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• The new dataset has an unprecedented combination of accuracy, resolution, and time 18 
latency compared to other global precipitation datasets. 19 
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Abstract 21 
Satellite-based precipitation observations provide near-global coverage with high spatiotemporal 22 
resolution in near-realtime. Their utility, however, is hindered by oftentimes large errors that vary 23 
substantially in space and time. Since precipitation uncertainty is, by definition, a random process, 24 
probabilistic expression of satellite-based precipitation product uncertainty is needed to advance 25 
their operational applications. Ensemble methods, in which uncertainty is depicted via multiple 26 
realizations of precipitation fields, have been widely used in other contexts such as numerical 27 
weather prediction, but rarely in satellite contexts. Creating such an ensemble dataset is 28 
challenging due to the complexity of errors and the scarcity of “ground truth” to characterize it. 29 
This challenge is particularly pronounced in ungauged regions, where the benefits of satellite-30 
based precipitation data could otherwise provide substantial benefits. In this study, we propose the 31 
first quasi-global (covering all continental land masses within 50°N-50°S) satellite-only ensemble 32 
precipitation dataset, derived entirely from NASA’s Integrated Multi-SatellitE Retrievals for 33 
Global Precipitation Measurement (IMERG) and GPM’s radar-radiometer combined precipitation 34 
product (2B-CMB). No ground-based measurements are used in this generation and it is suitable 35 
for near-realtime use, limited only by the latency of IMERG. We compare the results against 36 
several precipitation datasets of distinct classes, including global satellite-based, rain gauge-based, 37 
atmospheric reanalysis, and merged products. While our proposed approach faces some limitations 38 
and is not universally superior to the datasets it is compared to in all respects, it does hold relative 39 
advantages due to its combination of accuracy, resolution, latency, and utility in hydrologic and 40 
hazard applications. 41 

1 Introduction 42 
Accurate and timely precipitation measurements are crucial for monitoring and assessing 43 

hydrometeorological hazards (Liao et al., 2010; Liu, Guo, et al., 2018); this imperative is growing 44 
with continued climate warming and its impacts on rainfall and rainfall-related hazards (Fowler et 45 
al., 2021). These hazards include extreme rainfall (e.g., Ayat et al., 2022), floods (e.g., Wilhelm et 46 
al., 2022), rainfall-triggered landslides (e.g., Kirschbaum et al., 2020), debris flows (e.g., Pan et 47 
al., 2018), crop failures (e.g., Sloat et al., 2018) and waterborne disease outbreaks (e.g., Exum et 48 
al., 2018).  49 

Due to its high variability in space and time, precipitation is difficult to measure, 50 
particularly at the global scale (Kidd et al., 2017; Wright, 2018). Dense ground-based rain gauge 51 
and radar networks can capture the variability of rainfall at very high resolution, but such networks 52 
are limited in coverage and are typically found only in wealthy countries and urban areas. 53 
Satellites, on the other hand, deploy a range of sensors operating across various channels to 54 
estimate different types of precipitation and precipitation-related processes. The relatively wide 55 
field of view of individual sensors, as well as the near-global coverage provided by the 56 
international “constellation” of relevant earth observing satellites, is particularly promising for 57 
observing highly heterogeneous rainfall patterns. However, the periodic nature of orbiting 58 
platforms’ sampling, the heterogeneity in sensor characteristics, and the indirect nature of their 59 
measurements from passive microwave and infrared sensors lead to serious challenges in the 60 
creation of global precipitation datasets such as NASA’s Integrated Multi-satellitE Retrievals for 61 
Global Precipitation Measurement (IMERG; Huffman et al., 2019), while contributing to 62 
oftentimes large errors in the precipitation detection and quantification. Because of this, ground 63 
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stations are often used to “post-process” satellite-based estimates and reduce errors (Funk et al., 64 
2015; Huffman et al., 2020).  65 

There are alternatives and supplements for satellite-based precipitation products for 66 
creating global precipitation datasets. One is global land-ocean-atmosphere weather forecast or 67 
reanalysis systems. A recent example of the latter is the fifth generation of the European Centre 68 
for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA5; Hersbach et al., 2020). 69 
Such datasets typically assimilate precipitation-relevant satellite data, can provide comparable or 70 
sometimes better accuracy than satellite-only precipitation datasets, and may include an ensemble 71 
that reflects aspects of estimation uncertainty. On the other hand, reanalysis products tend to suffer 72 
from insufficient parameterization of key precipitation processes including convection. Their 73 
performance also relies on the assimilation of station data, which can pose latency challenges for 74 
real-time applications. Weather forecast systems, on the other hand, tend to lack the consistent 75 
long-term “hindcasts” necessary for many applications.  76 

Additional sources of global precipitation data include gauge-based datasets, which tend 77 
to suffer from poor resolution, low accuracy where gauges are scarce, and high latency (Hartke & 78 
Wright, 2022; Kidd et al., 2017; Wright, 2018). In principle, the highest accuracy of precipitation 79 
estimates can be achieved through leveraging the strengths of multiple datasets via data merging 80 
(e.g., MSWEP; Beck, Pan, et al., 2019). This merging, however, complicates the diagnosis of error 81 
and its output is limited by the resolution and latency of its “slowest” input data source. 82 

The degree of uncertainty present in global-scale precipitation data seriously hinders its 83 
uptake in real-world applications, since it propagates through hydrologic and other types of 84 
environmental models (Falck et al., 2015; Hartke et al., 2020; Hartke et al., 2023; Schreiner-85 
McGraw et al., 2020). Consequently, there is a critical need to quantify this uncertainty in ways 86 
that are compatible with such applications. As with other inherently random processes, 87 
precipitation uncertainty is best described probabilistically (i.e., via probability distributions). 88 
Probabilistic methods can depict irreducible uncertainty arising from a lack of sufficient 89 
explanatory information. The deterministic input requirements of virtually all water prediction 90 
models, however, are at odds with such probabilistic depictions. Translating such depictions into 91 
an ensemble that conveys the uncertainty through a number of members thus constitutes the most 92 
direct—and perhaps the only—way to make uncertainty information “digestible” by such models 93 
(Hartke, Wright, et al., 2022). 94 

Nonetheless, global ensemble precipitation datasets are rare. The 10-member ensemble 95 
component (3-hourly and 0.5°) of ERA5 reflects the relative and random uncertainty associated 96 
with the data assimilation process but does not necessarily provide a broader representation of 97 
overall uncertainty (Hersbach et al., 2020). The Ensemble Meteorological Dataset for Planet Earth 98 
(EM-Earth) merges ERA5 and the station-based Serially Complete Earth (SC-Earth) dataset to 99 
generate a 25-member global land precipitation ensemble dataset (Tang et al., 2022). Both 100 
systematic and random errors in ERA5 are included in EM-Earth. The number of ensemble 101 
precipitation datasets covering regional-to-continental domains is growing, including gridded 102 
Ensemble Precipitation Estimates for North America (Newman et al., 2015; Newman et al., 2019; 103 
Newman et al., 2020; Tang et al., 2021), a radar ensemble generator designed for usage in the 104 
European Alps (Germann et al., 2009), and the Europe-wide 100-member E-OBS precipitation 105 
dataset (Cornes et al., 2018). Spatially COherent Probabilistic Extended Climate dataset is a 25-106 
member ensemble of 142-year daily high-resolution reconstructions of precipitation over France 107 
via stochastic downscaling (Caillouet et al., 2019). The 25-member 6-hour High-Resolution 108 
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Ensemble Precipitation Analysis (HREPA) covers Canada and the northern part of the contiguous 109 
United States (Khedhaouiria et al., 2020).  110 

Most of the aforementioned datasets rely to some extent on rain gauges to constrain errors; 111 
such constraints are weak or nonexistent over ungauged regions such as the Global South or 112 
complex terrain. Even when gauges are present, a combination of technical and geopolitical 113 
constraints limits access—at least in real-time—to such rain gauge observations in many 114 
jurisdictions. Meanwhile, quantification of uncertainty in satellite-based precipitation products—115 
and in particular how this uncertainty varies over a range of spatiotemporal scales and across storm 116 
systems—has proven elusive (Guilloteau et al., 2021, 2022; Hartke, Wright, et al., 2022; Huffman 117 
et al., 2020; Li et al., 2023), again largely because of a paucity of higher-fidelity “ground truth.” 118 
As such, no “observation-oriented” (as opposed to numerically-forecasted) global ensemble 119 
precipitation dataset currently exists for near-realtime applications. 120 

This study seeks to fill this gap by proposing a quasi-global (in this case, all continental 121 
land masses within 50°N-50°S, though our method could be employed over the oceans and in high-122 
latitude regions, subject to challenges described below) satellite-only ensemble precipitation 123 
dataset that, while evaluated over retrospective period here, could be deployed in near-realtime 124 
applications, limited only by the latency of satellite inputs. Development of the dataset requires 125 
three key components: (1) a gridded input precipitation dataset—IMERG Early V06B in this case, 126 
but most subdaily global datasets would be suitable including high-resolution reanalysis such as 127 
ERA5; (2) a probabilistic depiction—typically referred to as an error model—of uncertainty for 128 
that input dataset at the individual grid cell scale; and (3) a means of “connecting” that uncertainty 129 
across grid cells and time steps to generate ensemble realizations of precipitation that reflect the 130 
uncertainty in the input dataset over large areas. More detailed explanations of how we approach 131 
components 2 and 3, and broader explanations of challenges and relevant past studies, are 132 
described in Li et al. (2023) and Hartke, Wright, et al. (2022), respectively. 133 

While various error models have been proposed for quantifying grid cell-scale uncertainty 134 
in satellite-based precipitation products (e.g., AghaKouchak et al., 2012; Guilloteau et al., 2022; 135 
Maggioni et al., 2014; Sorooshian et al., 2015; Tan et al., 2016; Wright et al., 2017), these have 136 
generally relied on ground-based observations for parameterization, precluding them from global 137 
application. Li et al. (2023), in contrast, used observations from the GPM Core Observatory 138 
satellite and in particular its dual-frequency precipitation radar (DPR) in place of ground-based 139 
observations to parameterize an error model over the contiguous United States (CONUS), 140 
demonstrating reasonable performance while opening the door to global-scale uncertainty 141 
quantification. Likewise, while multiple studies have shown ways of connecting precipitation 142 
uncertainty structures across multiple grid cells and time steps (e.g., AghaKouchak et al., 2010; 143 
Caseri et al., 2016; Germann et al., 2009; Hossain et al., 2006; Leblois et al., 2013; Newman et al., 144 
2015), Hartke, Wright, et al. (2022) made the important step of inferring such structures 145 
contemporaneously from the input dataset (IMERG in both that study and the present one) itself. 146 
This conceptual advance, and its stochastic implementation via the Space-Time Rainfall Error and 147 
Autocorrelation Model (STREAM), allowed for robust depictions of uncertainties across 148 
spatiotemporal scales, including nonstationary (i.e., location-dependent) and anisotropic (i.e., 149 
direction-dependent) features that typify precipitation uncertainty structures but that existing 150 
frameworks struggled to capture or ignored entirely. 151 

This study unifies the advances of Li et al. (2023) and Hartke, Wright, et al. (2022) to create 152 
a quasi-global satellite-only ensemble precipitation dataset hereafter referred to as STREAM-Sat. 153 
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We first performed ground validation of STREAM-Sat against NCEP/EMC Stage IV (Du, 2011) 154 
over part of the contiguous United States (CONUS). Then we further compared STREAM-Sat 155 
with five other global precipitation datasets. These datasets are IMERG Early (which, as will be 156 
seen, is also an input to STREAM-Sat), Multi-Source Weighted-Ensemble Precipitation (MSWEP 157 
V2.8), The Climate Hazards group Infrared Precipitation with Stations (CHIRPS V2.0), ERA5, 158 
and EM-Earth. As described further below, each of these datasets is generally considered as state-159 
of-the-art, while each represents a different class of dataset (i.e., satellite, reanalysis, merged, etc.). 160 
Each dataset features relative advantages and disadvantages in terms of accuracy, resolution, 161 
latency, and availability of uncertainty information (or lack thereof). A challenge when evaluating 162 
precipitation data at a global scale is the lack of adequate “ground truth.” One option is to assemble 163 
gauge datasets from different parts of the world (e.g., Derin et al., 2016). This is laborious and still 164 
leaves vast land areas unexamined (Kidd et al., 2017). We instead opt to compare STREAM-Sat 165 
to other global alternatives. However, caution is needed with such comparisons, since validation 166 
metrics (e.g., mean absolute error) may reflect inadequacies from both datasets, rather than just 167 
one. The objective of this study, therefore, is to understand and establish the performance of 168 
STREAM-Sat relative to its peers—the other benchmark global precipitation datasets—rather than 169 
in an absolute sense. As will also be seen, while STREAM-Sat is not superior in all respects, it 170 
holds distinct and important advantages over the other datasets. This study will try to answer the 171 
following questions: 172 
1. How does STREAM-Sat compare to IMERG Early and other global precipitation datasets? 173 
2. What are the factors that influence STREAM-Sat performance over different regions? 174 
3. Can STREAM-Sat capture patterns of precipitation structure at varying spatiotemporal 175 
resolutions? 176 

The datasets used in this study are described in Section 2. The uncertainty estimation and 177 
ensemble generation methods, as well as evaluation metrics, are introduced in Section 3. Section 178 
4 presents the results, following discussion in Section 5. Conclusions are provided in Section 6. 179 

2 Data  180 

2.1 IMERG Early V06B 181 
The IMERG algorithm is designed to merge, intercalibrate, and interpolate all available 182 

satellite passive microwave (PMW) retrievals and microwave-calibrated infrared (IR) satellite 183 
estimates to produce 30-min, 0.1° gridded precipitation estimates over the majority of the Earth's 184 
surface. PMW-only precipitation estimates are retrieved using the Goddard profiling algorithm. 185 
Gaps between the instantaneous PMW observations are interpolated via a morphing technique 186 
using motion vectors calculated from total precipitable water vapor from MERRA-2 or GEOS-FP 187 
(Tan et al., 2019). The forward- and backward-propagated PMW estimates are composited via a 188 
Kalman filter, with PMW-calibrated IR precipitation estimates from the PERSIANN algorithm 189 
(Hong et al., 2004). IMERG runs three times under different time latency: Early (~4 hr after 190 
observation time; used in this study to emphasize the near-realtime capabilities of our approach), 191 
Late (~14 hr after observation time), and Final (~3.5 months after the observation month). IMERG 192 
Early only involves forward propagation of sensor observations and uses about 95% of the input 193 
data, on top of other minor calibration differences. At the time of writing, the latest version of 194 
IMERG Early Run is V06B. The data field “precipitationCal” was used.  195 
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2.2 GPM 2B-CMB V07A 196 
The GPM Core Observatory satellite carries the DPR, which consists of Ku-band (13.6 197 

GHz) and Ka-band (35.5 GHz) precipitation radar as well as the multi-channel microwave 198 
radiometer GPM Microwave Imager (GMI, 10 GHz to 183 GHz). These sensors serve as 199 
calibration standards for other members in the GPM satellite constellation (Huffman et al., 2020). 200 
To quantify grid cell-scale uncertainty in IMERG V06B, we followed Li et al. (2023) in using the 201 
GPM L2B “combined” (i.e. DPR and GMI) product 2B-CMB V07A Normal Scans (NS) from  202 
Combined Radar-Radiometer Algorithm (CORRA; Iguchi et al., 2018; Olson, 2022) with a native 203 
resolution of approximately 5 km footprint along the swath. Due to the 65° inclination angle of the 204 
GPM Core Observatory orbit, 2B-CMB covers up to a latitude range of around 67° N/S. The data 205 
field “estimSurfPrecipTotRate” was used. 206 

2B-CMB was mapped onto the IMERG native grid by averaging all the DPR footprint 207 
estimates falling within a 0.1° grid cell, and then matched into the nearest 30-minute IMERG 208 
observation interval (Li et al., 2023). Due to the significant underestimation of snowfall in both 209 
IMERG and DPR products (Behrangi et al., 2018; Skofronick-Jackson et al., 2019), only regridded 210 
coincident data where the IMERG Early data field “probabilityLiquidPrecipitation” is greater than 211 
90 (percent) were used. Data with “flagHail” from the GPM DPR Precipitation Profile L2A 212 
(2ADPR) dataset (Iguchi et al., 2021) equal to 1 were also excluded.  213 

2.3 Benchmark Precipitation Datasets 214 
Three deterministic global precipitation datasets—MSWEP V2.8, CHIRPS V2.0, and 215 

ERA5—and one ensemble dataset—EM-Earth—were used for comparison against STREAM-Sat 216 
globally. Information about these datasets is summarized in Table 1, which highlights their varied 217 
resolutions and latencies. These are commonly-used global precipitation datasets and generally 218 
considered as state-of-the-art. As a merged dataset, MSWEP has been shown to have the highest 219 
correlation with Stage IV, while ERA5 has the best performance among reanalysis-based datasets 220 
(Beck, Pan, et al., 2019). CHIRPS mainly relies on infrared sensors and has less overlap with 221 
IMERG in terms of input sources compared to other popular satellite-based precipitation products 222 
such as CMORPH (Xie et al., 2017) and GSMaP (Kubota et al., 2007). Also shown in Table 1 is 223 
Stage IV. Stage IV radar-gauge product has high resolution and high accuracy over the eastern 224 
CONUS relative to the global precipitation products considered here, which also has been 225 
previously used for evaluating the accuracy of satellite-based precipitation datasets (e.g., 226 
AghaKouchak et al., 2011; Li et al., 2020; Nelson et al., 2016). 227 

The global benchmark precipitation datasets are henceforth referred to as “comparison 228 
datasets,” while ground validation Stage IV is referred to as “validation reference.” 2B-CMB is 229 
used to train our error model and is henceforth referred to as “training reference.” 230 

2.4 Ancillary Data 231 
To understand the influence of physiographic factors on the performance of STREAM-Sat, 232 

the following datasets were also used: Global Bathymetry and Topography at 15 Arc Sec 233 
(SRTM15+; Tozer et al., 2019), 0.5° seasonal temperature covering all land areas (excluding 234 
Antarctica) from the Climate Research Unit (CRU TS v. 4.07; Harris et al., 2020) and a 0.5° 235 
Köppen–Geiger Climate Zone Classification (Rubel, 2010).  236 
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Table 1. Precipitation Datasets Compared in this Study 237 

Name Details Resolution; 
coverage Latency Reference 

Stage IV 

Regional hourly/6-hourly multi-sensor (radar 
and/or gauges) precipitation analyses produced 

by the 12 River Forecast Centers with some 
manual quality control; mosaicked into a 

national/CONUS product at NCEP 

4km, 
hourly/6-hourly; 

CONUS 

The second week of the 
following month Du (2011) 

IMERG 
Early V06B See Section 2.1 0.1°, half-hourly; 

global 4 hours Huffman et al. 
(2020) 

MSWEP 
V2.8 

MSWEP merges global gauge observations, 
satellite estimates (IMERG and GridSat), and 
model output (ERA5). Historical MSWEP is 

used here, as opposed to MSWEP-NRT. 

0.1°, 3-hourly; 
global 

MSWEP-NRT has 1.5-
4.5-hour latency, and it 

is progressively 
upgraded in 15 days. 
Historical MSWEP is 
available up to 2020. 

Beck, Wood, et 
al. (2019) 

CHIRPS 
V2.0 

CHIRPS mainly relies on GridSat and CPC TIR 
and uses TMPA 3B42 pentadal precipitation for 

TIR observation calibration. A monthly 
precipitation climatology (CHPclim) and in-situ 

station data correction are also integrated. 

0.05°, daily; 
50°S-50°N, land 

The third week of the 
following month. 

Funk et al. 
(2015) 

ERA5 ERA5 combines model predictions with 
observations via data assimilation. 

0.25°, hourly; 
global 5 days Hersbach et al. 

(2020) 

EM-Earth 
25-member global land precipitation ensemble 
merges ERA5 and the station-based Serially 

Complete Earth (SC-Earth) dataset. 

0.1°, daily; 
global land except 
for the Antarctic 

Available up to 2019 Tang et al. 
(2022) 

STREAM-
Sat 

User-defined number of ensemble members 
conditioned on IMERG Early V06B and 

corrected by 2B-CMB (see Sections 3). 20 
members were generated in this study. 

0.1°, half-hourly; 
50°S-50°N, land 4 hours 

This paper, 
Hartke, Wright, 
et al. (2022) and 
Li et al. (2023) 
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3 Methods 238 

3.1 The CSGD Error Model 239 
The censored shifted gamma distribution (CSGD) satellite precipitation error modeling 240 

framework (Hartke et al., 2020; Li et al., 2023; Wright et al., 2017) was used to model pixel-scale 241 
uncertainty of IMERG Early. The CSGD error model gives the probability distribution of what the 242 
true rainfall might have been for every IMERG Early 0.1°, 30-min precipitation estimate over land. 243 
It does so by identifying and removing systematic bias and describing the random error via the 244 
CSGD. 245 

CSGD modifies the conventional two-parameter gamma distribution with left-censoring. 246 
By doing so the error model can depict both precipitation occurrence and magnitude. This 247 
framework is flexible, capturing the probability of precipitation, central tendency (i.e. median, 248 
mean), and uncertainty using three parameters (Scheuerer et al., 2015): the mean µ , standard 249 
deviation σ , and shift δ . δ  allows the model to describe the probability of both zero and positive 250 
precipitation, with the cumulative distribution function (CDF) evaluated at zero being equal to the 251 
probability of zero precipitation. The CSGD error model generates conditional distributions of 252 
rainfall via a nonlinear regression, whereby the three parameters can be conditioned on the 253 
observed satellite precipitation and other time-varying covariates, such as the Wetted Area Ratio 254 
(WAR; the percentage of pixels with positive precipitation in a box centered on each pixel) used 255 
in this study. In Hartke, Wright, et al. (2022), WAR was shown to improve the detection 256 
performance of CSGD. The same WAR radius (ten pixels) as in Hartke, Wright, et al. (2022) was 257 
used in this study. The CSGD-based error model is written as: 258 

( ) ( ) ( )
1

2 3 5
1

( ) log e 1 1
P t C t

t
P C

αµµ α α α
α

   = − + + +  
   

                                 (1) 259 

( ) ( )
4

t
t

µ
σ α σ

µ
=                                                         (2) 260 

( )tδ δ=                                                                (3) 261 
where 1 2 3 4 5, , , ,α α α α α  are regression parameters. P(t) and C(t) are IMERG precipitation and 262 
WAR at time t, respectively.  and P C  are corresponding climatological mean values at the same 263 
location. , ,  and µ σ δ  are derived from a climatological fitting of a CSGD at each location. 264 

( ),  ( ) and ( )t t tµ σ δ  define a distinct CSGD at a specific time t at each location conditioned on P(t) 265 
and C(t). 266 

Coincident observations from IMERG and 2B-CMB from 2018-2021 were used to 267 
calibrate the error model. The calibration was implemented in each 1° by 1° box over land between 268 
50°N and 50°S. If the data sample size within a box was less than 15,000 or if the hit fraction (i.e., 269 
when both IMERG and 2B-CMB observe positive precipitation) was lower than 1%, we expanded 270 
the box by 0.5° in all directions to expand the sample size prior to training the model. The error 271 
model primarily assesses the behavior of liquid precipitation as well as nonoccurrence of 272 
precipitation, as opposed to solid or mixed-phased precipitation (see Sections 2.2 and 5.2 for 273 
further details).  274 
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3.2 Space-Time Rainfall Error and Autocorrelation Model (STREAM) 275 
While the CSGD error model provides the uncertainty of IMERG precipitation at its native 276 

resolution, generating usable ensemble information is not straightforward, since the error in 277 
IMERG and other datasets exhibits spatial and temporal autocorrelation. For example, if one were 278 
to generate a possible realization by sampling from CSGD at each grid box independently, the 279 
output would be unrealistic, as it does not account for correlation between neighboring grid boxes. 280 
Therefore, a method for sampling from the CSGDs at every location and time step that accounts 281 
for this autocorrelation of the error is needed. 282 

STREAM combines uncalibrated, anisotropic, and spatially nonstationary modeling of 283 
satellite precipitation spatiotemporal correlation with the CSGD error model (Section 3.1) to 284 
stochastically generate precipitation ensembles that resemble “ground truth” precipitation (Hartke, 285 
Wright, et al., 2022). A flowchart of STREAM/STREAM-Sat is shown in Figure 1, and a highly 286 
abbreviated explanation is provided here. See Hartke, Wright, et al. (2022) for a more detailed 287 
explanation.  288 

 289 

Figure 1. STREAM-Sat flowchart and its connection with the CSGD error model. Each step of 290 
STREAM is labeled in order. Green boxes highlight the input data and final output. α  is the AR(1) 291 
coefficient. N(0,1) denotes the standard Gaussian normal distribution and U(0,1) denotes uniform 292 
distribution. CDF refers to the cumulative distribution function of the CSGD, which connects 293 
U(0,1) to corrected precipitation. P0 is the probability of non-precipitation. 294 

A short space Fourier transform (SSFT) is applied to replicate space autocorrelation of 295 
IMERG within a moving spatial window (128 by 128 pixels in this study) using a normal Gaussian 296 
noise field (Nerini et al., 2017; Pulkkinen et al., 2019), while a first-order autoregression model 297 
(AR (1)) introduces a temporally correlated “shock term.” A semi-Lagrangian advection of the 298 
noise field based on IMERG motion vectors further connects the noise across space and time, 299 
consistent with the structure of the original IMERG fields. The AR(1) coefficient is calculated as 300 
the linear correlation between two consecutive IMERG observations within the same moving 301 
spatial window used for the SSFT. Standard normal and CSGD quantile functions convert the 302 
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autocorrelated normal Gaussian noise field to precipitation. Additional ensembles are created by 303 
reseeding the initial noise and shock terms. 304 

In this study, STREAM was used to create twenty ensemble members with the same 305 
resolution as IMERG (i.e., 0.1° and half-hour) for one year (2017). Though any number of 306 
members could be created, twenty is chosen in this paper to conserve storage space and since prior 307 
work has suggested that this setting is adequate, at least for certain applications (e.g., Hartke et al., 308 
2023). As previously mentioned, the resulting ensemble dataset is referred to as STREAM-Sat. 309 

3.3 Performance Metrics  310 
The continuous ranked probability skill score (CRPS; Thorarinsdottir et al., 2013) has been 311 

used widely in probabilistic weather forecasting. CRPS considers both the expected value of the 312 
absolute error and the sharpness of the probabilistic prediction. The discrete expression of CRPS 313 
is used to evaluate the precipitation ensembles. It can be written as  314 

( ) 2
1 1 1

1 1,
2

M M M

ens m m n
m m n

CRPS F x x x x x
M M= = =

= − − −∑ ∑∑                                   (4) 315 

where ensF  is ensemble distribution with size M (Grimit et al., 2006). mx  and nx  are the individual 316 
ensembles and x is the reference deterministic value. When the ensemble size is one, CRPS reduces 317 
to the well-known deterministic metric mean absolute error (MAE). This useful feature allows 318 
comparison between probabilistic and deterministic estimates via CRPS and MAE. Lower CRPS 319 
(or MAE) indicates better performance; their values can range from zero to positive infinity.  320 

The containing ratio (CR) is another commonly used metric in ensemble evaluation. It 321 
calculates the percentage of instances in which a deterministic reference (i.e. “ground truth”) falls 322 
within the ensemble spread: 323 

( )min max
1

1 T

t ref
t

CR I x P x
T =

= ≤ ≤∑                                                   (5) 324 

where maxx  and minx  are the largest and smallest value of the predicted ensembles, and refP  is the 325 
reference precipitation. tI  is an indicator that equals one when the specific criterion in the bracket 326 
is fulfilled at time t. It is zero under any other condition. T is the total number of time steps to be 327 
evaluated at a location. The range for CR is zero to one, with the latter being optimal. 328 

For evaluation, data were classified into four categories: (1) Hits, in which both the 329 
reference (e.g., Stage IV) and the estimate (e.g., IMERG) report the precipitation; (2) Misses, in 330 
which reference reports the precipitation but estimate does not; (3) False alarms, in which reference 331 
does not report precipitation but the estimate does; and (4) Correct Non-detects, in which both the 332 
reference and estimate do not report the precipitation. The classification for STREAM-Sat is based 333 
on IMERG (i.e., if IMERG reports a hit, STREAM-Sat is classified as a hit) to evaluate STREAM-334 
Sat conditioned on different types of IMERG error. 335 

The method proposed by Guilloteau et al. (2021) is used here to examine the spatial 336 
anisotropy at different scales for the reference and STREAM-Sat. Fourier power spectral density 337 
(PSD) from a three-dimensional Fourier transform allows spectral space–time analysis. Two-338 
dimensional spatial PSD value exhibits the energy associated with different spatial sampling 339 
distances, while the preferred directionality reveals the anisotropy of the precipitation fields.  340 
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4 Results 341 

4.1 Evaluation against Stage IV 342 
We examined the performance of STREAM-Sat and other benchmark precipitation 343 

products against Stage IV over 40°N-30°N, 105°W-85°W (i.e., the eastern/southeastern United 344 
States where Stage IV is relatively reliable). Specifically, we estimated CRPS for STREAM-Sat 345 
and EM-Earth and MAE for the deterministic datasets (Figure 2). All datasets were regridded to 346 
daily and 0.25° (the finest common resolution among the datasets) for this comparison. MSWEP’s 347 
standout performance is probably attributed to its incorporation of gauge observations, which are 348 
plentiful in this region. STREAM-Sat’s total CRPS is 19% higher than MSWEP’s (compared to 349 
100%, 90% and 135% for CHIRPS, ERA5, and IMERG, respectively), albeit without the benefit 350 
of ground-based observations. STREAM-Sat demonstrates an improvement over IMERG in both 351 
precipitation intensity and correct detection, as evidenced by the reduced CRPS by 53% in hits, 352 
27% in misses, and 30% in false alarms. STREAM-Sat is close to, if not better than, other 353 
benchmark global precipitation datasets in terms of CRPS vs. MAE. Compared to the STREAM-354 
Sat ensemble mean, which is the result of systematic bias removal, the full STREAM-Sat ensemble 355 
shows a further reduction of total CRPS by 26%. This is similar to EM-Earth, in which total CRPS 356 
from the ensemble is reduced by 25% compared with the ensemble mean. These results highlight 357 
the importance of probabilistic ensemble-based representations of precipitation uncertainty.  358 
 359 

 360 

Figure 2. Validation of global precipitation datasets against Stage IV for 40°N-30°N, 105°W-361 
85°W. (a) The fraction of hits, misses, and false alarms (the remainder of cases being correct non-362 
detects) in deterministic datasets. (b) CRPS for STREAM-Sat and EM-Earth (total only) and MAE 363 
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for other deterministic datasets. The MAE for STREAM-Sat and EM-Earth ensemble mean are 364 
also shown. All data were regridded to daily 0.25° resolution using mass conserving interpolation.  365 
 366 

 367 

Figure 3. Comparison of STREAM-Sat and EM-Earth against Stage IV for 40°N-30°N, 105°W-368 
85°W. (a) CRPS for STREAM-Sat ensembles. (b) CRPS of STREAM-Sat minus CRPS of EM-369 
Earth.  370 
 371 

 372 

Figure 4. Precipitation over part of North America on 17 August 2017 estimated by (a) IMERG 373 
Early, (b) MSWEP, (c) ERA5, and (d) CHIRPS. Four STREAM-Sat ensembles are shown in (e)-374 
(h). Three EM-Earth ensembles are shown in (i)-(k). (l) Stage IV; note that Stage IV doesn’t cover 375 
the entire pictured area. All data were regridded to daily and 0.25°. 376 
 377 
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EM-Earth’s CRPS is lower than that of STREAM-Sat over roughly two-thirds of the study 378 
region (Figure 3). Nonetheless, that leaves one-third of the region (e.g., Texas panhandle and New 379 
Mexico) where STREAM-Sat outperforms EM-Earth (which is gauge corrected); STREAM-Sat 380 
has on average 16% higher CRPS than EM-Earth over the whole map. It should be noted that such 381 
comparison over this particular study region should be expected to favor EM-Earth (and MSWEP) 382 
due to the high gauge density, which both datasets ingest. Likewise, CHIRPS benefits from 383 
sufficient station observations (Funk et al., 2015), and ERA5 assimilates Stage IV in this region 384 
(Hersbach et al., 2020; Lopez, 2011). The reduced performance of EM-Earth in the west region of 385 
Figure 3b is likely attributed to sparser gauge density compared to farther east. It is safe to 386 
summarize that in regions with fewer high-quality ground-based observations (i.e., the vast 387 
majority of the global land surface), the accuracy of precipitation datasets that use ground-based 388 
data would be degraded relative to datasets such as STREAM-Sat that don’t rely on such 389 
measurements. 390 

A one-day “snapshot” (Figure 4) of total rainfall accumulation from all the benchmark 391 
precipitation datasets over part of North America shows general consistency in the location of 392 
precipitation systems, but high variability in their amount and structure. Some STREAM-Sat 393 
ensembles correct the overestimate in IMERG around Oklahoma, where CHIRPS and ERA5 394 
exhibit significant underestimation. STREAM-Sat generally captures the southwest-to-northeast 395 
observed spatial anisotropy better than EM-Earth.  396 

These results show that the various global precipitation datasets (e.g., ERA5, CHIRPS, and 397 
MSWEP) have very different errors. We cannot rely on one alone to understand and evaluate the 398 
global performance of STREAM-Sat. In the following sections, they will be used together for 399 
comparison. We reiterate that comparisons of CRPS, MAE, and other metrics must be interpreted 400 
with caution, since they may reflect inadequacies from both comparison datasets and IMERG or 401 
STREAM-Sat, rather than just one. 402 
 403 
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 404 

Figure 5. Time series of precipitation depth and accumulated depth for different selected locations around the globe. Four global 405 
precipitation products as well as the STREAM-Sat ensemble mean and spread are shown in all time series panels. Stage IV is only 406 
shown in (a) and (b). Locations are indicated on the central map. Each time series is aggregated over a 1° by 1° box. 407 
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4.2 Global Comparison of STREAM-Sat over Different Spatiotemporal Resolutions 408 
To understand whether STREAM-Sat captures precipitation dynamics in diverse settings, 409 

it was compared against the other precipitation datasets over eight unique locations (Figure 5). 410 
These locations cover equatorial, temperate, and arid climate zones with different elevation 411 
regimes. For example, Figure 5a is classified as a snow zone based on the Koppen-Geiger climate 412 
classification with annual precipitation around 400 mm, while Figure 5d is located in the Amazon 413 
rainforest with annual precipitation above 2,000 mm. Figure 5b has an elevation of around 1,200 414 
m. Figure 5c, 5f & 5h are located in an arid climate zone with annual precipitation around 500 mm 415 
but with elevations of roughly 300 m, 900 m and 130 m, respectively. Figure 5e is located in a 416 
warm and fully humid climate zone. Figure 5g is located in the Yungui Plateau with about 1,000m 417 
elevation and annual precipitation of 1,300mm. In Figure 5, deterministic datasets vary 418 
substantially in precipitation intensity and timing, while the uncertainty information provided by 419 
STREAM-Sat is evident. STREAM-Sat usually envelops the other products, but there are 420 
exceptions when substantial differences in timing (e.g., CHIRPS in Figure 5e & 5g) or magnitude 421 
(e.g., ERA5 in Figure 5b) occur in a single precipitation dataset. The main tendency for any 422 
particular dataset varies geographically, though IMERG Early generally has higher rainfall 423 
amounts, consistent with documented high biases (e.g., Huffman et al., 2023; Li et al., 2021; Li et 424 
al., 2022). Stage IV data shown in Figure 5a & 5b are well captured by the STREAM-Sat ensemble. 425 
Figure S1 plots the EM-Earth ensemble in the same areas as in Figure 5, and EM-Earth generally 426 
exhibits a larger ensemble spread.  427 

Multiple values of CR and CRPS for STREAM-Sat and MAE for IMERG were calculated 428 
for all continents except Antarctica, using MSWEP, CHIRPS, and ERA5 as the comparison 429 
dataset, respectively (Figure 6). These calculations were done at the “lowest common” spatial and 430 
temporal resolution of each pair of datasets (e.g., 3-hourly and 0.1° for MSWEP vs. IMERG; daily 431 
and 0.1° for CHIRPS vs. STREAM-Sat; refer to Table 1 for resolution details). STREAM-Sat is 432 
substantially closer to comparison datasets than IMERG in terms of CRPS vs. MAE for all 433 
continents (Figure 6a, 6c & 6e). For hits, the reduction of CRPS is 52%, 40%, and 47% on average 434 
with respect to MSWEP, CHIRPS, and ERA5, respectively. When IMERG gives a false alarm, 435 
the probability that the spread of the corresponding STREAM-Sat ensemble includes zero 436 
precipitation is 96%, 64%, and 87% on average with respect to MSWEP, CHIRPS, and ERA5, 437 
respectively. Although MSWEP is assumed to be higher-fidelity in North America and Europe 438 
where gauge networks are dense, STREAM-Sat does not appear to suffer relative to MSWEP in 439 
these regions (see Figures 6a-6b). The seeming inferior performance of STREAM-Sat when 440 
compared to CHIRPS in Figures 6c-6d is likely due to the complex terrain in central Asia, with 441 
both STREAM-Sat and CHIRPS being adversely affected in ways not possible to disentangle with 442 
presently available data. This result highlights the difficulty of benchmarking new global 443 
precipitation datasets in regions with limited ground-based observations. The consistency between 444 
STREAM-Sat and ERA5 in Europe, evinced by Figures 6e-6f, reflects well when considering the 445 
relatively skillful prediction of ERA5 in the extratropics (Lavers et al., 2022). 446 
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 447 

Figure 6. (a, c, e) Comparisons of CRPS (for STREAM-Sat) and MAE (for IMERG) against other 448 
global deterministic datasets. (b, d, f) Fraction of total IMERG cases for hits, misses, and false 449 
alarms categories (percentage of correct non-detects is not shown) and their corresponding CR 450 
against other global deterministic datasets.  451 
 452 
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4.3 Performance for Climatology and Heavy Rainfall 453 
In this section, we examine the performance of STREAM-Sat compared to IMERG from the 454 
perspectives of climatology and heavy daily rainfall in the land area between 50°N and 50°S. 455 
Probability of daily rainfall (using a precipitation detection threshold of 0.5 mm/day), the 90th 456 
percentile of daily precipitation, and annual total precipitation from IMERG and from one 457 
randomly-selected STREAM-Sat ensemble were compared against MSWEP (Figure 7). Both 458 
STREAM-Sat and IMERG have a higher probability of precipitation in dry regions—where the 459 
probability of daily precipitation is less than 0.2—compared to MSWEP. Where daily precipitation 460 
probability exceeds 0.3, there is good (poor) agreement between STREAM-Sat (IMERG) and 461 
MSWEP. IMERG exhibits a value of 90th percentile of daily precipitation almost 20% higher than 462 
MSWEP; STREAM-Sat is much closer (only 1.6% difference). STREAM-Sat reports smaller 463 
RMSE and higher CC (319 mm, 0.93) relative to IMERG (379 mm, and 0.91) for annual totals.  464 
 465 

 466 

Figure 7. (a) Probability of daily precipitation (detection threshold of 0.5 mm/day). (b) 90th 467 
percentile daily precipitation. (c) Annual total precipitation. The first row is the comparison 468 
between IMERG and MSWEP. The second row is the comparison between one randomly-selected 469 
STREAM-Sat member and MSWEP. Bias, RMSE and correlation coefficient (CC) are provided 470 
in each panel. Data is from the whole study area and for the year 2017. 471 

Figure 8 shows the average difference between IMERG (or STREAM-Sat) and three global 472 
precipitation datasets over the one-year study period for times and locations where pixel-scale 473 
IMERG exceeds its 90th percentile. Positive values mean that IMERG or STREAM-Sat has a 474 
higher value than the comparison dataset. The STREAM-Sat member has a nearly symmetric 475 
distribution of mean differences against the comparison datasets (i.e., it is unbiased), whereas 476 
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IMERG tends to be positively skewed. When moving from IMERG to STREAM-Sat, the mean 477 
difference was reduced from 7.9 mm/day to 1.1 mm/day, 6.7 mm/day to -0.37 mm/day, and 9.8 478 
mm/day to 3.0 mm/day for MSWEP, CHIRPS, and ERA5 as comparison datasets, respectively. 479 

 480 

 481 

Figure 8. Mean differences of >90th percentile 0.25° daily IMERG precipitation and one random-482 
selected STREAM-Sat ensemble against (a) MSWEP, (b) CHIRPS, and (c) ERA5. 483 

4.4 Physiographic Factors Influencing STREAM-Sat Performance 484 
The performance of IMERG and other satellite-based precipitation datasets is influenced 485 

by physiographic factors such as terrain, mean climate, and seasonal precipitation characteristics 486 
(Derin et al., 2019; Li et al., 2021; Yu et al., 2021). Here, we evaluate STREAM-Sat performance 487 
and compare it with IMERG (Figure 9), in part to understand to what extent the former “inherits” 488 
physiographically-linked performance from the latter and how much this performance is 489 
modulated by the error modeling and ensemble generation described in Sections 3.1-3.2. 490 
Physiographic factors (temperature and elevation) effects on STREAM-Sat performance are 491 
analyzed in Figure 9. This plot shows the conditional performance of STREAM-Sat against 492 
comparison datasets. Scatter plots in Figures 9a-9f represent two different conditioning analyses: 493 
(1) the bottom left of each panel shows STREAM-Sat performance conditioned on elevation (left 494 
y-axis) and total precipitation (bottom x-axis); and (2) the top right of each panel represents 495 
STREAM-Sat performance conditioned on temperature (top x-axis) and elevation (right y-axis). 496 
CR of STREAM-Sat is shown in Figures 9a-9c & 9g, while the ratio between MAE and CRPS 497 
(i.e., CRPS/MAE, where lower values mean closer agreement between STREAM-Sat than IMERG 498 
to comparison datasets) is shown in Figures 9d-9f & 9h. The three comparison datasets generally 499 
show similar patterns but different magnitudes. STREAM-Sat demonstrates the most similar 500 
performance to MSWEP in terms of CR and CRPS. STREAM-Sat shows greater discrepancy with 501 
comparison datasets—and less change from IMERG—with higher elevation, especially above 3 502 
km. STREAM-Sat seems to demonstrate higher CR and greater improvement over IMERG for 503 
warmer temperatures, while perhaps demonstrating slightly less added value in cold regions, likely 504 
due to less mixed and solid phase precipitation and better overall satellite retrieval performance in 505 
warm conditions (Ebert et al., 2007). No obvious trend is identified relative to total annual 506 
precipitation. The three main climates (i.e., B: arid, C: warm temperate and D: snow) generally 507 
show lower agreement between STREAM-Sat and comparison datasets and smaller deviations 508 
from IMERG in cold regions compared to warm ones (Figure 9g & 9h, e.g., Csa to Csb, or Dfa to 509 
Dfc). The performance and improvement in the equatorial zones seem to be the most significant. 510 
Polar tundra (denoted as ET in Köppen-Geiger climate classification), dominated by mountains in 511 
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Tibet and the Andes, show the largest discrepancies with the comparison dataset, likely due to the 512 
combined challenges of precipitation estimation over complex terrain and snow-covered surfaces. 513 

 514 

 515 
Main climates: A: equatorial, B: arid, C: warm temperate, D: snow, E: polar 516 
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Precipitation: W: desert, S: steppe, f: fully humid, s: summer dry, w: winter dry, m: monsoonal 517 
Temperature: a: hot summer, b: warm summer, c: cool summer, d: extremely continental, h: hot arid, 518 
k: cold arid, F: polar frost, T: polar tundra 519 

Figure 9. (a-c) CR of STREAM-Sat conditioned by elevation above mean sea level, total annual 520 
precipitation (from IMERG Early) and mean annual temperature, calculated against (a) MSWEP, 521 
(b) CHIRPS, and (c) ERA5. Same order for d, e and f, but for CRPS/MAE metrics. (g) CR of 522 
STREAM-Sat conditioned by Koppen-Geiger climate zone, taking MSWEP as a comparison 523 
dataset. (h) Same as (g), but for CRPS/MAE metrics. Climate zones with less than one thousand 524 
samples are ignored. Boxes show the first to the third quartiles of the data, with a line at the median. 525 
Whiskers extend from the box by 1.5 times the interquartile range. Sample sizes in each climate 526 
zone are also given in (g). All the data were upscaled to daily and 0.25°. 527 

4.5 Precipitation Structure 528 
Precipitation spatiotemporal structure is a key determinant of hydrologic response and 529 

hazards. The differences in lag-1 temporal autocorrelation between Stage IV and IMERG or 530 
STREAM-Sat are shown in Figure 10. At all scales, lag-1 temporal autocorrelation in STREAM-531 
Sat is closer to Stage IV, at least for the US east of 105° W where Stage IV is considered most 532 
reliable. This improvement is most significant at the hourly 0.25° scale (Figures 10d-10f), where 533 
IMERG overestimates the temporal correlation. Figures S2-S4 extend this autocorrelation analysis 534 
to the global land surface. There, MSWEP and ERA5 both exhibit notably higher temporal 535 
autocorrelation than both IMERG and STREAM-Sat. Given the generally good correspondence of 536 
lag-1 autocorrelation with Stage IV in the eastern US shown in Figure 10, this global result 537 
suggests that both MSWEP and ERA5 may have unrealistic temporal autocorrelations; diagnosing 538 
the reasons for this is beyond the scope of our study but may be related to data weighting (MSWEP) 539 
and assimilation (ERA5). At the 0.25° hourly scale (Figure S3), the autocorrelation of STREAM-540 
Sat is lower than IMERG, but is probably closer to reality if our CONUS results in Figures 10d-541 
10f are indicative of global performance. Aggregation over time (Figure S4, daily and 0.1°) causes 542 
slightly higher autocorrelation in STREAM-Sat than IMERG, while STREAM-Sat generally 543 
shows the same spatial patterns of temporal autocorrelation as CHIRPS.  544 

We examined spatial anisotropy by power spectrum density (PSD) at different scales for 545 
the southeast US region (41°N-31°N, 101°W-91°W) using the method of Guilloteau et al. (2021) 546 
(Figure S5). Higher PSD corresponds to lower spatial autocorrelation. IMERG and the STREAM-547 
Sat ensemble show similarly reduced anisotropy and lower spectral power compared with Stage 548 
IV, especially at small scales (indicated by the darker color and narrower contour lines). The 549 
similarities between STREAM-Sat and IMERG are unsurprising given that the spatial 550 
autocorrelation in STREAM-Sat is “inherited” with minimal change from the IMERG field via the 551 
SSFT procedure (Section 3.2). The lower spectral density and thus higher spatial autocorrelation 552 
in IMERG and STREAM-Sat than in Stage IV is likely due to the morphing and the low effective 553 
spatial resolution of satellite-based PMW sensors (Guilloteau et al., 2017). 554 
 555 
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 556 

Figure 10. Lag-1 temporal autocorrelation at three spatiotemporal scales. (a)-(c) 3-hourly and 0.1°. 557 
(d)-(f) hourly and 0.25°. (g)-(i) daily and 0.1°. The first column is the difference between IMERG 558 
and Stage IV. The second column is the difference between one randomly-selected STREAM-Sat 559 
ensemble and Stage IV. Positive values mean higher autocorrelation of IMERG or STREAM-Sat 560 
than Stage IV. The third column is Stage IV. Only the coverage of Stage IV is shown. The mean 561 
value of east of 105° W (where Stage IV is most reliable) is given alongside the panel identifier. 562 
Temporal autocorrelation was averaged in each 1° by 1° box. 563 

5 Discussion 564 

5.1 Comparison with EM-Earth 565 
As the two global ensemble precipitation datasets considered in this study, it is worth 566 

further investigating the differences between EM-Earth and STREAM-Sat. We highlight one key 567 
difference here, beyond differences in basic features (i.e., STREAM-Sat’s higher temporal 568 
resolution and much lower latency) evident from Table 1. EM-Earth is highly reliant on rain gauge 569 
stations, which means that its uncertainty should be narrow in regions with dense station 570 
observations and wide where such observations are sparse. STREAM-Sat, in contrast, is satellite-571 
only; its ensemble spread is independent of gauge density. This effect is evident in Figure 11: large 572 
coefficients of variation (the standard deviation of the ensemble divided by its mean) in EM-Earth 573 
that indicate high ensemble spread coincide with locations of low gauge density (e.g., sub-Saharan 574 
Africa and Bolivia) as well as locations of low precipitation. STREAM-Sat, in contrast, is more 575 
consistent with no obvious dependence between CV and gauge density.  576 

Indeed, Figure 3 shows that EM-Earth generally but not decisively outperforms STREAM-577 
Sat in the rain gauge-rich eastern United States. Because EM-Earth’s CRPS can be expected, 578 
however, to be larger in regions with lower rain gauge densities (all else being equal), it is 579 
reasonable to surmise that STREAM-Sat would compare more favorably to EM-Earth in such 580 
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regions. This fact, combined with STREAM’s advantages in latency and temporal resolution, may 581 
be preferable in certain applications. However, we caution against interpreting lower CV values in 582 
STREAM-Sat as solid evidence of superiority over EM-Earth; see limitations of our approach in 583 
Section 5.2. 584 

 585 

 586 

Figure 11. Coefficient of variation (CV; the standard deviation divided by mean) for the ensembles 587 
over land. (a) STREAM-Sat. (b) EM-Earth. 588 

We reiterate here that the representation of uncertainty via ensemble methods in both 589 
STREAM-Sat and EM-Earth is important. This significance can be observed in Figure 2 for both 590 
STREAM-Sat and EM-Earth. The total CRPS for STREAM-Sat (EM-Earth) is 26% (25%) lower 591 
than the MAE of the corresponding ensemble mean. This additional benefit is the result of the 592 
probabilistic representation of random errors. It is important to note that this probabilistic 593 
representation of random error has been shown to be particularly important in hazard and water 594 
prediction applications, where removal of systematic bias alone is at best insufficient and at worst 595 
leads to degraded predictions (Habib et al., 2014; Hartke et al., 2020; Hartke et al., 2023). 596 

5.2 Limitations of the Framework 597 
Despite the strengths of our approach, a number of limitations remain, mostly stemming 598 

from the nature of the input data. GPM’s low-earth orbit means that continuous DPR observation 599 
over a single location is impossible; the user is instead limited to near-instantaneous “snapshots” 600 
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of precipitation at a particular location. Thus, if DPR observations (2B-CMB included) are used 601 
to quantify uncertainty in a gridded dataset such as is done here with IMERG, the mismatch 602 
between the near-instantaneous nature of DPR and the accumulated nature of the gridded dataset 603 
introduces additional uncertainty. This uncertainty can be mitigated by deploying the method using 604 
gridded datasets with fine temporal resolutions—e.g., sub-hourly to perhaps an hour—but it 605 
precludes the application of our approach to datasets with coarser temporal resolutions such as 606 
daily (e.g., precluding application to CHIRPS). 607 

In addition, though likely the best space-based precipitation sensor, DPR still suffers from 608 
errors resulting from imperfectly understood backscattering and other challenges, especially over 609 
snow-covered surfaces. Reliance on DPR for training also raises concern around the lack of 610 
independence between 2B-CMB and IMERG—essentially, DPR and GMI observations are used 611 
in both datasets, which can be problematic for using 2B-CMB to quantify uncertainty in IMERG. 612 
However, Li et al. (2023) used a high-quality ground-based reference to show that the correlation 613 
between 2B-CMB and IMERG is not concerningly high, helping to justify 2B-CMB as training 614 
reference. We experimented with different IMERG components (Figure S6), revealing that the 2B-615 
CMB-trained model appears to adequately depict IMERG in times and locations where PMW 616 
estimates were available, but not when IR observations alone were used. But this phenomenon 617 
also exists to a degree when Stage IV was used as a training reference, implying that it is partly 618 
attributed to problematic IR retrievals and partly due to the training data source. Since we are likely 619 
to fit the error model using “best-case” (i.e., GMI), there is a potential risk of underestimating the 620 
uncertainty. More detailed analysis can be found in Text S1 and Li et al. (2023).  621 

The model used in this paper has eight free parameters, with the freedom to add more 622 
covariates (and additional parameters in equal measure) to potentially explain additional IMERG 623 
error. Adding additional covariates increases the challenge of estimating these parameters, 624 
currently handled via a two-step nonlinear optimization (see Scheuerer et al. (2015) for more 625 
details). Identifying realistic parameter values requires relatively large samples of coincident 626 
IMERG and 2B-CMB estimates. In principle, distinct error models for each PMW sensor that 627 
contributes to IMERG could be developed but this would be made difficult by oftentimes limited 628 
coincident data samples for model calibration (See Table S1). Also, it might not be necessary, 629 
since our results in Figure S6 show that STREAM-Sat generally has comparable performance 630 
regardless of which PMW sensor contributed to the original IMERG observation—as long as such 631 
a sensor was available. A somewhat different issue arises if one attempts to fit an error model 632 
specifically to IR-based IMERG observations. The poor performance of IR-only IMERG retrievals 633 
means that correlation between such observations and 2B-CMB is poor and thus certain parameters 634 
cannot be adequately identified via optimization (results not shown). It is possible that this last 635 
problem will be ameliorated in future versions of IMERG, which will feature more advanced and 636 
more accurate IR retrieval schemes. 637 

Finally, this study focuses on liquid precipitation (as indicated by IMERG’s 638 
“probabilityLiquidPrecipitation” flag, see Section 2.2). Both IMERG and DPR-based products 639 
tend to underestimate snowfall (Behrangi et al., 2018; Casella et al., 2017; Song et al., 2020). 640 
However, previous research has proposed a dataset built by coincident observations between DPR 641 
and the 94 GHz CloudSat Cloud Profiling Radar (CPR) to serve as a snowfall training reference 642 
(Behrangi et al., 2020; Liu, Adhikari, et al., 2018). CPR is able to measure light snowfall, while 643 
DPR offers advantages for heavier snowfall rates. Validation of this is outside the scope of this 644 
study. 645 
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6 Conclusions 646 
The potential of satellite-based precipitation products and other large-scale precipitation 647 

datasets is limited by their inherent uncertainties, including mischaracterization of both 648 
precipitation occurrence and intensity. In principle, this uncertainty can be quantified by using 649 
ensemble generation techniques that produce multiple plausible realizations of the unknown true 650 
precipitation field. In practice, however, the creation of such ensemble datasets has proven difficult 651 
due to the limited quality and quantity of available ground truth data, the complexity of satellite 652 
precipitation algorithms, and the difficulty of “connecting” such data and their uncertainties over 653 
space and time. 654 

In this paper, we propose STREAM-Sat, a method for producing ensemble precipitation 655 
fields using only satellite data. The method can be applied globally, in near-realtime and at high 656 
resolution (here, 0.1°, half-hourly over land). We validated the performance of STREAM-Sat 657 
against Stage IV over CONUS and compared it with several other state-of-the-art benchmark 658 
precipitation datasets globally. STREAM-Sat shows clear improvement in detection ability and 659 
intensity compared to IMERG Early. STREAM-Sat corrects the high bias of IMERG and exhibits 660 
climatology statistics closer to comparison datasets. The accuracy of STREAM-Sat is close to, if 661 
not better than, these global precipitation datasets to which it is compared to. In contrast with 662 
precipitation datasets relying on ground-based gauge networks, STREAM-Sat shows spatially 663 
consistent ensemble spread and performance metrics, and our results indicate that STREAM-Sat 664 
could be preferable in gauge-limited regions. The ensemble representation of random errors adds 665 
a roughly 25% improvement on top of the ensemble mean, highlighting the importance of 666 
ensemble methods for large scale precipitation estimation and its application. Similar to other 667 
satellite-derived precipitation products, elevation and temperature are key factors that influence 668 
the performance of STREAM-Sat, with high-elevation and snow-covered areas showing poorer 669 
performance. STREAM-Sat generally maintains a similar precipitation structure to IMERG at 670 
varying spatiotemporal resolutions, which appears to be more realistic than at least some 671 
comparison datasets, which appear overly smooth.  672 

While STREAM-Sat’s accuracy (e.g., in terms of CRPS) is not superior in all respects over 673 
all other comparison datasets, its unique combination of traits—i.e., it is probabilistic via ensemble 674 
members, it has low bias, it can be produced in near-realtime, and it has high resolution—gives it 675 
certain advantages over the other benchmark global precipitation datasets. The proposed method 676 
is particularly valuable in ungauged regions with large and unknown meteorological uncertainties 677 
that merit ensemble approaches, while its near-realtime potential offers notable benefits in water-678 
related disaster early warning systems. Future work will focus on evaluating the usefulness of 679 
STREAM-Sat in a range of water resources and hazard applications, as well as understanding its 680 
absolute accuracy through comparison with dense rain gauge networks, as opposed to its relative 681 
accuracy via the comparison with “peer” datasets pursued here. 682 
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