Figure 1: Schematic
diagram showing the heavy metal’s ROS signaling of the MAPKs cascade and
a possible pipeline to identifying and elucidating more key players in
this pathway.
Conclusion
Heavy metals do not decompose in the soil, and therefore poses a major
threat to plant growth and development (Rashid et al., 2023). HM
toxicity becomes more evident when their concentrations exceed threshold
levels (Table 1 ) within the soil (Rashid et al., 2023). ROS
production and alteration in plant’s redox state is a shared response
among heavy metal stresses (Singh et al., 2019). Overaccumulation of ROS
has been shown to be detrimental to plant development; however, plants
have adapted signaling pathways to which the perceived stress signal is
sent to the nucleus for an appropriate response (Singh et al., 2019).
While there has been much research conducted on HMs and plants adaptive
mechanisms, there has been a knowledge gap between signaling pathways
and how individual HM-ROS signals interact and activate a particular
signaling pathway, the MAPK pathway and further how activation of MAPKs
triggers a downstream activation of transcription factors to impart
resistance against HM-stress.
In animals MAPKs regulatory network has been extensively studied under
heavy metal stress, more so than in plants, therefore, it will be
greatly beneficial to investigate the importance of MAPKs crosstalk in
heavy metal stress in plants. Limited investigations report on the
regulatory network of MAPKs with transcription factors, therefore
indicates towards the need for more in depth experiments in response to
heavy metals in plants. In this review, the influence of HM-ROS on the
activation of MAPKs along with transcription factors are reported.
Numerous studies across various scientific groups assisted to elucidate
that various HM do indeed instigate the production of ROS which
interplay with MAPK to induce a stress response. Furthermore, this
review delved into the downstream transcription factors (WRKY, bZIP, MYB
and HSF) that are activated to highlight particular stress responses
(detoxification, HM-uptake, HM-transport, and growth and development)
under various HM-stresses. The pipeline proposed in Section 4and Figure 1 indicates an approach to assist in bridging the
gap between HM-ROS induced MAPK and the downstream transcription factors
activated. Hence, the purpose is to confirm the functional roles of MAPK
genes, and the transcription factors and their regulation by ROS
signaling to develop heavy metal resistance plants.
Author Contributions : This work was supported by the National
Research Foundation of South Africa (NRF)This research was financially
supported by the NRF to M.K and A.K (Grant numbers: 107023, 115280,
116346 and 109083), A.G. (Grant number: 129493), A.G. was also supported
by the CRF fund of the University of the Free State.
Acknowledgements including funding information : This work was
supported by the National Research Foundation of South Africa (NRF)This
research was financially supported by the NRF to A.K. and M.K. (Grant
numbers: 107023, 115280, 116346 and 109083), A.G. (Grant number:
129493). A.G. was also supported by the CRF fund of the University of
the Free State.
Conflict of Interest: The authors declare that there are no
conflicts of interest.
References
1. Agarwal, P., Mitra, M., Banerjee, S. and Roy, S., 2020. MYB4
transcription factor, a member of R2R3-subfamily of MYB domain protein,
regulates cadmium tolerance via enhanced protection against oxidative
damage and increases expression of PCS1 and MT1C in Arabidopsis. Plant
Science, 297, p.110501.
2. Aprile, A. and De Bellis, L., 2020. Editorial for special issue
“Heavy metals accumulation, toxicity, and detoxification in plants”.
International Journal of Molecular Sciences, 21(11), p.4103.
3. Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R.K.,
Sharma, S., Tripathi, D.K., Dubey, N.K. and Chauhan, D.K., 2016.
Influence of high and low levels of plant-beneficial heavy metal ions on
plant growth and development. Frontiers in environmental science, 4,
p.69.
4. Bari, M.A., Prity, S.A., Das, U., Akther, M.S., Sajib, S.A., Reza,
M.A. and Kabir, A.H., 2020. Silicon induces phytochelatin and ROS
scavengers facilitating cadmium detoxification in rice. Plant Biology,
22(3), pp.472-479.
5. Cai, S.Y., Zhang, Y., Xu, Y.P., Qi, Z.Y., Li, M.Q., Ahammed, G.J.,
Xia, X.J., Shi, K., Zhou, Y.H., Reiter, R.J. and Yu, J.Q., 2017. HsfA1a
upregulates melatonin biosynthesis to confer cadmium tolerance in tomato
plants. Journal of pineal research, 62(2), p.e12387.
6. Chen, S., Yu, M., Li, H., Wang, Y., Lu, Z., Zhang, Y., Liu, M., Qiao,
G., Wu, L., Han, X. and Zhuo, R., 2020. SaHsfA4c from Sedum alfredii
Hance enhances cadmium tolerance by regulating ROS-scavenger activities
and heat shock proteins expression. Frontiers in Plant Science, 11,
p.142.
7. Chmielowska-Bąk, J., Lefèvre, I., Lutts, S. and Deckert, J., 2013.
Short term signaling responses in roots of young soybean seedlings
exposed to cadmium stress. Journal of Plant Physiology, 170(18),
pp.1585-1594.
8. Ding, Y., Ding, L., Xia, Y., Wang, F. and Zhu, C., 2020. Emerging
roles of microRNAs in plant heavy metal tolerance and homeostasis.
Journal of Agricultural and Food Chemistry, 68(7), pp.1958-1965.
9. El Rasafi, T., Oukarroum, A., Haddioui, A., Song, H., Kwon, E.E.,
Bolan, N., Tack, F.M., Sebastian, A., Prasad, M.N.V. and Rinklebe, J.,
2022. Cadmium stress in plants: A critical review of the effects,
mechanisms, and tolerance strategies. Critical Reviews in Environmental
Science and Technology, 52(5), pp.675-726.
10. Fan, L., Xu, L., Wang, Y., Tang, M. and Liu, L., 2019. Genome-and
transcriptome-wide characterization of bZIP gene family identifies
potential members involved in abiotic stress response and anthocyanin
biosynthesis in radish (Raphanus sativus L.). International Journal of
Molecular Sciences, 20(24), p.6334.
11. Ghori, N.H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V.
and Ozturk, M., 2019. Heavy metal stress and responses in plants.
International journal of environmental science and technology, 16,
pp.1807-1828.
12. Haider, F.U., Coulter, J.A., Cheema, S.A., Farooq, M., Wu, J.,
Zhang, R., Shuaijie, G. and Liqun, C., 2021. Co-application of biochar
and microorganisms improves soybean performance and remediate
cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214,
p.112112.
13. Han, Y., Hou, Z., He, Q., Zhang, X., Yan, K., Han, R. and Liang, Z.,
2021. Genome-wide characterization and expression analysis of bZIP gene
family under abiotic stress in Glycyrrhiza uralensis. Frontiers in
Genetics, 12, p.754237.
14. Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J. and Chen, S., 2021. A
review on plant responses to salt stress and their mechanisms of salt
resistance. Horticulturae, 7(6), p.132.
15. Haque, A.M., Tasnim, J., El-Shehawi, A.M., Rahman, M.A., Parvez,
M.S., Ahmed, M.B. and Kabir, A.H., 2021. The Cd-induced morph ological
and photosynthetic disruption is related to the reduced Fe status and
increased oxidative injuries in sugar beet. Plant Physiology and
Biochemistry, 166, pp.448-458.
16. He, X., Wang, C., Wang, H., Li, L. and Wang, C., 2020. The function
of MAPK cascades in response to various stresses in horticultural
plants. Frontiers in Plant Science, 11, p.952.
17. Hossein-Khannazer, N., Azizi, G., Eslami, S., Alhassan Mohammed, H.,
Fayyaz, F., Hosseinzadeh, R., Usman, A.B., Kamali, A.N., Mohammadi, H.,
Jadidi-Niaragh, F. and Dehghanifard, E., 2020. The effects of cadmium
exposure in the induction of inflammation. Immunopharmacology and
Immunotoxicology, 42(1), pp.1-8.
18. Hu, S., Yu, Y., Chen, Q., Mu, G., Shen, Z. and Zheng, L., 2017.
OsMYB45 plays an important role in rice resistance to cadmium stress.
Plant science, 264, pp.1-8.
19. Huang, C., Zhou, J., Jie, Y., Xing, H., Zhong, Y., Yu, W., She, W.,
Ma, Y., Liu, Z. and Zhang, Y., 2016. A ramie bZIP transcription factor
BnbZIP2 is involved in drought, salt, and heavy metal stress response.
DNA and cell biology, 35(12), pp.776-786.
20. Hussain, B., Ashraf, M.N., Abbas, A., Li, J. and Farooq, M., 2021.
Cadmium stress in paddy fields: effects of soil conditions and
remediation strategies. Science of The Total Environment, 754, p.142188.
21. Huybrechts, M., Hendrix, S., Bertels, J., Beemster, G.T., Vandamme,
D. and Cuypers, A., 2020. Spatial analysis of the rice leaf growth zone
under controlled and cadmium-exposed conditions. Environmental and
Experimental Botany, 177, p.104120.
22. Jawad Hassan, M., Ali Raza, M., Ur Rehman, S., Ansar, M., Gitari,
H., Khan, I., Wajid, M., Ahmed, M., Abbas Shah, G., Peng, Y. and Li, Z.,
2020. Effect of cadmium toxicity on growth, oxidative damage,
antioxidant defense system and cadmium accumulation in two sorghum
cultivars. Plants, 9(11), p.1575.
23. Karanja, B.K., Fan, L., Xu, L., Wang, Y., Zhu, X., Tang, M., Wang,
R., Zhang, F., Muleke, E.M.M. and Liu, L., 2017. Genome-wide
characterization of the WRKY gene family in radish (Raphanus sativus L.)
reveals its critical functions under different abiotic stresses. Plant
cell reports, 36, pp.1757-1773.
24. Kim, H.S., Kim, Y.J. and Seo, Y.R., 2015. An overview of
carcinogenic heavy metal: molecular toxicity mechanism and prevention.
Journal of Cancer Prevention, 20(4), p.232.
25. Kumar, K., Raina, S.K. and Sultan, S.M., 2020. Arabidopsis MAPK
signaling pathways and their cross talks in abiotic stress response.
Journal of Plant Biochemistry and Biotechnology, 29(4), pp.700-714.
26. Lata, S., Kaur, H.P. and Mishra, T., 2019. Cadmium bioremediation: a
review. International Journal of Pharmaceutical Sciences and Research,
10, pp.4120-4128.
27. Li, S., Han, X., Lu, Z., Qiu, W., Yu, M., Li, H., He, Z. and Zhuo,
R., 2022. MAPK cascades and transcriptional factors: Regulation of heavy
metal tolerance in plants. International Journal of Molecular Sciences,
23(8), p.4463.
28. Li, Z., Liang, Y., Hu, H., Shaheen, S.M., Zhong, H., Tack, F.M., Wu,
M., Li, Y.F., Gao, Y., Rinklebe, J. and Zhao, J., 2021. Speciation,
transportation, and pathways of cadmium in soil-rice systems: a review
on the environmental implications and remediation approaches for food
safety. Environment international, 156, p.106749.
29. Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. and Wang,
Y., 2018. Effects of arbuscular mycorrhizal inoculation and biochar
amendment on maize growth, cadmium uptake and soil cadmium speciation in
Cd-contaminated soil. Chemosphere, 194, pp.495-503.
30. Mikhailenko, A.V., Ruban, D.A., Ermolaev, V.A. and Van Loon, A.J.,
2020. Cadmium pollution in the tourism environment: A literature review.
Geosciences, 10(6), p.242.
31. Mondal, S., Pramanik, K., Ghosh, S.K., Pal, P., Ghosh, P.K., Ghosh,
A. and Maiti, T.K., 2022. Molecular insight into arsenic uptake,
transport, phytotoxicity, and defense responses in plants: A critical
review. Planta, 255(4), p.87.
32. Muhammad, T., Zhang, J., Ma, Y., Li, Y., Zhang, F., Zhang, Y. and
Liang, Y., 2019. Overexpression of a mitogen-activated protein kinase
SlMAPK3 positively regulates tomato tolerance to cadmium and drought
stress. Molecules, 24(3), p.556.
33. Pan, C., Ye, H., Zhou, W., Wang, S., Li, M., Lu, M., Li, S., Zhu,
X., Wang, Y., Rao, Y. and Dai, G., 2021. QTL mapping of candidate genes
involved in Cd accumulation in rice grain. Chinese Bulletin of Botany,
56(1), p.25.
34. Rabêlo, F.H.S., Gaziola, S.A., Rossi, M.L., Silveira, N.M., Wójcik,
M., Bajguz, A., Piotrowska‐Niczyporuk, A., Lavres, J., Linhares, F.S.,
Azevedo, R.A. and Vangronsveld, J., 2021. Unraveling the mechanisms
controlling Cd accumulation and Cd‐tolerance in Brachiaria decumbens and
Panicum maximum under summer and winter weather conditions. Physiologia
Plantarum, 173(1), pp.20-44.
35. Rizwan, M., Ali, S., ur Rehman, M.Z., Rinklebe, J., Tsang, D.C.,
Bashir, A., Maqbool, A., Tack, F.M.G. and Ok, Y.S., 2018. Cadmium
phytoremediation potential of Brassica crop species: a review. Science
of the Total Environment, 631, pp.1175-1191.
36. Sapara, K.K., Khedia, J., Agarwal, P., Gangapur, D.R. and Agarwal,
P.K., 2019. SbMYB15 transcription factor mitigates cadmium and nickel
stress in transgenic tobacco by limiting uptake and modulating
antioxidative defence system. Functional Plant Biology, 46(8),
pp.702-714.
37. Shanmugaraj, B.M., Malla, A. and Ramalingam, S., 2019. Cadmium
stress and toxicity in plants: an overview. Cadmium toxicity and
tolerance in plants, pp.1-17.
38. Sharma, S.S., Kumar, V. and Dietz, K.J., 2021. Emerging trends in
metalloid-dependent signalling in plants. Trends in plant science,
26(5), pp.452-471.
39. Sheng, Y., Yan, X., Huang, Y., Han, Y., Zhang, C., Ren, Y., Fan, T.,
Xiao, F., Liu, Y. and Cao, S., 2019. The WRKY transcription factor,
WRKY13, activates PDR8 expression to positively regulate cadmium
tolerance in Arabidopsis. Plant, Cell & Environment, 42(3), pp.891-903.
40. Shim, D., Hwang, J.U., Lee, J., Lee, S., Choi, Y., An, G.,
Martinoia, E. and Lee, Y., 2009. Orthologs of the class A4 heat shock
transcription factor HsfA4a confer cadmium tolerance in wheat and rice.
The Plant Cell, 21(12), pp.4031-4043.
41. Song, G., Yuan, S., Wen, X., Xie, Z., Lou, L., Hu, B., Cai, Q. and
Xu, B., 2018. Transcriptome analysis of Cd-treated switchgrass root
revealed novel transcripts and the importance of HSF/HSP network in
switchgrass Cd tolerance. Plant cell reports, 37, pp.1485-1497.
42. Song, Y., Jin, L. and Wang, X., 2017. Cadmium absorption and
transportation pathways in plants. International journal of
phytoremediation, 19(2), pp.133-141.
43. Wang, Z., Sun, Y., Yao, W., Ba, Q. and Wang, H., 2021. Effects of
cadmium exposure on the immune system and immunoregulation. Frontiers in
Immunology, 12, p.695484.
44. Wu, B., Zeng, Z., Wu, X., Li, Y., Wang, F., Yang, J. and Li, X.,
2022. Jasmonic acid negatively regulation of root growth in Japonica
rice (Oryza sativa L.) under cadmium treatment. Plant Growth Regulation,
98(3), pp.651-667.
45. Xu, Z., Ge, Y., Zhang, W., Zhao, Y. and Yang, G., 2018. The walnut
JrVHAG1 gene is involved in cadmium stress response through ABA-signal
pathway and MYB transcription regulation. BMC plant biology, 18(1),
pp.1-13.
46. Yang, F., Zhang, H., Wang, Y., He, G., Wang, J., Guo, D., Li, T.,
Sun, G. and Zhang, H., 2021. The role of antioxidant mechanism in
photosynthesis under heavy metals Cd or Zn exposure in tobacco leaves.
Journal of Plant Interactions, 16(1), pp.354-366.
47. Zhang, P., Wang, R., Ju, Q., Li, W., Tran, L.S.P. and Xu, J., 2019.
The R2R3-MYB transcription factor MYB49 regulates cadmium accumulation.
Plant physiology, 180(1), pp.529-542.
48. Zhou, J., Zhang, C., Du, B., Cui, H., Fan, X., Zhou, D. and Zhou,
J., 2021. Soil and foliar applications of silicon and selenium effects
on cadmium accumulation and plant growth by modulation of antioxidant
system and Cd translocation: Comparison of soft vs. durum wheat
varieties. Journal of Hazardous Materials, 402, p.123546.
49. Zulfiqar, U., Jiang, W., Xiukang, W., Hussain, S., Ahmad, M.,
Maqsood, M.F., Ali, N., Ishfaq, M., Kaleem, M., Haider, F.U. and Farooq,
N., 2022. Cadmium phytotoxicity, tolerance, and advanced remediation
approaches in agricultural soils; a comprehensive review. Frontiers in
Plant Science, 13, p.773815.
50. Liu, Y., Liu, L., Qi, J., Dang, P. and Xia, T., 2019. Cadmium
activates ZmMPK3-1 and ZmMPK6-1 via induction of reactive oxygen species
in maize roots. Biochemical and biophysical research communications,
516(3), pp.747-752.
51. Wang, J., Ding, H., Zhang, A., Ma, F., Cao, J. and Jiang, M., 2010.
A novel mitogen‐activated protein kinase gene in maize (Zea mays),
ZmMPK3, is involved in response to diverse environmental cues. Journal
of Integrative Plant Biology, 52(5), pp.442-452.
52. Zhao, L., Yan, J., Xiang, Y., Sun, Y. and Zhang, A., 2021. ZmWRKY104
transcription factor phosphorylated by ZmMPK6 functioning in ABA-induced
antioxidant defense and enhance drought tolerance in Maize. Biology,
10(9), p.893.
53. Liu, X.M., Kim, K.E., Kim, K.C., Nguyen, X.C., Han, H.J., Jung,
M.S., Kim, H.S., Kim, S.H., Park, H.C., Yun, D.J. and Chung, W.S., 2010.
Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive
oxygen species. Phytochemistry, 71(5-6), pp.614-618.
54. Duarte, G. T., Volkova, P. Y., Fiengo Perez, F., & Horemans, N.
(2023). Chronic Ionizing Radiation of Plants: An Evolutionary Factor
from Direct Damage to Non-Target Effects. Plants, 12(5), 1178.
55. Dong, D., Zhao, X., Hua, X., Liu, J., and Gao, M. (2009).
Investigation of the potential mobility of Pb, Cd and Cr (VI) from
moderately contaminated farmland soil to groundwater in Northeast,
China. J. Hazard. Mater. 162, 1261–1268. doi:
10.1016/j.jhazmat.2008.06.032
56. Arias J.A., Peralta-Videa J.R., Ellzey J.T., Ren M., Viveros M.N.,
Gardea-Torresdey J.L. Effects of Glomus deserticola inoculation on
Prosopis: Enhancing chromium and lead uptake and translocation as
confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ. Exp.
Bot. 2010; 68: 139–148. doi: 10.1016/ j.envexpbot. 2009. 08.009.
57. J.H. Duffus 2002. Heavy metals a meaningless term? (IUPAC Technical
Report) Pure Appl. Chem., 74 (5) (2002), pp. 793-807,
10.1351/pac200274050793
58. W.X. Wang, N.S. Fisher 1999.Delineating metal accumulation pathways
for marine invertebrates Sci. Total Environ., 237 (1999), pp. 459-472,
10.1016/S0048-9697(99)00158-8
59. H. Ali, E. Khan, I. Ilahi 2019. Environmental chemistry and
ecotoxicology of hazardous heavy metals: environmental persistence,
toxicity, and bioaccumulation. J. Chem. (2019), p. 2019,
10.1155/2019/6730305
60. Collin, S., Baskar, A., Geevarghese, D. M., Ali, M. N. V. S.,
Bahubali, P., Choudhary, R., … & Swamiappan, S. (2022).
Bioaccumulation of lead (Pb) and its effects in plants: A review.
Journal of Hazardous Materials Letters, 100064.
61. Kumar, A., Kumar, A., MMS, C.P., Chaturvedi, A.K., Shabnam, A.A.,
Subrahmanyam, G., Mondal, R., Gupta, D.K., Malyan, S.K., Kumar, S.S. and
A. Khan, S., 2020. Lead toxicity: health hazards, influence on food
chain, and sustainable remediation approaches. International journal of
environmental research and public health, 17(7), p.2179.
62. Gupta D., Huang H., Yang X., Razafindrabe B., Inouhe M. The
detoxification of lead in Sedum alfredii H. is not related to
phytochelatins but the glutathione. J. Hazard. Mater. 2010;177:437–444.
doi: 10.1016/j.jhazmat.2009.12.052.
63. Conrad M., Pratt D.A. The chemical basis of ferroptosis. Nat Chem
Biol. 2019;15:1137–1147. doi: 10.1038/s41589-019-0408-1. [PubMed]
[CrossRef] [Google Scholar]
64. Feng H., Stockwell B.R. Unsolved mysteries: How does lipid
peroxidation cause ferroptosis? PLoS Biol. 2018;16:e2006203. doi:
10.1371/journal.pbio.2006203. [PMC free article] [PubMed]
[CrossRef] [Google Scholar]
65. Dixon S.J., Lemberg K.M., Lamprecht M.R., Skouta R., Zaitsev E.M.,
Gleason C.E., Patel D.N., Bauer A.J., Cantley A.M., Yang W.S., et al.
Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell.
2012;149:1060–1072. doi: 10.1016/j.cell.2012.03.042. [PMC free
article] [PubMed] [CrossRef] [Google Scholar]
66. Szurman-Zubrzycka, Miriam, Paulina Jędrzejek, and Iwona Szarejko.
”How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway
in Plants.” International Journal of Molecular Sciences 24, no. 3
(2023): 2404.
67. Ahmad, P. et al. (2020) ‘Zinc Oxide Nanoparticles Application
Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the
Uptake of as and Modulating Key Biochemical Attributes, Antioxidant
Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System’, Plants,
9(7). doi: 10.3390/plants9070825.
68. Beniwal, R., Yadav, R. and Ramakrishna, W. (2023) ‘Multifarious
Effects of Arsenic on Plants and Strategies for Mitigation’,
Agriculture, 13(2). doi: 10.3390/agriculture13020401.
69. Bhat, J. A., Ahmad, P. and Corpas, F. J. (2021) ‘Main nitric oxide
(NO) hallmarks to relieve arsenic stress in higher plants’, Journal of
Hazardous Materials, 406, p. 124289. doi:
https://doi.org/10.1016/j.jhazmat.2020.124289.
70. Chen, Y., Wang, H. Y. and Chen, Y. F. (2021) ‘The transcription
factor MYB40 is a central regulator in arsenic resistance in
Arabidopsis’, Plant Communications, 2(6), p. 100234. doi:
10.1016/J.XPLC.2021.100234.
71. Huang, T. L. et al. (2012) ‘Transcriptomic changes and signalling
pathways induced by arsenic stress in rice roots’, Plant Molecular
Biology, 80(6), pp. 587–608. doi: 10.1007/S11103-012-9969-Z/FIGURES/8.
72. Lal, M. K. et al. (2023) ‘Editorial: Abiotic and biotic stress in
horticultural crops: insight into recent advances in the underlying
tolerance mechanism’, Frontiers in Plant Science, 14. doi:
10.3389/fpls.2023.1212982.
73. Mirza, Z., Haque, M. M. and Gupta, M. (2022) ‘WRKY transcription
factors: a promising way to deal with arsenic stress in rice’, Molecular
Biology Reports, 49(11), pp. 10895–10904. doi:
10.1007/s11033-022-07772-9.
74. Mittler, R. et al. (2022) ‘Reactive oxygen species signalling in
plant stress responses’, Nature Reviews Molecular Cell Biology 2022
23:10, 23(10), pp. 663–679. doi: 10.1038/s41580-022-00499-2.
75. Zeeshan, M. et al. (2022) ‘Interplay of ZnONPs and/or SeNPs induces
arsenic tolerance in soybean by regulation of antioxidants pool, WRKY
genes, and expression of arsenic transporters’, Environmental and
Experimental Botany, 195, p. 104783. doi:
https://doi.org/10.1016/j.envexpbot.2022.104783.
76. Navarro, C., Navarro, M.A. and Leyva, A., 2022. Arsenic perception
and signaling: The yet unexplored world. Frontiers in Plant Science, 13,
p.993484.
77. Rao, K.P., Vani, G., Kumar, K., Wankhede, D.P., Misra, M., Gupta, M.
and Sinha, A.K., 2011. Arsenic stress activates MAP kinase in rice roots
and leaves. Archives of biochemistry and biophysics, 506(1), pp.73-82.
78. Gupta, M., Sharma, P., Sarin, N.B. and Sinha, A.K., 2009.
Differential response of arsenic stress in two varieties of Brassica
juncea L. Chemosphere, 74(9), pp.1201-1208.
79. Adachi, H., Nakano, T., Miyagawa, N., Ishihama, N., Yoshioka, M.,
Katou, Y., Yaeno, T., Shirasu, K. and Yoshioka, H., 2015. WRKY
transcription factors phosphorylated by MAPK regulate a plant immune
NADPH oxidase in Nicotiana benthamiana. The Plant Cell, 27(9),
pp.2645-2663.
80. Ali, S., Mir, R.A., Tyagi, A., Manzar, N., Kashyap, A.S., Mushtaq,
M., Raina, A., Park, S., Sharma, S., Mir, Z.A. and Lone, S.A., 2023.
Chromium toxicity in plants: signaling, mitigation, and future
perspectives. Plants, 12(7), p.1502.
81. Baek, D., Park, H.C., Kim, M.C. and Yun, D.J., 2013. The role of
Arabidopsis MYB2 in miR399f-mediated phosphate-starvation
response. Plant signaling & behavior, 8(3), pp.362-73.
82. Cao, Y., Li, K., Li, Y., Zhao, X. and Wang, L., 2020. MYB
transcription factors as regulators of secondary metabolism in
plants. Biology, 9(3), p.61.
83. Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F.,
Loza-Tavera, H., Torres-Guzmán, J.C. and Moreno-Sánchez, R., 2001.
Interactions of chromium with microorganisms and plants. FEMS
microbiology reviews, 25(3), pp.335-347.
84. Chai, M., Fan, R., Huang, Y., Jiang, X., Wai, M.H., Yang, Q., Su,
H., Liu, K., Ma, S., Chen, Z. and Wang, F., 2022. GmbZIP152, a soybean
bZIP transcription factor, confers multiple biotic and abiotic stress
responses in plant. International Journal of Molecular Sciences, 23(18),
p.10935.
85. Dory, M., Hatzimasoura, E., Kállai, B.M., Nagy, S.K., Jäger, K.,
Darula, Z., Nádai, T.V., Mészáros, T., López‐Juez, E., Barnabás, B. and
Palme, K., 2018. Coevolving MAPK and PID phosphosites indicate an
ancient environmental control of PIN auxin transporters in land
plants. FEBS letters, 592(1), pp.89-102.
86. Dubey, S., Shri, M., Misra, P., Lakhwani, D., Bag, S.K., Asif, M.H.,
Trivedi, P.K., Tripathi, R.D. and Chakrabarty, D., 2014. Heavy metals
induce oxidative stress and genome-wide modulation in transcriptome of
rice root. Functional & integrative genomics, 14, pp.401-417.
87. Fan, L., Xu, L., Wang, Y., Tang, M. and Liu, L., 2019. Genome-and
transcriptome-wide characterization of bZIP gene family identifies
potential members involved in abiotic stress response and anthocyanin
biosynthesis in radish (Raphanus sativus L.). International journal of
molecular sciences, 20(24), p.6334.
88. Fang, H., Liu, Z., Long, Y., Liang, Y., Jin, Z., Zhang, L., Liu, D.,
Li, H., Zhai, J. and Pei, Y., 2017. The Ca2+/calmodulin2‐binding
transcription factor TGA 3 elevates LCD expression and H2S production to
bolster Cr6+ tolerance in Arabidopsis. The Plant Journal, 91(6),
pp.1038-1050..
89. Grunewald, W., De Smet, I., Lewis, D.R., Löfke, C., Jansen, L.,
Goeminne, G., Vanden Bossche, R., Karimi, M., De Rybel, B., Vanholme, B.
and Teichmann, T., 2012. Transcription factor WRKY23 assists auxin
distribution patterns during Arabidopsis root development through local
control on flavonol biosynthesis. Proceedings of the National Academy of
Sciences, 109(5), pp.1554-1559.
90. Hu, S., Yu, Y., Chen, Q., Mu, G., Shen, Z. and Zheng, L., 2017.
OsMYB45 plays an important role in rice resistance to cadmium
stress. Plant science, 264, pp.1-8.
91. Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M. and
Ludwikow, A., 2018. Mitogen-activated protein kinase cascades in plant
hormone signaling. Frontiers in plant science, 9, p.1387.
92. Jalmi, S.K., Bhagat, P.K., Verma, D., Noryang, S., Tayyeba, S.,
Singh, K., Sharma, D. and Sinha, A.K., 2018. Traversing the links
between heavy metal stress and plant signaling. Frontiers in plant
science, 9, p.12.
93. Jiang, J., Ma, S., Ye, N., Jiang, M., Cao, J. and Zhang, J., 2017.
WRKY transcription factors in plant responses to stresses. Journal of
integrative plant biology, 59(2), pp.86-101.
94. Kaminaka, H., Näke, C., Epple, P., Dittgen, J., Schütze, K., Chaban,
C., Holt III, B.F., Merkle, T., Schäfer, E., Harter, K. and Dangl, J.L.,
2006. bZIP10‐LSD1 antagonism modulates basal defense and cell death in
Arabidopsis following infection. The EMBO journal, 25(18), pp.4400-4411.
95. Kesawat, M.S., Satheesh, N., Kherawat, B.S., Kumar, A., Kim, H.U.,
Chung, S.M. and Kumar, M., 2023. Regulation of reactive oxygen species
during salt stress in plants and their crosstalk with other signaling
molecules—Current perspectives and future directions. Plants, 12(4),
p.864.
97. Kumar, K., Raina, S.K. and Sultan, S.M., 2020. Arabidopsis MAPK
signaling pathways and their cross talks in abiotic stress
response. Journal of Plant Biochemistry and Biotechnology, 29(4),
pp.700-714.
98. Lamers, J., Van Der Meer, T. and Testerink, C., 2020. How plants
sense and respond to stressful environments. Plant Physiology, 182(4),
pp.1624-1635.
99. Lešková, A., Zvarík, M., Araya, T. and Giehl, R.F., 2020. Nickel
toxicity targets cell wall-related processes and PIN2-mediated auxin
transport to inhibit root elongation and gravitropic responses in
Arabidopsis. Plant and Cell Physiology, 61(3), pp.519-535.
100. Li, S., Han, X., Lu, Z., Qiu, W., Yu, M., Li, H., He, Z. and Zhuo,
R., 2022. MAPK cascades and transcriptional factors: Regulation of heavy
metal tolerance in plants. International Journal of Molecular
Sciences, 23(8), p.4463.
101. Liu, Y., Zhou, Q., Wang, Y., Cheng, S. and Hao, W., 2021. Deriving
soil quality criteria of chromium based on species sensitivity
distribution methodology. Toxics, 9(3), p.58.
102. López-Bucio, J., Hernández-Madrigal, F., Cervantes, C.,
Ortiz-Castro, R., Carreón-Abud, Y. and Martínez-Trujillo, M., 2014.
Phosphate relieves chromium toxicity in Arabidopsis thaliana plants by
interfering with chromate uptake. BioMetals, 27, pp.363-370.
103. López-Bucio, J., Ortiz-Castro, R., Ruíz-Herrera, L.F., Juárez,
C.V., Hernández-Madrigal, F., Carreón-Abud, Y. and Martínez-Trujillo,
M., 2015. Chromate induces adventitious root formation via auxin
signalling and SOLITARY-ROOT/IAA14 gene function in Arabidopsis
thaliana. Biometals, 28, pp.353-365.
104. Majda, M. and Robert, S., 2018. The role of auxin in cell wall
expansion. International journal of molecular sciences, 19(4), p.951..
105. Reale, L., Ferranti, F., Mantilacci, S., Corboli, M., Aversa, S.,
Landucci, F., Baldisserotto, C., Ferroni, L., Pancaldi, S. and
Venanzoni, R., 2016. Cyto-histological and morpho-physiological
responses of common duckweed (Lemna minor L.) to
chromium. Chemosphere, 145, pp.98-105.
106. Sahu, P.K., Jayalakshmi, K., Tilgam, J., Gupta, A., Nagaraju, Y.,
Kumar, A., Hamid, S., Singh, H.V., Minkina, T., Rajput, V.D. and
Rajawat, M.V.S., 2022. ROS generated from biotic stress: Effects on
plants and alleviation by endophytic microbes. Frontiers in Plant
Science, 13, p.1042936.
107. Sharma, A., Kapoor, D., Wang, J., Shahzad, B., Kumar, V., Bali,
A.S., Jasrotia, S., Zheng, B., Yuan, H. and Yan, D., 2020. Chromium
bioaccumulation and its impacts on plants: an overview. Plants, 9(1),
p.100.
108. Shen, N., Hou, S., Tu, G., Lan, W. and Jing, Y., 2021.
Transcription factor WRKY33 mediates the phosphate deficiency-induced
remodeling of root architecture by modulating iron homeostasis in
Arabidopsis roots. International Journal of Molecular Sciences, 22(17),
p.9275.
109. Trinh, N.N., Huang, T.L., Chi, W.C., Fu, S.F., Chen, C.C. and
Huang, H.J., 2014. Chromium stress response effect on signal
transduction and expression of signaling genes in rice. Physiologia
plantarum, 150(2), pp.205-224.
110. Wang, F.Z., Chen, M.X., Yu, L.J., Xie, L.J., Yuan, L.B., Qi, H.,
Xiao, M., Guo, W., Chen, Z., Yi, K. and Zhang, J., 2017. OsARM1, an R2R3
MYB transcription factor, is involved in regulation of the response to
arsenic stress in rice. Frontiers in plant science, 8, p.1868.
111. Wani, K.I., Naeem, M., Castroverde, C.D.M., Kalaji, H.M., Albaqami,
M. and Aftab, T., 2021. Molecular mechanisms of nitric oxide (NO)
signaling and reactive oxygen species (ROS) homeostasis during abiotic
stresses in plants. International Journal of Molecular Sciences, 22(17),
p.9656.
112. Witkowska, D., Słowik, J. and Chilicka, K., 2021. Heavy metals and
human health: Possible exposure pathways and the competition for protein
binding sites. Molecules, 26(19), p.6060.
113. Wu, H.M., Xie, D.J., Tang, Z.S., Shi, D.Q. and Yang, W.C., 2020.
PINOID regulates floral organ development by modulating auxin transport
and interacts with MADS16 in rice. Plant Biotechnology Journal, 18(8),
pp.1778-1795.
114. Xu, Z.R., Cai, M.L., Chen, S.H., Huang, X.Y., Zhao, F.J. and Wang,
P., 2021. High-affinity sulfate transporter Sultr1; 2 is a major
transporter for Cr (VI) uptake in plants. Environmental Science &
Technology, 55(3), pp.1576-1584.
115. Yu, Y., Qian, Y., Jiang, M., Xu, J., Yang, J., Zhang, T., Gou, L.
and Pi, E., 2020. Regulation mechanisms of plant basic leucine zippers
to various abiotic stresses. Frontiers in plant science, 11, p.1258.
116. Zhang, C., Tong, C., Cao, L., Zheng, P., Tang, X., Wang, L., Miao,
M., Liu, Y. and Cao, S., 2023. Regulatory module WRKY33‐ATL31‐IRT1
mediates cadmium tolerance in Arabidopsis. Plant, Cell & Environment.
117. Majeed, Y., Zhu, X., Zhang, N., Raza, A., Haider, F.U. and Si, H.,
2023. Harnessing the role of mitogen-activated protein kinases against
abiotic stresses in plants. Frontiers in Plant Science, 14, p.932923.
118. Shao, R., Zhang, J., Shi, W., Wang, Y., Tang, Y., Liu, Z., Sun, W.,
Wang, H., Guo, J., Meng, Y. and Kang, G., 2022. Mercury stress tolerance
in wheat and maize is achieved by lignin accumulation controlled by
nitric oxide. Environmental Pollution, 307, p.119488.
119. Nations, U., 2015. World population prospects: The 2015 revision.
United Nations Econ Soc Aff, 33(2), pp.1-66.
120. Oladoye, P.O., Olowe, O.M. and Asemoloye, M.D., 2022.
Phytoremediation technology and food security impacts of heavy metal
contaminated soils: A review of literature. Chemosphere, 288, p.132555.
121. Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J. and Xiang, P., 2021. Soil
heavy metal pollution and food safety in China: Effects, sources and
removing technology. Chemosphere, 267, p.129205.
122. Xiang, M., Li, Y., Yang, J., Lei, K., Li, Y., Li, F., Zheng, D.,
Fang, X. and Cao, Y., 2021. Heavy metal contamination risk assessment
and correlation analysis of heavy metal contents in soil and crops.
Environmental Pollution, 278, p.116911.
123. Rai, P.K., Lee, S.S., Zhang, M., Tsang, Y.F. and Kim, K.H., 2019.
Heavy metals in food crops: Health risks, fate, mechanisms, and
management. Environment international, 125, pp.365-385.
124. Thakur, M., Praveen, S., Divte, P.R., Mitra, R., Kumar, M., Gupta,
C.K., Kalidindi, U., Bansal, R., Roy, S., Anand, A. and Singh, B., 2022.
Metal tolerance in plants: Molecular and physicochemical interface
determines the “not so heavy effect” of heavy metals. Chemosphere,
287, p.131957.
125. Keyster, M., Niekerk, L.A., Basson, G., Carelse, M., Bakare, O.,
Ludidi, N., Klein, A., Mekuto, L. and Gokul, A., 2020. Decoding heavy
metal stress signalling in plants: towards improved food security and
safety. Plants, 9(12), p.1781.
126. Chen, Y.A., Chi, W.C., Trinh, N.N., Huang, L.Y., Chen, Y.C., Cheng,
K.T., Huang, T.L., Lin, C.Y. and Huang, H.J., 2014. Transcriptome
profiling and physiological studies reveal a major role for aromatic
amino acids in mercury stress tolerance in rice seedlings. PLoS One,
9(5), p.e95163.
127. Wang, F., Shang, Y., Yang, L. and Zhu, C., 2012. Comparative
proteomic study and functional analysis of translationally controlled
tumor protein in rice roots under Hg2+ stress. Journal of Environmental
Sciences, 24(12), pp.2149-2158.
128. Wang, F., Zeng, B., Sun, Z. and Zhu, C., 2009. Relationship between
proline and Hg 2+-induced oxidative stress in a tolerant rice mutant.
Archives of environmental contamination and toxicology, 56, pp.723-731.
129. Yeh, C.M., Hung, W.C. and Huang, H.J., 2003. Copper treatment
activates mitogen‐activated protein kinase signalling in rice.
Physiologia Plantarum, 119(3), pp.392-399.
130. Hung*, W.C., Huang*, D.D., Yeh, C.M. and Huang, H.J., 2005.
Reactive oxygen species, calcium and serine/threonine phosphatase are
required for copper-induced MAP kinase gene OsMAPK2, expression in rice.
Plant growth regulation, 45, pp.233-241.
131. Azevedo, R. and Rodriguez, E., 2012. Phytotoxicity of mercury in
plants: a review. Journal of Botany, 2012.
132. Sinha, A.K., Jaggi, M., Raghuram, B. and Tuteja, N., 2011.
Mitogen-activated protein kinase signaling in plants under abiotic
stress. Plant signaling & behavior, 6(2), pp.196-203.
133. Agrawal, G.K., Rakwal, R. and Iwahashi, H., 2002. Isolation of
novel rice (Oryza sativa L.) multiple stress responsive MAP kinase gene,
OsMSRMK2, whose mRNA accumulates rapidly in response to environmental
cues. Biochemical and Biophysical Research Communications, 294(5),
pp.1009-1016.
134. Montero-Palmero, M.B., Ortega-Villasante, C., Escobar, C. and
Hernández, L.E., 2014. Are plant endogenous factors like ethylene
modulators of the early oxidative stress induced by mercury?. Frontiers
in Environmental Science, 2, p.34.
135. Huang, Y., Li, F., Yi, J., Yan, H., He, Z. and Li, X., 2022.
Transcriptomic and physio-biochemical features in rice (Oryza sativa L.)
in response to mercury stress. Chemosphere, 309, p.136612.
136. Bhattacharya, S., 2018. Medicinal plants and natural products can
play a significant role in mitigation of mercury toxicity.
Interdisciplinary Toxicology, 11(4), pp.247-254.
137. Pirzadah, T.B., Malik, B., Tahir, I., Irfan, Q.M. and Rehman, R.U.,
2018. Characterization of mercury-induced stress biomarkers in Fagopyrum
tataricum plants. International journal of phytoremediation, 20(3),
pp.225-236.
138. FORZANI, C., CARRERI, A., DE LA FUENTE VAN BENTEM, S., LECOURIEUX,
D., LECOURIEUX, F. & HIRT, H. 2011. The Arabidopsis protein kinase
Pto‐interacting 1‐4 is a common target of the oxidative signal‐inducible
1 and mitogen‐activated protein kinases. The FEBS journal, 278,
1126-1136.
139. JONAK, C., NAKAGAMI, H. & HIRT, H. 2004. Heavy Metal Stress.
Activation of Distinct Mitogen-Activated Protein Kinase Pathways by
Copper and Cadmium. Plant Physiology, 136, 3276-3283.
140. KOMATSU, S. & HASHIGUCHI, A. 2018. Subcellular proteomics:
Application to elucidation of flooding-response mechanisms in soybean.
Proteomes, 6, 13.
141. LIU, Y., LU, S., LIU, K., WANG, S., HUANG, L. & GUO, L. 2019.
Proteomics: a powerful tool to study plant responses to biotic stress.
Plant Methods, 15, 135.
142. MACKENZIE, S. A. & KUNDARIYA, H. 2020. Organellar protein
multi-functionality and phenotypic plasticity in plants. Philosophical
Transactions of the Royal Society B, 375, 20190182.
143. RAMAZI, S. & ZAHIRI, J. 2021. Post-translational modifications in
proteins: resources, tools and prediction methods. Database, 2021,
baab012.
144. WANG, P., HSU, C.-C., DU, Y., ZHU, P., ZHAO, C., FU, X., ZHANG, C.,
PAEZ, J. S., MACHO, A. P. & TAO, W. A. 2020. Mapping proteome-wide
targets of protein kinases in plant stress responses. Proceedings of the
National Academy of Sciences, 117, 3270-3280.
145. ZHAO, Y. & JENSEN, O. N. 2009. Modification‐specific proteomics:
strategies for characterization of post‐translational modifications
using enrichment techniques. Proteomics, 9, 4632-4641.
146. ZHONG, M., LI, S., HUANG, F., QIU, J., ZHANG, J., SHENG, Z., TANG,
S., WEI, X. & HU, P. 2017. The phosphoproteomic response of rice
seedlings to cadmium stress. International journal of molecular
sciences, 18, 2055.
147. ZHU, Y., ZHAO, Q., CAO, W., HUANG, S., JI, C., ZHANG, W., TRUJILLO,
M., SHEN, J. & JIANG, L. 2023. The plant-unique protein DRIF1
coordinates with sorting nexin 1 to regulate membrane protein
homeostasis. The Plant Cell, koad227.
148. Ma, H., Gao, Y., Wang, Y., Dai, Y. and Ma, H., 2022. Regulatory
mechanisms of mitogen-activated protein kinase cascades in plants: More
than sequential phosphorylation. International Journal of Molecular
Sciences, 23(7), p.3572.
149. Xing, Y., Jia, W. and Zhang, J., 2008. AtMKK1 mediates ABA‐induced
CAT1 expression and H2O2 production via AtMPK6‐coupled signaling in
Arabidopsis. The Plant Journal, 54(3), pp.440-451.
150. Taj, G., Agarwal, P., Grant, M. and Kumar, A., 2010. MAPK machinery
in plants: recognition and response to different stresses through
multiple signal transduction pathways. Plant signaling & behavior,
5(11), pp.1370-1378.
152. Singh, A., Sharma, R.K., Agrawal, M. and Marshall, F.M., 2010. Risk
assessment of heavy metal toxicity through contaminated vegetables from
waste water irrigated area of Varanasi, India. Tropical ecology, 51(2),
pp.375-387.
153. Al-Boghdady, A.A. and Hassanein, K.M.A., 2019. Chemical analysis
and environmental impact of heavy metals in soil of Wadi Jazan area,
southwest of Saudi Arabia. Applied Ecology & Environmental Research,
17(3).