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Introduction  

The following provides more details about the fire count and burn area models along 
with the results from the eight Global Climate Models that were averaged to get the 
ensemble results presented in the main text.  

Text S1. Model Details 
a. Fire Occurrence Model 
The model represents counts as a zero-inflated negative binomial random variable. 

This approach allows us to simultaneously account for the zero-inflation and 
overdispersion observed in the fire count data. The model defines a probability mass 
function for fires over 405 ha (approximately 1000 acres) in each ecoregion s (spatial 
scale s = 1,....,S) and time step t (monthly scale t = 1,....,T). The location parameter μs,t and 
the structural zero inflation parameters πs,t were able to vary in space and time. A log link 
function ensured μs,t > 0 while a logit link function ensured πs,t ∈ (0,1).  Linking by spatial 
and temporal units so that π = (πs=1,t=1 , πs=2,t=1 , . . ., πs=S,t=1 , πs=S,t=2 , . . ., πs=S,t=T) as well as 
for μ, the location and zero inflation parameters were modeled by  

log(μ) =α(μ) + Xβ(μ) + φ(μ) + log(a) 
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logit(π) = α(π) + Xβ(π) + φ(π) 
where α(μ) and α(π) are scalar parameters of intercepts, X is a design matrix (S × T) × 

p where 
p is the number of input features, β and φ are column vector parameters with β(μ) 

and β(π) being length p and φ(μ) and φ(π) of length S × T with spatiotemporal adjustments, 
and a is an areas offset vector for the spatial units s repeated for each time step t. A 
multivariate horseshoe was used sharing information between the zero inflated and 
negative binomial location parameters (Peltola et al., 2014). 

b. Burned Area 
The model response yi is the number of hectares burned over 405 ha for the ith fire 

event occurring in each spatial unit si at time step ti. The model included covariate 
dependence through the location parameter:  μi = α + X(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖)β + ϕ(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖), where α is an 
intercept parameter, X(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖) is a row vector from the design matrix X, β is a vector of 
coefficients of length p, and ϕ(𝑠𝑠𝑖𝑖,𝑡𝑡𝑖𝑖) is an adjustment for the spatial unit s and time step t. 
For the lognormal burned area model a univariate horseshoe prior was used.  

c. Accounting for nonlinear forcing 
The design matrix was created to include the spatially nonlinear effects of 

meteorological variables and population density. To account for the nonlinearity and to 
allow the coefficients for each basis vector to vary spatially we used B-splines (Wood, 
2017). The univariate B-splines for the meteorological drivers and population density 
each had five degrees of freedom, generating 30 basis vectors. Interaction effects were 
added between each basis vector and the ecoregions to account for the spatial variability 
in the nonlinear effects (Brezger and Lang, 2006; Kneib et al., 2009). The interactions 
between ecoregions is captured through the hierarchical nesting of the 3 ecoregions 
levels; such that coefficients in level 3 may be related to coefficients in the level 2 
ecoregion that contains the level 3 ecoregion and so forth up to level 1 which contains 
the level 2 ecoregion and a global effect. The interactions effects for each of the 30 basis 
vectors for each ecoregion level were included to allow information sharing across 
ecoregion level and ecoregions of similar of ecology. An adjustment for the global 
intercept for each ecoregion level was included to account for any spatial variability that 
is not related to population density or climate. This leads to a matrix of 3,472 values, that 
includes many zero values, that will increase the efficiency of computing μ and π. The 
random effects in space and time were created “using a temporally autoregressive, 
spatially intrinsically autoregressive formulation (Besag and Kooperberg, 1995; Banerjee 
et al., 2014)” (Joseph et al., 2019).  

d. Posterior predictive inference for finite sample maxima 
Joseph et al. (2019) compared empirical maxima to the predicted distribution of 

maxima to ensure that models capture tail behavior. They also performed predictive 
checks for the proportion of zero counts and totals for count and burned area models. 
Posterior predictive inference for finite sample maxima obtains a “distribution over 
maxima by marginalizing over unknowns including the number of events, size of each 
event and the parameters of their distributions (Marani and Ignaccolo, 2015)” (Joseph et 
al., 2019).  
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S2. Individual GCM predictions 
 Out of all the models the IPSL and MRI predicted significantly fewer fires per year 

and burned area per year than the others, with the Had_ES model predicting 
approximately 2.5 times more fires and burned area than the IPSL model. 

  
 
Model   Burned Area Per Year Number of Fires Per Year 

CanESM2 5.66M (min:3.47M; max:13.58M) 571 (min:393; max: 898) 

CNRM_CM5 5.96M (min:3.79M; max:10.39M) 558 (min:419; max: 851) 

CSIRO 6.23M (min:4.21M; max: 10.64M) 605 (min:432; max: 990) 

Had_CC 6.53M (min: 4.39M; max: 9.82M) 661 (min:495; max: 952) 

Had_ES 7.71M (min: 4.58M; max: 13.89M) 738 (min:527; max: 1116) 

IPSL_MR 2.58M (min:1.64M; max: 7.25M) 300 (min:221; max: 749) 

MIROC 5.91M (min:3.92M; max 9.25M) 608 (min:457; max: 849)  

MRI 4.12M (min: 2.93M; max: 13.72M) 414 (min:314; max: 607) 

 

Table S1. Median predicted burned area per year (acres) and number of fires per year 
from 2020-2060 for the Contiguous U.S. along with the minimum and maximum from 
the 2000 iterations run per model. 
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Figure S1. Change in the number of fires per year per ecoregion comparing predicted 
2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS. 
 

 
Figure S2. Percent change in the number of fires per year per ecoregion predicted 2020-
2060 vs. modeled 1990-2019 for each of the eight GCMs.  
 

 
Figure S3. Change in Burned Area per year per ecoregion comparing predicted 2020-
2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
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Figure S4. Percent change in Burned Area per year per ecoregion comparing predicted 
2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
 

 
Figure S5. Change in 90% Maximum Fire Size per ecoregion comparing the predicted 
2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
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Figure S6. Percent Change in 90% Maximum Fire Size per ecoregion comparing the 
predicted 2020-2060 vs. modeled 1990-2019 values for each of the eight GCMS.  
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