References
Anderson, K. A., Madsen, A. S., Olsen, C. A., & Hirschey, M. D. (2017). Metabolic control by sirtuins and other enzymes that sense NAD(+), NADH, or their ratio. Biochim Biophys Acta Bioenerg, 1858 (12), 991-998. doi:10.1016/j.bbabio.2017.09.005
Andrade, W. B., Jacinto, J. L., da Silva, D. K., Roveratti, M. C., Estoche, J. M., Oliveira, D. B., … Aguiar, A. F. (2018). l-Arginine supplementation does not improve muscle function during recovery from resistance exercise. Appl Physiol Nutr Metab, 43 (9), 928-936. doi:10.1139/apnm-2017-0594
Arandjelovic, S., & Ravichandran, K. S. (2015). Phagocytosis of apoptotic cells in homeostasis. Nat Immunol, 16 (9), 907-917. doi:10.1038/ni.3253
Bain, C. C., Bravo-Blas, A., Scott, C. L., Perdiguero, E. G., Geissmann, F., Henri, S., … Mowat, A. M. (2014). Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice. Nat Immunol, 15 (10), 929-937. doi:10.1038/ni.2967
Bain, C. C., Scott, C. L., Uronen-Hansson, H., Gudjonsson, S., Jansson, O., Grip, O., … Mowat, A. M. (2013). Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors.Mucosal Immunol, 6 (3), 498-510. doi:10.1038/mi.2012.89
Bourgonje, A. R., Feelisch, M., Faber, K. N., Pasch, A., Dijkstra, G., & van Goor, H. (2020). Oxidative Stress and Redox-Modulating Therapeutics in Inflammatory Bowel Disease. Trends Mol Med, 26 (11), 1034-1046. doi:10.1016/j.molmed.2020.06.006
Castoldi, A., Sanin, D. E., van Teijlingen Bakker, N., Aguiar, C. F., de Brito Monteiro, L., Rana, N., … Saraiva Camara, N. O. (2023). Metabolic and functional remodeling of colonic macrophages in response to high-fat diet-induced obesity. iScience, 26 (10), 107719. doi:10.1016/j.isci.2023.107719
Cros, C., Margier, M., Cannelle, H., Charmetant, J., Hulo, N., Laganier, L., … Canault, M. (2022). Nicotinamide Mononucleotide Administration Triggers Macrophages Reprogramming and Alleviates Inflammation During Sepsis Induced by Experimental Peritonitis.Front Mol Biosci, 9 , 895028. doi:10.3389/fmolb.2022.895028
Diehl, G. E., Longman, R. S., Zhang, J. X., Breart, B., Galan, C., Cuesta, A., … Littman, D. R. (2013). Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX(3)CR1(hi) cells.Nature, 494 (7435), 116-120. doi:10.1038/nature11809
Faas, M., Ipseiz, N., Ackermann, J., Culemann, S., Gruneboom, A., Schroder, F., … Kronke, G. (2021). IL-33-induced metabolic reprogramming controls the differentiation of alternatively activated macrophages and the resolution of inflammation. Immunity, 54 (11), 2531-2546 e2535. doi:10.1016/j.immuni.2021.09.010
Geissmann, F., Jung, S., & Littman, D. R. (2003). Blood monocytes consist of two principal subsets with distinct migratory properties.Immunity, 19 (1), 71-82. doi:10.1016/s1074-7613(03)00174-2
Harber, K. J., de Goede, K. E., Verberk, S. G. S., Meinster, E., de Vries, H. E., van Weeghel, M., … Van den Bossche, J. (2020). Succinate Is an Inflammation-Induced Immunoregulatory Metabolite in Macrophages. Metabolites, 10 (9)doi:10.3390/metabo10090372
Hill, D. A., & Artis, D. (2010). Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol, 28 , 623-667. doi:10.1146/annurev-immunol-030409-101330
Horuluoglu, B. H., Kayraklioglu, N., Tross, D., & Klinman, D. (2020). PAM3 protects against DSS-induced colitis by altering the M2:M1 ratio.Sci Rep, 10 (1), 6078. doi:10.1038/s41598-020-63143-z
Kaser, A., Zeissig, S., & Blumberg, R. S. (2010). Inflammatory bowel disease. Annu Rev Immunol, 28 , 573-621. doi:10.1146/annurev-immunol-030409-101225
Kim, Y. I., Song, J. H., Ko, H. J., Kweon, M. N., Kang, C. Y., Reinecker, H. C., & Chang, S. Y. (2018). CX(3)CR1(+) Macrophages and CD8(+) T Cells Control Intestinal IgA Production. J Immunol, 201 (4), 1287-1294. doi:10.4049/jimmunol.1701459
Kim, Y. I., Yi, E. J., Kim, Y. D., Lee, A. R., Chung, J., Ha, H. C., … Chang, S. Y. (2020). Local Stabilization of Hypoxia-Inducible Factor-1alpha Controls Intestinal Inflammation via Enhanced Gut Barrier Function and Immune Regulation. Front Immunol, 11 , 609689. doi:10.3389/fimmu.2020.609689
Lin, S. L., Li, B., Rao, S., Yeo, E. J., Hudson, T. E., Nowlin, B. T., … Duffield, J. S. (2010). Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A, 107 (9), 4194-4199. doi:10.1073/pnas.0912228107
Liu, Y., Xu, R., Gu, H., Zhang, E., Qu, J., Cao, W., … Cai, Z. (2021). Metabolic reprogramming in macrophage responses. Biomark Res, 9 (1), 1. doi:10.1186/s40364-020-00251-y
Maloy, K. J., & Powrie, F. (2011). Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, 474 (7351), 298-306. doi:10.1038/nature10208
Mazzini, E., Massimiliano, L., Penna, G., & Rescigno, M. (2014). Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1(+) macrophages to CD103(+) dendritic cells. Immunity, 40 (2), 248-261. doi:10.1016/j.immuni.2013.12.012
Minhas, P. S., Liu, L., Moon, P. K., Joshi, A. U., Dove, C., Mhatre, S., … Andreasson, K. I. (2019). Macrophage de novo NAD(+) synthesis specifies immune function in aging and inflammation. Nat Immunol, 20 (1), 50-63. doi:10.1038/s41590-018-0255-3
Murray, P. J., & Wynn, T. A. (2011). Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol, 11 (11), 723-737. doi:10.1038/nri3073
Na, Y. R., Stakenborg, M., Seok, S. H., & Matteoli, G. (2019). Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol, 16 (9), 531-543. doi:10.1038/s41575-019-0172-4
Nebert, D. W., Roe, A. L., Vandale, S. E., Bingham, E., & Oakley, G. G. (2002). NAD(P)H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet Med, 4 (2), 62-70. doi:10.1097/00125817-200203000-00003
Palmieri, E. M., Gonzalez-Cotto, M., Baseler, W. A., Davies, L. C., Ghesquiere, B., Maio, N., … McVicar, D. W. (2020). Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat Commun, 11 (1), 698. doi:10.1038/s41467-020-14433-7
Palomer, X., Roman-Azcona, M. S., Pizarro-Delgado, J., Planavila, A., Villarroya, F., Valenzuela-Alcaraz, B., … Vazquez-Carrera, M. (2020). SIRT3-mediated inhibition of FOS through histone H3 deacetylation prevents cardiac fibrosis and inflammation. Signal Transduct Target Ther, 5 (1), 14. doi:10.1038/s41392-020-0114-1
Pan, Z., Dong, H., Huang, N., & Fang, J. (2022). Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol, 13 , 953078. doi:10.3389/fphys.2022.953078
Park, S., Shin, J., Bae, J., Han, D., Park, S. R., Shin, J., … Park, H. W. (2020). SIRT1 Alleviates LPS-Induced IL-1beta Production by Suppressing NLRP3 Inflammasome Activation and ROS Production in Trophoblasts. Cells, 9 (3)doi:10.3390/cells9030728
Park, S. Y., Lee, S. W., Lee, S. Y., Hong, K. W., Bae, S. S., Kim, K., & Kim, C. D. (2017). SIRT1/Adenosine Monophosphate-Activated Protein Kinase alpha Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis. Front Immunol, 8 , 1135. doi:10.3389/fimmu.2017.01135
Podolsky, D. K. (1991). Inflammatory bowel disease (1). N Engl J Med, 325 (13), 928-937. doi:10.1056/NEJM199109263251306
Rath, M., Muller, I., Kropf, P., Closs, E. I., & Munder, M. (2014). Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol, 5 , 532. doi:10.3389/fimmu.2014.00532
Ross, D., & Siegel, D. (2021). The diverse functionality of NQO1 and its roles in redox control. Redox Biol, 41 , 101950. doi:10.1016/j.redox.2021.101950
Russell, D. G., Huang, L., & VanderVen, B. C. (2019). Immunometabolism at the interface between macrophages and pathogens. Nat Rev Immunol, 19 (5), 291-304. doi:10.1038/s41577-019-0124-9
Sandborn, W. J., Ghosh, S., Panes, J., Vranic, I., Wang, W., Niezychowski, W., & Study, A. I. (2014). A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn’s disease. Clin Gastroenterol Hepatol, 12 (9), 1485-1493 e1482. doi:10.1016/j.cgh.2014.01.029
Viola, M. F., & Boeckxstaens, G. (2021). Niche-specific functional heterogeneity of intestinal resident macrophages. Gut, 70 (7), 1383-1395. doi:10.1136/gutjnl-2020-323121
Wculek, S. K., Heras-Murillo, I., Mastrangelo, A., Mananes, D., Galan, M., Miguel, V., … Sancho, D. (2023). Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity, 56 (3), 516-530 e519. doi:10.1016/j.immuni.2023.01.011
Wynn, T. A., & Vannella, K. M. (2016). Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity, 44 (3), 450-462. doi:10.1016/j.immuni.2016.02.015
Zhang, R., Chen, H. Z., Liu, J. J., Jia, Y. Y., Zhang, Z. Q., Yang, R. F., … Liang, C. C. (2010). SIRT1 suppresses activator protein-1 transcriptional activity and cyclooxygenase-2 expression in macrophages.J Biol Chem, 285 (10), 7097-7110. doi:10.1074/jbc.M109.038604
Zhou, Y., Zhang, F., & Ding, J. (2022). As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases. Immune Netw, 22 (3), e21. doi:10.4110/in.2022.22.e21