REFERENCES
Apel, K. & Hirt, H. (2004) REACTIVE OXYGEN SPECIES: Metabolism, oxidative stress, and signal transduction. Ann. Rev. Plant Biol. , 55, 373–399. doi:10.1146/annurev.arplant.55.031903.141701.
Asada, K. (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. , 141, 391–396. doi:10.1104/pp.106.082040.
Agnez-Lima, L.F., Melo, J.T., Silva, A.E., Oliveira, A.H., Timoteo, A.R., Lima-Bessa, K.M. et al. (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res Rev Mutat Res .,751(1),15-28. doi: 10.1016/j.mrrev.2011.12.005.
Baptista, M.S., Cadet, J., Di Mascio, P., Ghogare, A.A., Greer, A., Hamblin, M.R.et al. (2017) Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem Photobiol. , 93(4), 912-919. doi: 10.1111/php.12716.
Beltrán-García, M.J., Prado, F.M., Oliveira, M.S., Ortiz-Mendoza, D., Scalfo, A.C., Pessoa, A. Jr. et al. (2014) Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogenMycosphaerella fijiensis in black Sigatoka disease of bananas.PLoS One , 9(3), e91616. doi: 10.1371/journal.pone.0091616. PMID: 24646830; PMCID: PMC3960117.
Berenbaum, M. (1978). Toxicity of a furanocoumarin to armyworms: A case of biosynthetic escape from insect herbivores. Science 201, 532–534. doi:10.1126/science.201.4355.532.
Berenbaum, M.R.& Larson, R.A. (1988) Flux of singlet oxygen from leaves of phototoxic plants. Experientia , 44, 1030–1032. https://doi.org/10.1007/BF01939914.
Breen, S., Williams, S.J., Outram, M., Kobe, B., Solomon, P.S. (2017) Emerging Insights into the Functions of Pathogenesis-Related Protein 1.Trends Plant Sci. 22(10), 871-879. doi: 10.1016/j.tplants.2017.06.013.
Chen, T., Cohen, D., Itkin, M., Malitsky, S., Fluhr, R. (2021) Lipoxygenase functions in 1O2production during root responses to osmotic stress. Plant Physiol. ,185(4),1638-1651. doi: 10.1093/plphys/kiab025. 
Chen, T. & Fluhr, R. (2018) Singlet Oxygen Plays an Essential Role in the Root’s Response to Osmotic Stress. Plant Physiol ., 177(4), 1717-1727. doi: 10.1104/pp.18.00634.
Chen, S., Kim, C., Lee, J.M., Lee, H.A., Fei, Z., Wang, L.et al. (2015) Blocking the QB-binding site of photosystem II by tenuazonic acid, a non-host-specific toxin of Alternaria alternata, activates singlet oxygen-mediated and EXECUTER-dependent signalling in Arabidopsis.Plant Cell Environ ., 38(6),1069-80. doi: 10.1111/pce.12462.
D’Alessandro, S., Ksas, B., and Havaux, M. (2018) Decoding ß-cyclocitral-mediated retrograde signaling reveals the role of a detoxification response controlled by SCL14 and ANAC102 in plant tolerance to photooxidative stress. The Plant Cell , tpc.00578.2018. doi:10.1105/tpc.18.00578.
Danon A., Miersch O., Felix G., Camp R.G., Apel K. (2005) Concurrent activation of cell death-regulating signaling pathways by singlet oxygen in Arabidopsis thaliana. Plant J. 41(1):68-80. doi: 10.1111/j.1365-313X.2004.02276.x.
Di Mascio, P., Martinez, G.R., Miyamoto, M., Ronsein, G.R., Medeiros, M.H.G. (2019) Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem. Rev. , 119 (3), 2043–2086. ,https://doi.org/10.1021/acs.chemrev.8b00554
Dmitrieva, V.A., Tyutereva, E.V., Voitsekhovskaja, O.V. (2020) Singlet Oxygen in Plants: Generation, Detection, and Signaling Roles. Int J Mol Sci. , 21(9), 3237. doi: 10.3390/ijms21093237.
Dogra, V., Duan, J., Lee, K. P., Lv, S., Liu, R., and Kim, C. (2017). FtsH2-dependent proteolysis of EXECUTER1 is essential in mediating singlet oxygen-triggered retrograde signaling in Arabidopsis thaliana . Front Plant Sci 8. doi:10.3389/fpls.2017.01145.
Dogra, V. & Kim, C. (2020). Singlet Oxygen Metabolism: From Genesis to Signaling. Front Plant Sci. , 10. doi:10.3389/fpls.2019.01640.
Dogra V., Singh R.M., Li M., Li M., Singh S., Kim C. 2021. EXECUTER2 modulates the EXECUTER1 signalosome through its singlet oxygen-dependent oxidation. Mol Plant. 15(3):438-453. doi: 10.1016/j.molp.2021.12.016.
Flors C. & Nonell, S. (2006) Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Acc Chem Res. , 39(5), 293-300. doi: 10.1021/ar0402863. PMID: 16700528
Galvez-Valdivieso, G. & Mullineaux, P. M. (2010) The role of reactive oxygen species in signaling from chloroplasts to the nucleus.Physiol Plant ,138, 430–439.
Gorman, A. A. & Rodgers, M. A. (1992) Current perspectives of singlet oxygen detection in biological environments. J. Photochem. Photobiol. B. , 14, 159–176. doi:10.1016/1011-1344(92)85095-c.
Grun C., Berger S., Matthes D., Mueller M.J. (2007) Early accumulation of non-enzymatically synthesised oxylipins in Arabidopsis thaliana after infection with Pseudomonas syringae . Funct Plant Biol. 34(1):65-71. doi: 10.1071/FP06205.
Havaux M. (2020) β-Cyclocitral and derivatives: Emerging molecular signals serving multiple biological functions. Plant Physiol Biochem . 155:35-41. doi: 10.1016/j.plaphy.2020.07.032.
Hölscher, D., Dhakshinamoorthy, S., Alexandrov, T., Becker, M., Bretschneider, T., Buerkert, A. et al. (2014) Phenalenone-Type Phytoalexins Mediate Resistance of Banana Plants (Musa  Spp.) to the Burrowing Nematode Radopholus similis. PNAS.111  (1), 105– 110. DOI: 10.1073/pnas.1314168110.
Hou Z., Yang Y., Hedtke B., Grimm B. (2019) Fluorescence in blue light (FLU) is involved in inactivation and localization of glutamyl-tRNA reductase during light exposure. Plant J. 97(3):517-529. doi: 10.1111/tpj.14138.
Hou, S. & Tsuda, K. (2022) Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays Biochem. , 66(5), 647-656. doi: 10.1042/EBC20210090.
Koh E., Carmieli R., Mor A., Fluhr R. (2016) Singlet Oxygen-Induced Membrane Disruption and Serpin-Protease Balance in Vacuolar-Driven Cell Death. Plant Physiol. 171(3):1616-25. doi: 10.1104/pp.15.02026.
Koh, E. & Fluhr, R. (2016) Singlet oxygen detection in biological systems: Uses and limitations. Plant Signal Behav ., 11(7), e1192742. doi: 10.1080/15592324.2016.1192742.
Koh, E., Alexander, B., Fluhr, R. (2022) Plastid and cytoplasmic origins of 1O2-mediated transcriptomic responses. Front. Plant Sci .,13, 982610. doi: 10.3389/fpls.2022.982610.
Koh E., Cohen D., Brandis A., Fluhr R. (2021) Attenuation of cytosolic translation by RNA oxidation is involved in singlet oxygen-mediated transcriptomic responses. Plant Cell Environ. 44(11):3597-3615. doi: 10.1111/pce.14162.
Koh, E., Chaturvedi, A.K., Javitt, G., Brandis, A., Fluhr, R. (2023) Multiple paths of plant host toxicity are associated with the fungal toxin cercosporin. Plant Cell Environ ., 46(8), 2542-2557. doi: 10.1111/pce.14613. Epub 2023 May 22. PMID: 37212197.
Laloi, C.& Havaux, M. (2015) Key players of singlet oxygen-induced cell death in plants Front. Plant Sci. , 6, (39). DOI:10.3389/fpls.2015.00039.
Lazzaro, A., Corominas, M., Martí, C., Flors, C., Izquierdo, L.R., Grillo, T.A. et al. (2004) Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins. Photochem Photobiol Sci. , 3(7), 706-710. doi: 10.1039/b401294a. Epub 2004 May 5. PMID: 15239009.
Lee, K. P., Kim, C., Landgraf, F., Apel, K. (2007). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana . Proc. Natl Acad. Sci. USA 104, 10270–10275. doi:10.1073/pnas.0702061104.
Liang, P., Kolodieznyi, D., Creeger, Y., Ballou, B., Bruchez, M.P. (2020) Subcellular Singlet Oxygen and Cell Death: Location Matters.Front Chem. , 8, 592941. doi: 10.3389/fchem.2020.592941.
Lu Y, Yao J. (2018) Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci. , 9(12),3900. doi: 10.3390/ijms19123900.
Meskauskiene, R., Nater, M., Goslings, D., Kessler, F., op den Camp, R., Apel, K. (2001) FLU: a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 98, 12826–12831.
Mehler, A. H. (1951) Studies on reactions of illuminated chloroplasts. II. Stimulation and inhibition of the reaction with molecular oxygen.Arch. Biochem. Biophys. , 34, 339–351. doi:10.1016/0003-9861(51)90012-4.
Mitra S., Estrada-Tejedor R., Volke D.C., Phillips M.A., Gershenzon J., Wright L.P. (2021) Negative regulation of plastidial isoprenoid pathway by herbivore-induced β-cyclocitral in Arabidopsis thaliana .Proc Natl Acad Sci U S A. 118(10):e2008747118. doi: 10.1073/pnas.2008747118.
Mor, A., Koh, E., Weiner, L., Rosenwasser, S., Sibony-Benyamini, H., Fluhr, R. (2014) Singlet oxygen signatures are detected independent of light or chloroplasts in response to multiple stresses. Plant Physiology , 165, 249–261.
Narusaka, Y., Narusaka, M., Seki, M., Ishida, J., Shinozaki, K., Nan, Y.et al. (2005) Cytological and molecular analyses of non-host resistance of Arabidopsis thaliana to Alternaria alternata. Mol Plant Pathol. , 6(6), 15-27. doi: 10.1111/j.1364-3703.2005.00310.x.
Nguyen, D. A., Muhammad, M. K., & Lee, G. L. (2020). Phytophotodermatitis. Dermatol. Man. Outdoor Hazards , 43-56.
Ochsenbein, C., Przybyla, D., Danon, A., Landgraf, F., Göbel, C., Imboden, A. et al. (2006) The role of EDS1 (enhanced disease susceptibility) during singlet oxygen-mediated stress responses of Arabidopsis. Plant J. , 47(3), 445-456.
Op den Camp, R. G. L., Przybyla, D., Ochsenbein, C., Laloi, C., Kim, C., Danon, A. (2003). Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. The Plant Cell ,15, 2320–2332. doi:10.1105/tpc.014662.
Otalvaro, F., Echeverri, F., Quinones, W., Torres, F., Schneider, B. (2002). Correlation between Phenylphenalenone Phytoalexins and Phytopathological Properties in Musa  and the Role of a Dihydrophenylphenalene Triol. Molecules , 7(3), 331–340. DOI: 10.3390/70300331
Phua, S.Y., De Smet, B., Remacle, C., Chan, K.X., Van Breusegem, F. (2021) Reactive oxygen species and organellar signaling. J Exp Bot. , 72(16),5807-5824. doi: 10.1093/jxb/erab218. PMID: 34009340.
Pospíšil, P.& Prasad, A. (2014) Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. J. Photochem. Photobiol. B. , 137,39-48. doi: 10.1016/j.jphotobiol.2014.04.025.
Prasad, A., Sedlářová, M., Kale, R.S. , Pospíšil, P. (2017) Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo  imaging in Arabidopsis thalianaSci Rep  7, article 9831. https://doi.org/10.1038/s41598-017-09758-1
Prasad, A., Sedlářová, M., Pospíšil, P. (2018) Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms. Sci Rep. , 8(1),13685. doi: 10.1038/s41598-018-31638-5.
Przybyla, D., Göbel, C., Imboden, A., Hamberg, M., Feussner, I., Apel, K. (2008) Enzymatic, but not non-enzymatic,1O2-mediated peroxidation of polyunsaturated fatty acids forms part of the EXECUTER1-dependent stress response program in the flu mutant of Arabidopsis thaliana. Plant J. , 54(2), 236-248. https://doi.org/10.1111/j.1365-313X.2008.03409.x
Ramel, F., Birtic, S., Ginies, C., Soubigou-Taconnat, L., Triantaphylidès, C., Havaux, M. (2012a) Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. Proc. Natl. Acad. Sci. USA , 109, 5535–5540. doi:10.1073/pnas.1115982109.
Ramel, F., Birtic, S., Cuiné, C. Triantaphylidès,C., Ravanat, J.L. Havaux, M. (2012b) Chemical quenching of singlet oxygen by carotenoids in plants. Plant Physiol ., 158,1267-1278.
Ramel, F., Ksas, B., Akkari, E., Mialoundama, A. S., Monnet, F., Krieger-Liszkay, A. (2013) Light-induced acclimation of the Arabidopsischlorina1 mutant to singlet oxygen. Plant Cell , 25, 1445–1462. doi:10.1105/tpc.113.109827.
Rezende, J.S., Zivanovic, M., Costa de Novaes, M.I., Chen, Z-Y. (2020) he AVR4 effector is involved in cercosporin biosynthesis and likely affects the virulence of Cercospora  cf. flagellaris  on soybean. Mol. Plant Pathol. , 21(1), 53–65.
Sandalio, L.M & Romero-Puertas, M.C. (2015) Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann. Bot. ,116(4), 475–485.
Shumbe L., Chevalier A., Legeret B., Taconnat L., Monnet F., Havaux M. (2016) Singlet Oxygen-Induced Cell Death in Arabidopsis under High-Light Stress Is Controlled by OXI1 Kinase. Plant Physiol.170(3):1757-71. doi: 10.1104/pp.15.01546.
Shumbe, L., D’Alessandro, S., Shao, N., Chevalier, A., Ksas, B., Bock, R.et al. (2017) METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant Cell Environ. , 40, 216–226.
Song, R., Feng, Y., Wang, D., Xu, Z., Li, Z., Shao, X. (2017) Phytoalexin Phenalenone Derivatives Inactivate Mosquito Larvae and Root-knot Nematode as Type-II Photosensitizer. Sci Rep , 7, 42058. https://doi.org/10.1038/srep42058
Tabrizi T.S., Sawicki A., Zhou S., Luo M., Willows R.D. (2016) GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences for Plastid Retrograde Signaling. J Biol Chem . 291(17):8978-84. doi: 10.1074/jbc.C116.719989.
Thorning, F., Henke, P., Ogilby, P.R. (2022) Perturbed and Activated Decay: The Lifetime of Singlet Oxygen in Liquid Organic Solvents.J. Am. Chem. Soc. , 144 (24), 10902-10911. DOI: 10.1021/jacs.2c03444.
Triantaphylidès, C. & Havaux, M. (2009) Singlet oxygen in plants: Production, detoxification and signaling. Trends in Plant Science , 14, 219–228. doi:10.1016/j.tplants.2009.01.008
Triantaphylidès, C., Krischke, M., Hoeberichts, F. A., Ksas, B., Gresser, G., Havaux, M., et al. (2008). Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants.Plant Physiol. 148, 960–968. doi:10.1104/pp.108.125690.
Wagner D., Przybyla D., Op den Camp R., Kim C., Landgraf F., Lee K.P., Würsch M., Laloi C., Nater M., Hideg E., Apel K. (2004) The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Science . 306(5699):1183-5. doi: 10.1126/science.1103178.
Wang, L., Kim, C., Xu, X., Piskurewicz, U., Dogra, V., Singh, S., et al. (2016). Singlet oxygen- and EXECUTER1-mediated signaling is initiated in grana margins and depends on the protease FtsH2. Proc. Natl. Acad. Sci. USA 113, E3792–E3800. doi:10.1073/pnas.1603562113.
Wang L., Leister D., Guan L., Zheng Y., Schneider K., Lehmann M., Apel K., Kleine T. (2020) The Arabidopsis  SAFEGUARD1 suppresses singlet oxygen-induced stress responses by protecting grana margins.Proc Natl Acad Sci U S A . 117(12):6918-6927. doi: 10.1073/pnas.1918640117.
You, Y. (2018) Chemical tools for the generation and detection of singlet oxygen. Org. Biomol. Chem. , 16(22), 4044-4060.
Zeng, L., Wang, J.Z., He, X., Ke, H., Lemos, M., Gray, W.M.et al. (2022) A plastidial retrograde signal potentiates biosynthesis of systemic stress response activators. New Phytol. , 233(4),1732-1749. doi: 10.1111/nph.17890.
Zhang, S., Apel, K., Kim, C. (2014) Singlet oxygen-mediated and EXECUTER-dependent signaling and acclimation of Arabidopsis thaliana exposed to light stress. Phil. Trans. R. Soc. B , 369, 20130227. http://dx.doi.org/10.1098/rstb.2013.0227