Pancreatic Stellate Cells Are Powerful Contributors to the Malignant Progression of Pancreatic Cancer .Front Cell Dev Biol 2021, 9 :783617.
65. Schnittert J, Bansal R, Prakash J: Targeting Pancreatic Stellate Cells in Cancer . Trends Cancer 2019,5 (2):128-142.
66. Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS et al :Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts . Cancer Discov 2019, 9 (8):1102-1123.
67. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK, Feig C, Nakagawa T, Caldwell ME, Zecchini HI et al : Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer . Gut 2013, 62 (1):112-120.
68. Li C, Cui L, Yang L, Wang B, Zhuo Y, Zhang L, Wang X, Zhang Q, Zhang S: Pancreatic Stellate Cells Promote Tumor Progression by Promoting an Immunosuppressive Microenvironment in Murine Models of Pancreatic Cancer . Pancreas 2020, 49 (1):120-127.
69. Miller-Ocuin JL, Liang X, Boone BA, Doerfler WR, Singhi AD, Tang D, Kang R, Lotze MT, Zeh HJ, 3rd: DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth . Oncoimmunology 2019,8 (9):e1605822.
70. Incio J, Liu H, Suboj P, Chin SM, Chen IX, Pinter M, Ng MR, Nia HT, Grahovac J, Kao S et al : Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy . Cancer Discov 2016, 6 (8):852-869.
71. Mayer P, Dinkic C, Jesenofsky R, Klauss M, Schirmacher P, Dapunt U, Hackert T, Uhle F, Hänsch GM, Gaida MM: Changes in the microarchitecture of the pancreatic cancer stroma are linked to neutrophil-dependent reprogramming of stellate cells and reflected by diffusion-weighted magnetic resonance imaging . Theranostics2018, 8 (1):13-30.
72. Takesue S, Ohuchida K, Shinkawa T, Otsubo Y, Matsumoto S, Sagara A, Yonenaga A, Ando Y, Kibe S, Nakayama H et al : Neutrophil extracellular traps promote liver micrometastasis in pancreatic ductal adenocarcinoma via the activation of cancer‑associated fibroblasts .Int J Oncol 2020, 56 (2):596-605.
73. Munir H, Jones JO, Janowitz T, Hoffmann M, Euler M, Martins CP, Welsh SJ, Shields JD: Stromal-driven and Amyloid β-dependent induction of neutrophil extracellular traps modulates tumor growth .Nat Commun 2021, 12 (1):683.
74. Kumar V, Sharma A: Neutrophils: Cinderella of innate immune system . Int Immunopharmacol 2010, 10 (11):1325-1334.
75. Zhou Z, Wang P, Sun R, Li J, Hu Z, Xin H, Luo C, Zhou J, Fan J, Zhou S: Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3 . J Immunother Cancer 2021, 9 (3).
76. Lee BY, Hogg EKJ, Below CR, Kononov A, Blanco-Gomez A, Heider F, Xu J, Hutton C, Zhang X, Scheidt T et al : Heterocellular OSM-OSMR signalling reprograms fibroblasts to promote pancreatic cancer growth and metastasis . Nat Commun 2021, 12 (1):7336.
77. Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL:Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression . Cancer Res2005, 65 (19):8896-8904.
78. Zhang Y, Chandra V, Riquelme Sanchez E, Dutta P, Quesada PR, Rakoski A, Zoltan M, Arora N, Baydogan S, Horne W et al :Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer . J Exp Med 2020, 217 (12).
79. Guo Q, Lv Z, Fu Q, Jiang C, Liu Y, Lai L, Chen Q, Shen J, Wang Q:IFN-γ producing T cells contribute to the increase of myeloid derived suppressor cells in tumor-bearing mice after cyclophosphamide treatment . Int Immunopharmacol 2012, 12 (2):425-432.
80. Cartwright ANR, Suo S, Badrinath S, Kumar S, Melms J, Luoma A, Bagati A, Saadatpour A, Izar B, Yuan GC et al :Immunosuppressive Myeloid Cells Induce Nitric Oxide-Dependent DNA Damage and p53 Pathway Activation in CD8(+) T Cells . Cancer Immunol Res 2021, 9 (4):470-485.
81. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA:Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation . Sci Signal 2012, 5 (230):ra46.
82. Wartewig T, Kurgyis Z, Keppler S, Pechloff K, Hameister E, Öllinger R, Maresch R, Buch T, Steiger K, Winter C et al : PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis . Nature2017, 552 (7683):121-125.
83. Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, Wu X, Ma J, Zhou M, Li X et al : Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape . Mol Cancer 2019,18 (1):10.
84. Nicholas KJ, Zern EK, Barnett L, Smith RM, Lorey SL, Copeland CA, Sadagopal S, Kalams SA: B cell responses to HIV antigen are a potent correlate of viremia in HIV-1 infection and improve with PD-1 blockade . PLoS One 2013, 8 (12):e84185.
85. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC et al :Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation .J Exp Med 2000, 192 (7):1027-1034.
86. Dong H, Zhu G, Tamada K, Chen L: B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion . Nat Med 1999, 5 (12):1365-1369.
87. Carter L, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, Collins M, Honjo T, Freeman GJ, Carreno BM: PD-1:PD-L inhibitory pathway affects both CD4(+) and CD8(+) T cells and is overcome by IL-2 .Eur J Immunol 2002, 32 (3):634-643.
88. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K et al : Expression of programmed death 1 ligands by murine T cells and APC . J Immunol2002, 169 (10):5538-5545.
89. Yajuk O, Baron M, Toker S, Zelter T, Fainsod-Levi T, Granot Z:The PD-L1/PD-1 Axis Blocks Neutrophil Cytotoxicity in Cancer .Cells 2021, 10 (6).
90. Wang X, Hu LP, Qin WT, Yang Q, Chen DY, Li Q, Zhou KX, Huang PQ, Xu CJ, Li J et al : Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis . Nat Commun 2021, 12 (1):174.
91. Audrito V: Pancreatic cancer immune evasion mechanisms: the immunosuppressive role of P2RX1-negative neutrophils . Purinergic Signal 2021, 17 (2):173-174.
92. Chen X, Ma H, Mo S, Yu S, Lu Z, Chen J: Intratumoral neutrophil extracellular traps are associated with unfavorable clinical outcomes and immunogenic context in pancreatic ductal adenocarcinoma .Front Immunol 2022, 13 :1027459.
93. Kaltenmeier C, Yazdani HO, Morder K, Geller DA, Simmons RL, Tohme S:Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment . Front Immunol 2021, 12 :785222.
94. Xu P, Zhang X, Chen K, Zhu M, Jia R, Zhou Q, Yang J, Dai J, Jin Y, Shi K: Tumor Cell-Derived Microparticles Induced by Methotrexate Augment T-cell Antitumor Responses by Downregulating Expression of PD-1 in Neutrophils . Cancer Immunol Res 2023, 11 (4):501-514.
95. Cuadrado A, Rojo AI, Wells G, Hayes JD, Cousin SP, Rumsey WL, Attucks OC, Franklin S, Levonen AL, Kensler TW et al :Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases . Nat Rev Drug Discov 2019,18 (4):295-317.
96. Hayes JD, Dinkova-Kostova AT: The Nrf2 regulatory network provides an interface between redox and intermediary metabolism .Trends Biochem Sci 2014, 39 (4):199-218.
97. Zhu CL, Xie J, Zhao ZZ, Li P, Liu Q, Guo Y, Meng Y, Wan XJ, Bian JJ, Deng XM et al : PD-L1 maintains neutrophil extracellular traps release by inhibiting neutrophil autophagy in endotoxin-induced lung injury . Front Immunol 2022, 13 :949217.
98. Huang J, Sun R, Qi X, Liu L, Yang Y, Sun B: [Effect of autophagy on expression of neutrophil programmed death ligand-1 in mice with sepsis] . Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2019,31 (9):1091-1096.
99. Yang S, Imamura Y, Jenkins RW, Cañadas I, Kitajima S, Aref A, Brannon A, Oki E, Castoreno A, Zhu Z et al : Autophagy Inhibition Dysregulates TBK1 Signaling and Promotes Pancreatic Inflammation . Cancer Immunol Res 2016, 4 (6):520-530.
100. Sen T, Rodriguez BL, Chen L, Corte CMD, Morikawa N, Fujimoto J, Cristea S, Nguyen T, Diao L, Li L et al : Targeting DNA Damage Response Promotes Antitumor Immunity through STING-Mediated T-cell Activation in Small Cell Lung Cancer . Cancer Discov 2019,9 (5):646-661.
101. Kwantwi LB, Wang S, Zhang W, Peng W, Cai Z, Sheng Y, Xiao H, Wang X, Wu Q: Tumor-associated neutrophils activated by tumor-derived CCL20 (C-C motif chemokine ligand 20) promote T cell immunosuppression via programmed death-ligand 1 (PD-L1) in breast cancer .Bioengineered 2021, 12 (1):6996-7006.
102. Wang TT, Zhao YL, Peng LS, Chen N, Chen W, Lv YP, Mao FY, Zhang JY, Cheng P, Teng YS et al : Tumour-activated neutrophils in gastric cancer foster immune suppression and disease progression through GM-CSF-PD-L1 pathway . Gut 2017, 66 (11):1900-1911.
103. Cheng Y, Li H, Deng Y, Tai Y, Zeng K, Zhang Y, Liu W, Zhang Q, Yang Y: Cancer-associated fibroblasts induce PDL1+ neutrophils through the IL6-STAT3 pathway that foster immune suppression in hepatocellular carcinoma . Cell Death Dis 2018,9 (4):422.
104. He G, Zhang H, Zhou J, Wang B, Chen Y, Kong Y, Xie X, Wang X, Fei R, Wei L et al : Peritumoural neutrophils negatively regulate adaptive immunity via the PD-L1/PD-1 signalling pathway in hepatocellular carcinoma . J Exp Clin Cancer Res 2015,34 :141.
105. Sun R, Xiong Y, Liu H, Gao C, Su L, Weng J, Yuan X, Zhang D, Feng J: Tumor-associated neutrophils suppress antitumor immunity of NK cells through the PD-L1/PD-1 axis . Transl Oncol 2020,13 (10):100825.
106. Li K, Tandurella JA, Gai J, Zhu Q, Lim SJ, Thomas DL, 2nd, Xia T, Mo G, Mitchell JT, Montagne J et al : Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy . Cancer Cell 2022, 40 (11):1374-1391.e1377.
107. Xiang H, Yang R, Tu J, Xi Y, Yang S, Lv L, Zhai X, Zhu Y, Dong D, Tao X: Metabolic reprogramming of immune cells in pancreatic cancer progression . Biomed Pharmacother 2023,157 :113992.
108. Pelletier M, Billingham LK, Ramaswamy M, Siegel RM:Extracellular flux analysis to monitor glycolytic rates and mitochondrial oxygen consumption . Methods Enzymol 2014,542 :125-149.
109. Robinson JM, Karnovsky ML, Karnovsky MJ: Glycogen accumulation in polymorphonuclear leukocytes, and other intracellular alterations that occur during inflammation . J Cell Biol 1982,95 (3):933-942.
110. Jin X, Dai L, Ma Y, Wang J, Liu Z: Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer . Cancer Cell Int 2020, 20 :273.
111. Daniel SK, Sullivan KM, Labadie KP, Pillarisetty VG:Hypoxia as a barrier to immunotherapy in pancreatic adenocarcinoma . Clin Transl Med 2019, 8 (1):10.
112. Cheng CS, Tan HY, Wang N, Chen L, Meng Z, Chen Z, Feng Y:Functional inhibition of lactate dehydrogenase suppresses pancreatic adenocarcinoma progression . Clin Transl Med 2021,11 (6):e467.
113. Zafar A, Ng HP, Kim GD, Chan ER, Mahabeleshwar GH: BHLHE40 promotes macrophage pro-inflammatory gene expression and functions .Faseb j 2021, 35 (10):e21940.
114. Eissens DN, Van Der Meer A, Van Cranenbroek B, Preijers FW, Joosten I: Rapamycin and MPA, but not CsA, impair human NK cell cytotoxicity due to differential effects on NK cell phenotype . Am J Transplant 2010, 10 (9):1981-1990.
115. Menjivar RE, Nwosu ZC, Du W, Donahue KL, Hong HS, Espinoza C, Brown K, Velez-Delgado A, Yan W, Lima F et al : Arginase 1 is a key driver of immune suppression in pancreatic cancer . Elife2023, 12 .
116. Munder M, Engelhardt M, Knies D, Medenhoff S, Wabnitz G, Luckner-Minden C, Feldmeyer N, Voss RH, Kropf P, Müller I et al :Cytotoxicity of tumor antigen specific human T cells is unimpaired by arginine depletion . PLoS One 2013,8 (5):e63521.
117. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M et al :L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity . Cell 2016, 167 (3):829-842.e813.
118. Zhang J, Xu X, Shi M, Chen Y, Yu D, Zhao C, Gu Y, Yang B, Guo S, Ding G et al : CD13(hi) Neutrophil-like myeloid-derived suppressor cells exert immune suppression through Arginase 1 expression in pancreatic ductal adenocarcinoma . Oncoimmunology 2017,6 (2):e1258504.
119. Canè S, Barouni RM, Fabbi M, Cuozzo J, Fracasso G, Adamo A, Ugel S, Trovato R, De Sanctis F, Giacca M et al : Neutralization of NET-associated human ARG1 enhances cancer immunotherapy . Sci Transl Med 2023, 15 (687):eabq6221.
120. Gagelmann N, Wulf GG, Duell J, Glass B, van Heteren P, von Tresckow B, Fischer M, Penack O, Ayuk F, Einsele H et al :Hematopoietic stem cell boost for persistent neutropenia after CAR T-cell therapy: a GLA/DRST study . Blood Adv 2023,7 (4):555-559.
121. Miller KC, Johnson PC, Abramson JS, Soumerai JD, Yee AJ, Branagan AR, O’Donnell EK, Saucier A, Jacobson CA, Frigault MJ et al :Effect of granulocyte colony-stimulating factor on toxicities after CAR T cell therapy for lymphoma and myeloma . Blood Cancer J 2022, 12 (10):146.
122. Liu S, Li F, Ma Q, Du M, Wang H, Zhu Y, Deng L, Gao W, Wang C, Liu Y et al : OX40L-Armed Oncolytic Virus Boosts T-cell Response and Remodels Tumor Microenvironment for Pancreatic Cancer Treatment . Theranostics 2023, 13 (12):4016-4029.
123. Wattenberg MM, Herrera VM, Giannone MA, Gladney WL, Carpenter EL, Beatty GL: Systemic inflammation is a determinant of outcomes of CD40 agonist-based therapy in pancreatic cancer patients . JCI Insight 2021, 6 (5).
124. Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z et al : CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma . Cancer Cell 2016,29 (6):832-845.
125. Piro G, Carbone C, Agostini A, Esposito A, De Pizzol M, Novelli R, Allegretti M, Aramini A, Caggiano A, Granitto A et al :CXCR1/2 dual-inhibitor ladarixin reduces tumour burden and promotes immunotherapy response in pancreatic cancer . Br J Cancer 2023, 128 (2):331-341.
126. Seo YD, Jiang X, Sullivan KM, Jalikis FG, Smythe KS, Abbasi A, Vignali M, Park JO, Daniel SK, Pollack SM et al :Mobilization of CD8(+) T Cells via CXCR4 Blockade Facilitates PD-1 Checkpoint Therapy in Human Pancreatic Cancer . Clin Cancer Res 2019, 25 (13):3934-3945.
127. Nielsen SR, Strøbech JE, Horton ER, Jackstadt R, Laitala A, Bravo MC, Maltese G, Jensen ARD, Reuten R, Rafaeva M et al :Suppression of tumor-associated neutrophils by lorlatinib attenuates pancreatic cancer growth and improves treatment with immune checkpoint blockade . Nat Commun 2021, 12 (1):3414.
128. Saung MT, Zheng L: Adding combination immunotherapy consisting of cancer vaccine, anti-PD-1 and anti-CSF1R antibodies to gemcitabine improves anti-tumor efficacy in murine model of pancreatic ductal adenocarcinoma . Ann Pancreat Cancer 2019, 2 .
129. Rana M, Kansal R, Chaib M, Teng B, Morrrison M, Hayes DN, Stanfill AG, Shibata D, Carson JA, Makowski L et al : The pancreatic cancer immune tumor microenvironment is negatively remodeled by gemcitabine while TGF-β receptor plus dual checkpoint inhibition maintains antitumor immune cells . Mol Carcinog 2022,61 (6):549-557.
130. Melisi D, Oh DY, Hollebecque A, Calvo E, Varghese A, Borazanci E, Macarulla T, Merz V, Zecchetto C, Zhao Y et al : Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer .J Immunother Cancer 2021, 9 (3).
131. Kwon W, Thomas A, Kluger MD: Irreversible electroporation of locally advanced pancreatic cancer . Semin Oncol 2021,48 (1):84-94.
132. Tian G, Guan J, Chu Y, Zhao Q, Jiang T: Immunomodulatory Effect of Irreversible Electroporation Alone and Its Cooperating With Immunotherapy in Pancreatic Cancer . Front Oncol 2021,11 :712042.
133. Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C et al : Local Release of TGF-β Inhibitor Modulates Tumor-Associated Neutrophils and Enhances Pancreatic Cancer Response to Combined Irreversible Electroporation and Immunotherapy . Adv Sci (Weinh) 2022, 9 (10):e2105240.
134. Mirji G, Worth A, Bhat SA, El Sayed M, Kannan T, Goldman AR, Tang HY, Liu Q, Auslander N, Dang CV et al : The microbiome-derived metabolite TMAO drives immune activation and boosts responses to immune checkpoint blockade in pancreatic cancer . Sci Immunol 2022, 7 (75):eabn0704.
135. Xiang ZJ, Hu T, Wang Y, Wang H, Xu L, Cui N:Neutrophil-lymphocyte ratio (NLR) was associated with prognosis and immunomodulatory in patients with pancreatic ductal adenocarcinoma (PDAC) . Biosci Rep 2020, 40 (6).
136. Harimoto N, Hoshino K, Muranushi R, Hagiwara K, Yamanaka T, Ishii N, Tsukagoshi M, Igarashi T, Tanaka H, Watanabe A et al :Prognostic significance of neutrophil-lymphocyte ratio in resectable pancreatic neuroendocrine tumors with special reference to tumor-associated macrophages . Pancreatology 2019,19 (6):897-902.
137. Reddy AV, Hill CS, Sehgal S, Zheng L, He J, Laheru DA, Jesus-Acosta A, Herman JM, Meyer J, Narang AK: Post-radiation neutrophil-to-lymphocyte ratio is a prognostic marker in patients with localized pancreatic adenocarcinoma treated with anti-PD-1 antibody and stereotactic body radiation therapy . Radiat Oncol J 2022,40 (2):111-119.
138. Shang J, Han X, Zha H, Tao H, Li X, Yuan F, Chen G, Wang L, Ma J, Hu Y: Systemic Immune-Inflammation Index and Changes of Neutrophil-Lymphocyte Ratio as Prognostic Biomarkers for Patients With Pancreatic Cancer Treated With Immune Checkpoint Blockade . Front Oncol 2021, 11 :585271.
139. Chen S, Guo S, Gou M, Pan Y, Fan M, Zhang N, Tan Z, Dai G:A composite indicator of derived neutrophil-lymphocyte ratio and lactate dehydrogenase correlates with outcomes in pancreatic carcinoma patients treated with PD-1 inhibitors . Front Oncol 2022,12 :951985.
140. Chen Q, Yin H, Liu S, Shoucair S, Ding N, Ji Y, Zhang J, Wang D, Kuang T, Xu X et al : Prognostic value of tumor-associated N1/N2 neutrophil plasticity in patients following radical resection of pancreas ductal adenocarcinoma . J Immunother Cancer 2022,10 (12).
141. Gong X, Zhu Y, Zhang Q, Qiu X, Lu C, Tong F, Wang Q, Kong W, Zhou H, Liu B et al : Efficacy and safety of immune checkpoint inhibitors in advanced pancreatic cancer: A real world study in Chinese cohort . Hum Vaccin Immunother 2022, 18 (6):2143154.
142. Zhang D, Frenette PS: Cross talk between neutrophils and the microbiota . Blood 2019, 133 (20):2168-2177.
143. Vitiello GA, Cohen DJ, Miller G: Harnessing the Microbiome for Pancreatic Cancer Immunotherapy . Trends Cancer 2019,5 (11):670-676.
144. Chu D, Dong X, Shi X, Zhang C, Wang Z: Neutrophil-Based Drug Delivery Systems . Adv Mater 2018, 30 (22):e1706245.
145. Zhang Y, Guoqiang L, Sun M, Lu X: Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment . Cancer Biol Med 2020,17 (1):32-43.
146. Wang Z, Li J, Cho J, Malik AB: Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils .Nat Nanotechnol 2014, 9 (3):204-210.
147. Chang Y, Cai X, Syahirah R, Yao Y, Xu Y, Jin G, Bhute VJ, Torregrosa-Allen S, Elzey BD, Won YY et al :CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy . Nat Commun 2023, 14 (1):2266.
148. Chang Y, Syahirah R, Wang X, Jin G, Torregrosa-Allen S, Elzey BD, Hummel SN, Wang T, Li C, Lian X et al : Engineering chimeric antigen receptor neutrophils from human pluripotent stem cells for targeted cancer immunotherapy . Cell Rep 2022,40 (3):111128.
149. Hirschhorn D, Budhu S, Kraehenbuehl L, Gigoux M, Schröder D, Chow A, Ricca JM, Gasmi B, De Henau O, Mangarin LMB et al : T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants . Cell 2023, 186 (7):1432-1447.e1417.