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Key Points: 14 

 C40 cities vary greatly in their type, extent, and distribution of natural space, including 15 

both green and blue spaces.  16 

 Roughly 80% of C40 cities meet at least one Urban Nature Declaration target, while 17 

almost half meet both goals. 18 

 We converted Urban Nature Declaration targets into the Normalized Difference 19 

Vegetation Index scale for future health impact assessments.  20 

Abstract: 21 

Access to urban natural space, including blue and greenspace, is associated with improved 22 

health. In 2021, the C40 Cities Climate Leadership Group set 2030 Urban Nature Declaration 23 

(UND) targets: “Quality Total Cover” (30% green area within each city) and “Equitable Spatial 24 

Distribution” (70% of the population living close to natural space). We evaluate progress 25 

towards these targets in the 96 C40 cities using globally available, high-resolution datasets for 26 

landcover and normalized difference vegetation index (NDVI). We use the European Space 27 

Agency (ESA)’s WorldCover dataset to define greenspace with discrete landcover categories and 28 

ESA’s Sentinel-2A to calculate NDVI, adding the ‘open water’ landcover category to 29 

characterize total natural space. We compare 2020 levels of urban green and natural space to the 30 

two UND targets and predict the city-specific NDVI level consistent with the UND targets using 31 

linear regressions. The 96-city mean NDVI was 0.538 (range: 0.148, 0.739). Most (80%) cities 32 

meet the Quality Total Cover target, and nearly half (47%) meet the Equitable Spatial 33 

Distribution target. Landcover-measured greenspace and total natural space were strong (mean 34 

R
2
 = 0.826) and moderate (mean R

2
=0.597) predictors of NDVI and our NDVI-based natural 35 

space proximity measure, respectively. The 96-city mean predicted NDVI value of meeting the 36 

UND targets was 0.478 (range: 0.352-0.565) for Quality Total Cover and 0.660 (range: 0.498-37 

0.767) for Equitable Spatial Distribution. Our translation of the area- and access-based metrics 38 
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common in urban natural space targets into the NDVI metric used in epidemiology allows for 39 

quantifying the health benefits of achieving such targets. 40 

 41 

Plain Language Summary: 42 

 43 

Studies have shown that people living near greenspace (e.g., parks, trees) and blue space (e.g., 44 

coastline, rivers) tend to have better physical and mental health. This paper looks at the extent of 45 

blue and green, or natural spaces, within 96 cities across the globe. These cities are members of 46 

the C40 Cities Climate Leadership Group, which has set two Urban Nature Declaration (UND) 47 

targets for 2030. One goal is to reach 30% greenspace within each city, and the second is that 48 

70% of the city population has access to nearby green or blue space. We compare the amount of 49 

greenspace and natural space in these 96 cities to the two UND goals. We find that some C40 50 

cities have substantial natural space and others have very little. Nature is highly concentrated in 51 

some cities and dispersed in others. Most C40 cities already have sufficient greenspace to meet 52 

the first UND goal, and less than half have enough natural space near their populations to meet 53 

the second. We also created a method for translating the UND goals to a metric used by many 54 

health studies so that we can later quantify the health benefits of expanding urban nature in cities 55 

globally.  56 

Keywords: 57 

0230 Impacts of climate change: human health 58 

1640 Remote sensing 59 

4307 Methods 60 

6620 Science policy 61 

 62 

Greenspace, blue space, NDVI, landcover, exposure assessment 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 

 75 

 76 

Text (including appendices): 77 



1. Introduction 78 

 79 

Urban greenspace (e.g., parks, tree-lined streets) is associated with health benefits, operating 80 

through pathways that include increased physical activity, social interaction, sunlight and 81 

microorganism exposure, and reduced heat, air pollution, and noise exposure (de Keijzer et al., 82 

2019; Garrett et al., 2020; Gascon et al., 2018; Nieuwenhuijsen et al., 2018; Rojas-Rueda et al., 83 

2019; Schinasi et al., 2019; Twohig-Bennett & Jones, 2018; Yang et al., 2021). Urban blue 84 

space, defined as all visible surface water, may also provide similar health benefits, though the 85 

evidence is less established (Georgiou et al., 2021).  86 

 87 

Several organizations have published guidelines for expanding and enhancing urban nature to 88 

reduce climate risk and vulnerability while improving overall health and well-being. The World 89 

Health Organization (WHO) recommends a minimum of 0.5 hectares (5,000 square meters) of 90 

public greenspace within 300m of a person’s home (Urban Green Spaces: A Brief for Action, 91 

2017). With 31 city signatories, C40 cities, an international network of mayors committed to 92 

reducing greenhouse gas emissions, established an Urban Nature Declaration (UND) that 93 

included the following two 2030 targets: 1) Quality Total Cover: “30-40% of total built-up city 94 

surface area will consist of green spaces… or permeable spaces”, and 2) Equitable Spatial 95 

Distribution: “70% of city population has access to green or blue public spaces within a 15-96 

minute walk or bike ride” (C40 cities, 2021). Some cities have also made individual 97 

commitments to expanding urban nature. Within the C40 network, for example, Philadelphia, 98 

USA, has set a goal of achieving 30% tree canopy cover by 2025 (Kondo et al., 2020); London, 99 

England, has pledged to become the first “national park city” with half of its area designated as 100 

greenspace (London Environment Strategy, 2018); and Medellín, Colombia launched the Green 101 

Corridors project from 2016-2019, which planted trees along 20 kilometers of roads and 102 

waterways (C40 Cities Climate Leadership Group, Nordic Sustainability, 2019). 103 

 104 

Urban goals for expanding nature often have multiple objectives, including mitigating 105 

greenhouse gases, enhancing urban resilience to climate-sensitive hazards, and promoting 106 

healthier communities. Tracking progress towards these goals, and in particular understanding 107 

the health benefits from achieving them, could provide critical information to mayors, urban 108 

networks such as C40, civil society, and the public more broadly. Quantifying the health benefits 109 

of urban nature goals is critical because such gains are more immediate than those from reducing 110 

carbon emissions, from increased active transport for example, and more certain than those of 111 

resilience to extreme weather events, like flooding or heat waves. While such an assessment 112 

could help to evaluate societal improvements and make evidence-based changes as needed, there 113 

is a disconnect between urban nature policies and the health literature. Most epidemiological 114 

studies of greenspace and health outcomes use the normalized difference vegetation index 115 

(NDVI) (S. Huang et al., 2021). For this reason, exposure-response functions linking greenspace 116 

to nature are generally measured using increments of NDVI (Rojas-Rueda et al., 2019; Yuan et 117 

al., 2021). Only two studies to date have estimated health benefits of expanding green space in 118 

many cities globally; both used NDVI increments as metrics for characterizing green space 119 

(Barboza et al., 2021; Brochu et al., 2022) and one also used percent green area (Barboza et al., 120 

2021). 121 

 122 



NDVI is a satellite-derived measure that uses visible and near-infrared light to quantify 123 

vegetation density. It ranges from -1 to 1, with higher positive values indicating healthier, denser 124 

vegetation, values near 0 suggesting barren land, and negative values marking water, snow, and 125 

ice (Measuring Vegetation (NDVI & EVI), 2000). The advantages of NDVI are that it can 126 

differentiate not only vegetation from built surfaces but also the health and density of vegetation. 127 

Additionally, NDVI has full global coverage with fine spatial (10m) and temporal (10 days) 128 

resolution. NDVI also captures smaller-scale vegetation, such as tree-lined streets and small 129 

parks, which is important in characterizing the amount of greenspace people are exposed to in 130 

cities. Key limitations of the NDVI metric are that it does not capture the type, accessibility, or 131 

usability of greenspace, which are often considered in urban greenspace targets in practice. 132 

Furthermore, because NDVI is not an intuitive metric, decision makers generally rely on other 133 

measures of nature, making it challenging to quantify the health gains of urban nature policies. 134 

 135 

Studies examining the health benefits of blue space have employed a wide range of metrics. For 136 

example, in a systematic review of 50 studies on the relationship between blue space and health, 137 

17 different measures of blue space were used (Georgiou et al., 2021). Methods for assessing 138 

exposure to blue space were divided into four broad categories: measures of the amount of blue 139 

space within a given area, distance to blue space, contact with blue space, and visibility of blue 140 

space (Georgiou et al., 2021). The most common categories used in the epidemiological 141 

literature were measures of the amount of blue space within a geographical area and the distance 142 

to blue space. However, there is substantial variation within these categories. For example, 143 

studies considering the amount of blue space within a given area used buffers ranging in size 144 

from 100m to 1.5km and, in some cases, relied on administrative zones such as zip codes 145 

(Georgiou et al., 2021). Due to the inconsistent measurement of blue space, there is not a 146 

commonly accepted exposure-response function linking surface water and health outcomes. 147 

 148 

This paper has three main objectives: (1) characterize the extent and distribution of urban green 149 

and urban green and blue combined, or natural space, in C40 cities using satellite-based metrics; 150 

(2) evaluate progress towards C40’s UND targets; and (3) convert the UND targets into a city-151 

specific metric that can be used with NDVI-based epidemiological exposure-response functions 152 

to estimate the health benefits of achieving the targets. For the third objective, we follow a 153 

similar approach to health impact assessments conducted for Philadelphia, USA (Kondo et al., 154 

2020) and European cities (Barboza et al., 2021) to convert the Quality Total Cover target into 155 

NDVI and expand on this approach to address the Equitable Spatial Distribution target. We 156 

conducted our analysis for all 96 cities in the C40 network, accounting for 291 million residents, 157 

1,747 megatons of greenhouse gas emissions, and a gross domestic product of nearly $11 billion 158 

(Hoornweg et al., 2020). These cities represent 48 countries across six continents. The methods 159 

we use to convert these goals to the NDVI scale could also be applied to evaluate progress 160 

towards additional policy targets aimed at expanding the amount of and access to urban nature. 161 

 162 

2. Methods 163 

 164 
This study took a multi-step approach to characterize and evaluate urban natural space against 165 

the UND targets and convert the UND targets into a city-specific NDVI metric across all 96 166 

cities of the C40 network (Fig. 1). We leveraged the full geographical coverage and high spatial 167 

resolution of satellite-derived landcover and NDVI to quantify greenspace and total natural 168 
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space, inclusive of green and blue space, in each city for 2020 (Fig. 1, step 1). We then scaled up 169 

these datasets to the resolution of our population dataset (100m) and ran city-specific regression 170 

models to understand the relationship between the landcover- and NDVI-based metrics (Fig 1, 171 

step 2). Finally, we used the landcover datasets to evaluate each city’s current extent and 172 

distribution of natural space against both UND targets and estimate the equivalent level of 173 

natural space needed to meet each target on the NDVI scale (Fig. 1, step 3). For Quality Total 174 

Cover we used greenspace only (Fig. 1a) and for Equitable Spatial Distribution we used total 175 

natural space (Fig. 1b), aligned with the quantities used in the targets. The data inputs, in map 176 

format, are shown in the Supporting Information for an example city, Washington, DC (Fig. S1). 177 

 178 



Figure 1. Flowchart of methods used to evaluate whether cities meet the two Urban Nature 179 

Declaration targets and to convert the targets to the NDVI scale. The colors indicate the 180 

analytical steps and spatial resolution of the data.  181 

 182 

2.1. Characterizing urban natural space. To characterize natural space for each city, we used 183 

two global, 10m x 10m gridded datasets for the year 2020: (1) the European Space Agency’s 184 

(ESA) Copernicus Sentinel-2A satellite images (ESA, 2020) to calculate NDVI, and (2) land 185 

classifications from the ESA’s WorldCover data set (Zanaga et al., 2021).  186 

 187 

2.1.1 Defining greenspace. To estimate greenspace extent from ESA Sentinel-2A, we first 188 

calculated NDVI using the near-infrared (‘B8’) and visible light (‘B4’) bands (Equation 1; Rouse 189 

et al., 1974).  190 

 191 

                                   𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑉𝐼𝑆)/(𝑁𝐼𝑅 + 𝑉𝐼𝑆),    (1) 192 

 193 

where NIR is near-infrared, and VIS is visible light. Following previous studies (Corbane et al., 194 

2020; C. Huang et al., 2021; Lindsay et al., 2022; Pericak et al., 2018; Sonia et al., 2022; You et 195 

al., 2021), we then selected the day with the greenest value (highest NDVI) from all the 2020 196 

images for each pixel to eliminate cloudy pixels and capture the greenest season across cities in 197 

the Northern and Southern hemispheres. This choice captures peak greenness in each city, which 198 

may overestimate the average conditions. However, any bias should be non-differential across 199 

cities and consistent in both our estimates of actual and target NDVI levels. 200 

 201 

We separately created a binary definition of greenspace, mirroring the Quality Total Cover target 202 

language. We included seven of the 11 land cover classifications in the 2020 ESA WorldCover 203 

dataset: trees, shrubland, grassland, cropland, herbaceous wetland, mangroves, and moss and 204 

lichen. We excluded the other four categories which were not indicative of vegetation: built-up, 205 

barren/sparse vegetation, snow and ice, and open water. WorldCover is an independently-206 

validated global dataset with an overall accuracy of 74.4% (Zanaga et al., 2021).  207 

 208 

2.1.2. Defining natural space. We defined natural space as any green or blue space. While other 209 

natural landscapes exist, such as rock and snow, we consider only green and blue spaces, as these 210 

are the types of nature included in the UND targets and whose health benefits are best supported 211 

by the literature. In both our NDVI- and landcover-based definitions of natural space, we used 212 

the ESA WorldCover classification of “open water” to identify surface water at the 10m pixel 213 

level. We combined the landcover water classification with NDVI by assigning water pixels a 214 

value of 1, equating blue space with the highest possible NDVI value. In the rare case (N=204, 215 

<0.0001%) where pixels were not identified as water by the landcover dataset but had a negative 216 

NDVI value indicative of clouds or water, they were also considered blue spaces. For the 217 

landcover-based definition of natural space, we included any open water pixel in the binary 218 

classification.  219 

 220 

2.2. Evaluating performance against UND targets. We used the landcover-based greenspace 221 

and natural space datasets to compare 2020 levels of urban natural space to the Quality Total 222 

Cover and Equitable Spatial Distribution targets, as these definitions align best with the UND 223 

target definitions of nature. 224 



 225 

2.2.1. Evaluating progress towards Quality Total Cover using greenspace. We used our 226 

landcover definition of greenspace to evaluate urban performance against the Quality Total 227 

Cover target, which does not include blue space. While the language of the UND target allows 228 

for “permeable surfaces” as well as greenspace, we have only included greenspace in our 229 

definition. We aggregated this binary dataset, where each native 10m pixel was classified as 230 

greenspace or not, to the 100m resolution by taking the area-weighted mean, with each new 231 

100m pixel representing the percentage of 10m pixels that were classified as green area (Fig. 232 

S1a). Though the population distribution is not relevant for this target, we first aggregated to the 233 

100m resolution for efficiency and to harmonize the data processing steps with those of the 234 

Equitable Spatial Distribution target which does incorporate population data. We then took the 235 

mean of all 100m pixels within each urban area to evaluate the city-wide proportion of green 236 

area.  237 

 238 

2.2.2. Evaluating progress towards Equitable Spatial Distribution using natural space. We 239 

used the natural space dataset to evaluate performance against the Equitable Spatial Distribution 240 

target, which considers the proximity of the population to both green and blue space. We first 241 

identified areas with sizable, contiguous natural space extents for each city to exclude most 242 

private lawns and gardens since this target calls for population proximity to public green or blue 243 

space. Without another source to derive the minimum natural space area that can reasonably be 244 

considered public, we used a threshold value of 0.5 hectares (5000 m
2
), used in the WHO 245 

definition of universal access to greenspace (Urban Green Spaces: A Brief for Action, 2017). We 246 

then created 1000m buffers around each 10m native pixel and flagged whether there was at least 247 

0.5 hectares of natural space in that zone to capture population access within a fifteen-minute 248 

walk or bike, as specified by the Equitable Spatial Distribution target. We chose this distance 249 

based on The Federal Highway Administration guideline that the average person can walk 1,080 250 

meters in fifteen minutes (Turner et al., 2006). While the average cyclist can travel farther, we 251 

chose to focus solely on walking for a more inclusive definition of access, as cities vary greatly 252 

in cycling infrastructure, bike ownership, and bike comfortability. Next, we aggregated this 253 

dataset to the 100m resolution, using the area-weighted mean. The result was a 100m resolution 254 

dataset where each grid cell represents the percentage of an area within that pixel with access to 255 

0.5 hectares or more of natural space within a 1000m buffer or fifteen-minute walk (Fig. S1c). In 256 

the final step, because this target is dependent on the spatial distribution of the population, we 257 

multiplied the green and blue landcover data by the population living in the corresponding grid 258 

cell to determine the proportion of the population across the city with proximity to natural space.  259 

 260 

2.3 Converting UND targets to the NDVI scale. We next converted the natural space targets 261 

into a city-specific NDVI metric that can be used with NDVI-based epidemiological exposure-262 

response functions to estimate the health benefits of achieving the UND targets.  263 

 264 

2.3.1. Converting Quality Total Cover target to NDVI. For the Quality Total Cover target, 265 

which focuses on greenspace, we fit ordinary least squares (OLS) models, regressing the 266 

proportion of green area from 2.2.1. on the corresponding mean NDVI value for each 100m grid 267 

cell, following methods used in a health impact assessment of Philadelphia’s tree canopy goals 268 

(Kondo et al., 2020). We fit separate regression models for each of the 96 cities to account for 269 

differences in local climate and greenness. Finally, we used these models to predict the NDVI 270 



value associated with 30 and 40% green area in each city, corresponding to the minimum target 271 

range for the Quality Total Cover target. We assessed model fit using the coefficient of 272 

determination (R
2
) and the root mean square error (rmse). 273 

 274 

2.3.3. Converting Equitable Spatial Distribution target to the NDVI scale. To convert the 275 

Equitable Spatial Distribution target to NDVI terms, we first set a threshold NDVI value above 276 

which a 10m pixel would be considered “green.” Using the regression models from 2.3.1., we 277 

predicted the NDVI value associated with 75%, 90%, and 100% green area, which we then used 278 

as thresholds to determine natural space pixels in our natural space NDVI dataset. Because water 279 

pixels were assigned a value of 1 in this dataset, water pixels were always included as natural 280 

space, regardless of the chosen threshold. Next, we paralleled the process used for the landcover 281 

dataset, flagging 10m pixels with natural space areas of 0.5 hectares or more within a 1000m 282 

buffer. We then aggregated this binary dataset to the 100m resolution using an area-weighted 283 

mean. Finally, we regressed the landcover-derived proportion of area with access to at least 0.5 284 

hectares of contiguous natural space within a 1000m buffer on the NDVI-based equivalent 285 

dataset (Fig. S1d). We assessed model fit using the coefficient of determination (R
2
) and the root 286 

mean square error (rmse). 287 

 288 

2.4. Characterizing urban population and spatial extent. As the Equitable Spatial Distribution 289 

target relates the proximity of natural space to the urban population, we assessed the co-location 290 

of natural space and population for this target. We used 100m gridded world population 291 

estimates for 2020 from WorldPop (Bondarenk et al., 2020). We included only the population 292 

aged 20 years and older, as meta-analyses linking greenspace and all-cause mortality have been 293 

limited to adult populations. 294 

 295 

We defined the spatial bounds of each city using the Global Human Settlement Urban Centre 296 

database (GHS-UCDB) (European Commission. Joint Research Centre., 2019). The GHS-UCDB 297 

uses population data and built-up surface area to define city bounds corresponding to where 298 

concentrated populations live rather than administrative bounds. We chose this urban extent 299 

definition because it provides a standardized boundary methodology across our diverse city 300 

population. We conducted a sensitivity analysis using self-defined urban bounds from C40 cities 301 

(Fig. S2) to evaluate how the definition of the urban area impacts estimated natural space extents 302 

and urban nature targets (Supplemental datasets A & B).  303 

 304 

3. Results 305 

 306 

3.1. Extent of natural space across C40 cities. Cities vary greatly in their extent and 307 

distribution of greenspace (Fig. 2, Fig. S3-S5). The overall city mean NDVI across C40 cities 308 

was 0.538 and ranged from 0.148 in Lima, Peru, to 0.739 in Dhaka, Bangladesh (Supplemental 309 

dataset A). Even for cities with similar median NDVI values, their distribution of greenspace can 310 

differ dramatically. For example, Hanoi, Vietnam; Auckland, New Zealand; and Jakarta, 311 

Indonesia, have a median NDVI of approximately 0.62, while their distribution of grid cell 312 

values is very different (Fig. 2c). European and North American cities tended to have higher 313 

median NDVI values, and Latin American cities tended to have lower ones. However, the intra-314 

regional variability was more substantial than regional differences. The extent of natural space 315 

increased in most cities when considering the natural space NDVI dataset, which includes blue 316 



space (Fig. S4). The overall city mean natural space NDVI was 0.569 (range: 0.181-0.816). 317 

Adding blue space changed city-mean NDVI the most in Venice, Italy, where the inclusion of 318 

water resulted in a natural space NDVI that was 87% greater than its greenspace-only NDVI 319 

value. Dakar, Senegal, and Dubai, United Arab Emirates, also gained substantial natural space 320 

with the inclusion of water, with natural space NDVI values increasing by over 40%. Despite 321 

this overall trend, there were six C40 cities whose NDVI value increased by less than 0.1% when 322 

blue space was considered: Addis Ababa, Ethiopia; Quito, Ecuador; Amman, Jordan; Tshwane, 323 

South Africa; Guadalajara, Mexico; and Nairobi, Kenya (Supplemental dataset A).  324 



Figure 2. Distribution of maximum 2020 normalized difference vegetation index (NDVI) values 325 

for each 100m pixel in C40 cities within each world region. Quartiles of NDVI are indicated by 326 

dashed vertical lines. These distributions do not include blue space. 327 



The city mean proportion of green urban area in the landcover-based dataset was 0.427. 328 

Compared with using NDVI, measuring greenspace using the landcover dataset resulted in more 329 

extreme values, ranging from a city-mean of 0.031 in Lima, Peru, to 0.806 in Dhaka, 330 

Bangladesh. Despite averaging the 10m native pixels to the 100m resolution in this dataset, the 331 

distribution of pixel values remained highly clustered near 0 and 1 (Fig. S3). The relative order 332 

of greenness between cities remained fairly consistent between the greenspace and NDVI metrics 333 

(Fig. S3 & Fig. 2). Adding blue space to this measure increased the mean proportion of green or 334 

blue urban areas to 0.464 (range: 0.068-0.816). Including water in the landcover-based dataset 335 

had a more dramatic effect than on NDVI. The addition of blue space increased the natural space 336 

value by almost 300% in Dubai, United Arab Emirates, nearly tripled it in Venice, Italy, and 337 

more than doubled in Lima, Peru. The same cities that were largely unchanged by adding water 338 

to the NDVI metric saw a similarly modest increase in the landcover metric. Of this group, no 339 

city experienced a greater than 0.1% increase, except for Guadalajara, Mexico, whose value rose 340 

by 0.14%.  341 

 342 

Figure 3. Green and natural space across C40 cities by region in 2020, quantified using metrics 343 

comparable to the Quality Total Cover (panel a) and Equitable Spatial Distribution (panel b) 344 

Urban Natural Declaration targets. The scatter points represent cities and colors correspond to 345 

the region colors in Figure 2. The vertical lines in panel a mark the Quality Total Cover 346 

minimum goal range (0.30-0.40 of the urban area is greenspace) while the vertical line in panel 347 

b represents the Equitable Spatial Distribution target (0.70 of population has access to blue or 348 

greenspace within a 15-minute walk).  349 

  350 

3.2. Performance on UND targets. Many C40 cities already met the standard of one or both 351 

UND targets (Fig. 3). Seventy-seven (80%) of cities met the lower end of the Quality Total 352 

Cover target, with at least 30% of their urban area designated as greenspace. At least 60% of 353 

cities in all regions met the 30% Quality Total Cover target, including all 13 cities in the East, 354 



Southeast Asia, and Oceania region (Fig. 3). Nearly 90% of North American and European cities 355 

met the higher end of this target range, with 40% or more greenspace. Despite these regional 356 

trends, there was substantial intra-regional variation in performance on the Quality Total Cover 357 

target. 358 

 359 

Fewer cities met the Equitable Spatial Distribution target; 70% of the population has access to 360 

green or blue space within a 15-minute walk in 45 C40 cities. There was considerable inter- and 361 

intra-regional variation on this target. Over 75% of North American C40 cities met the Equitable 362 

Spatial Distribution target, compared to less than 10% of C40 cities in the Latin American and 363 

African regions. Less than 20% of the population has access to natural space within a 15-minute 364 

walk in Lima, Peru; Karachi, Pakistan; and Dubai, United Arab Emirates. In contrast, there are 365 

18 C40 cities, representing four of the seven regions, with over 90% of the population having 366 

nearby natural space. All cities that met the Equitable Spatial Distribution target also met the 367 

Quality Total Cover target, resulting in 45 cities that met both UND targets. 368 

 369 

3.3. Converting UND targets to the NDVI scale. After comparing each city’s existing levels of 370 

natural space to the UND targets using landcover datasets, we translated these targets into the 371 

NDVI scale so that the health benefits of meeting the UND targets may be quantified using 372 

NDVI-based exposure-response functions. For the Quality Total Cover target, we modeled the 373 

relationship between the proportion of green area and NDVI in each 100m pixel by running 374 

separate linear regression models for each city. These models generally fit well (Fig. 4a and b). 375 

On average, the models explained 83% of the variance in NDVI, ranging from 57 to 94% for 376 

individual cities. The root mean square error (rmse) for these models had a mean of 0.077 (range: 377 

0.051, 0.101) across C40 cities. For an average city and pixel, predicted NDVI values differed 378 

from the actual NDVI values by 0.077. In general, the Quality Total Cover regressions had better 379 

fit in cities with more greenspace (Fig. S6-S12). We used our models to predict the NDVI value 380 

equivalent to achieving the Quality Total Cover target for each city. The mean NDVI 381 

representing 30% green area was 0.478 (range: 0.352, 0.565) across all cities (Fig. 4c). At 40% 382 

green area, the mean predicted NDVI was 0.528 (range: 0.428, 0.612). In our sensitivity analysis, 383 

using the C40 urban boundaries had little effect on our estimates of the NDVI-equivalent level of 384 

the Quality Total Cover target (Fig. S13a). 385 



 386 

Figure 4. Fit statistics and predicted NDVI values for the regression models used to convert the 387 

Quality Total Cover target to the NDVI scale. Each dot represents a city. Panels a and b show 388 

the model adjusted R
2
 and root mean square error (rmse) by region, respectively. Panel c shows 389 

the predicted NDVI value where the proportion of green area is 0.3, aligned with the lower 390 

minimum threshold proportion of greenspace in the Quality Total Cover target.  391 

 392 

We also used the regression models to predict threshold NDVI values at or above which a pixel 393 

would be classified as “green” to quantify the Equitable Spatial Distribution target in NDVI 394 

terms. We tested three thresholds: the predicted NDVI value where the percent of green area was 395 

75%, 90%, and 100%. We selected the NDVI prediction at 75% green area to classify pixels as 396 

greenspace, because the fit statistics for the Equitable Spatial Distribution regressions performed 397 

best with this threshold. The fit statistics and model predictions using 90% and 100% proportion 398 

green area can be found in the Supplemental Information (Figs. S14 and S15). 399 



 400 

Figure 5. Fit statistics and predicted NDVI for the regression models used to convert the 401 

Equitable Spatial Distribution target to the NDVI scale. Each dot represents a city. Panels a and 402 

b show the model fit statistics by region. Panel a shows the adjusted R
2
 value, while Panel b 403 

shows the root mean square error (rmse). Panel c shows the predicted natural space NDVI value 404 

where 0.70 of the area, and thus population, has access to sufficient nearby natural space, 405 

aligned with the Equitable Spatial Distribution target. Models with poor fit (R
2 
less than 0.50) 406 

are shown with smaller dots. 407 

 408 

We used linear regression models to translate our landcover definition of the Equitable Spatial 409 

Distribution target to the NDVI scale. These models had a mean R
2 
across cities of 0.597 (range: 410 

0.213, 0.820) and a mean rmse of 0.221 (range: 0.091, 0.340) (Fig. 5a and b). The Equitable 411 

Spatial Distribution regressions tended to fit best when the proportion of the population with 412 

nearby natural space was less than 90% (Fig. S16-S22). We used these regressions to predict the 413 

natural space NDVI value equivalent to achieving the Equitable Spatial Distribution target of 414 

70% population access to natural space with a 1000m buffer or 15-minute walk. The average 415 

natural space NDVI associated with meeting this UND target was 0.660, ranging from 0.498 to 416 



0.767 across C40 cities (Fig. 5c). In our sensitivity analysis using C40 urban boundary 417 

definitions, we found that the predicted natural space NDVI value equivalent to meeting the 418 

Equitable Spatial Distribution target was generally higher in whichever urban boundary 419 

definition was larger (Fig. S13b). 420 

 421 

4. Discussion 422 

 423 

In this assessment of urban greenspace and natural space across 96 global cities, we found that 424 

C40 cities vary greatly in their amount, type, and distribution of natural spaces. While much of 425 

the literature on urban nature has focused solely on greenspace, our results show that blue space 426 

can greatly contribute to urban natural space in many cities. For some cities, including water in 427 

the definition of natural space made a substantial impact, in some cases doubling the estimated 428 

amount of natural space within city bounds. We compared existing levels of urban natural space 429 

to the C40 Urban Nature Declaration targets and found that most C40 cities already meet one or 430 

both targets. Of the 96 C40 cities, 77 (80%) have at least 30% green area (Quality Total Cover 431 

target), while at least 70% of the population has access to green or blue space within a 15-minute 432 

walk in 45 (47%) cities (Equitable Spatial Distribution target). Finally, we converted the C40 433 

policy targets to the NDVI scale, making our natural space exposure assessment interoperable 434 

with exposure-response functions found in the health literature. The city-specific equivalent 435 

NDVI value to meet the Quality Total Cover target ranged from 0.352 to 0.565, and the natural 436 

space NDVI value for the Equitable Spatial Distribution target ranged from 0.498 to 0.767. 437 

These translations can be used to quantify the health gains from expanding urban nature.  438 

 439 

Our work builds on a body of research to both quantify urban exposure to greenspace across 440 

global cities and estimate its health implications. In terms of exposure assessment, our city-wide 441 

estimates of NDVI were consistently higher than the 1km population-weighted peak (greenest 442 

day) NDVI values reported for 2020 in a recent study of 1,000 global cities (Stowell et al., 443 

2023), with a mean difference of 0.19 and a standard deviation of 0.05). However, our estimates 444 

had a strong correlation of 0.91 with the Stowell et al. measure, despite the difference in 445 

resolution and population weights. This difference is in part due to our decision to use the 446 

greenest pixel from 2020 to measure greenspace, as our study population of cities have very 447 

different seasons. While this choice likely exaggerates the greenness of a city, it should be non-448 

differential across cities. Furthermore, both our estimates of the actual and target NDVI will be 449 

biased in the same direction and magnitude by this decision, which should limit the systematic 450 

error in future calculations of the gap between the current and ideal natural space levels needed 451 

for health impact assessments. We assessed natural space at a finer scale (10m) than most health 452 

and exposure studies, which commonly use satellite images from the Landsat (30m) or Modis 453 

(100m) satellites (S. Huang et al., 2021). This is important for capturing urban greenspace, which 454 

often consists of smaller spaces. 455 

 456 

Health impacts assessments to date have focused on American and European cities and 457 

considered only greenspace. For example, a study of populous US cities found that between 458 

34,000 and 38,000 all-cause deaths could have been avoided in 2000, 2010, and 2019 with an 459 

increase in NDVI of 0.1 (Brochu et al., 2022). In three additional health impact assessments, 460 

urban nature goals were used to provide more context and real-world application. A study of 461 

European cities reported that 42,968 (95% CI 32,296–64,177) deaths could be avoided annually 462 



if the WHO universal access to greenspace target were met (Barboza et al., 2021), while an 463 

analysis of Philadelphia, USA found that 403 (95% CI 298–618) deaths could be prevented if the 464 

city were to meet its 2025 goal of 30% tree canopy cover (Kondo et al., 2020), and an 465 

investigation of Phoenix and Denver, USA found that 200 (95% CI 100–306) and 368 (95% CI 466 

181, 558) deaths could be averted if Denver and Phoenix were to meet their urban tree canopy 467 

goals of 20 and 25% respectively (Dean et al., 2024). In this work we develop a framework for 468 

converting area- and access- based measures into NDVI terms and propose one method for 469 

incorporating blue space into urban nature definitions. The methodology we follow here can be 470 

used to convert policy goals beyond the UND targets into NDVI equivalents, so that the health 471 

benefits of such actions can be estimated.  472 

 473 

While a translation between the C40 targets and NDVI is needed to assess the health benefits of 474 

these goals using NDVI-based exposure-response functions, the NDVI metric is not without its 475 

limitations. First, NDVI relies solely on the greenness of an area, meaning it has no insight into 476 

the accessibility or quality of that space, which is relevant for health benefits. Public parks and 477 

private golf courses are not differentiated by the satellite. That said, some evidence suggests that 478 

even viewing green and blue spaces can have positive health benefits, such as reducing stress and 479 

anxiety and increasing productivity (Kaplan, 1993; Stephen Kaplan & Rachel Kaplan, 1989). 480 

Second, there may be forms of nature that, though neither blue nor green, present many of the 481 

same benefits as greenspace. For example, desert climates might feature sandy or rocky terrain 482 

that can be used for exercise, provide a place to gather with friends and family, and offer natural 483 

beauty. A 2022 review of natural spaces outside the “green” and “blue” paradigm looked at 484 

landscapes dominated by snow and ice, deserts, and caves and found some evidence that there 485 

are health benefits from these environments, which are not well-represented by NDVI (Li et al., 486 

2023). While NDVI is imperfect, it represents the best available science for quantifying 487 

greenspace globally. 488 

 489 

Beyond NDVI as a metric, there are limitations in our construction of ideal levels of urban 490 

natural space. While using the targets set by the C40 cities themselves is valuable for political 491 

buy-in, there are some concerns about their appropriateness for such a geographically diverse 492 

group of cities. For some, achieving 30-40% green urban area may not be the most sustainable or 493 

feasible standard. For cities with desert climates, such as Phoenix or Dubai, maintaining a 30% 494 

green area would require high water usage that could damage the environment and health or be 495 

unattainable. Additionally, policies to increase greenspace often do so where land is cheapest, 496 

leading to “green gentrification” or increased property values where new parks and greenways 497 

are added (Wolch et al., 2014). Further, the Equitable Spatial Distribution target does not capture 498 

who has access to urban nature; the 70% that have access may or may not fairly represent the 499 

larger population. We chose a 1,000m buffer to approximate a 15-minute walk for this target. 500 

This may ignore some realities on the ground that impede or facilitate mobility. For example, the 501 

absence or existence of sidewalks, streetlights, and other infrastructure that affect walkability. 502 

Finally, existing methods for combining green and blue space are limited (Mizen et al., 2019). In 503 

this paper, we have developed a natural space NDVI metric to allow for the inclusion of water by 504 

assigning the highest value of NDVI, 1. While evidence suggests that exposure to blue space 505 

provides similar benefits to that of greenspace, the relative strength of this relationship is 506 

unknown.  507 

 508 



Our work provides a pathway to assess the health benefits of urban nature policies, though 509 

further work is needed in a few key areas. Further research to quantify the effect of urban blue 510 

space on health outcomes and innovation in jointly capturing the health impact of access to urban 511 

natural space is needed to provide more comprehensive and realistic information to urban 512 

planners and policymakers. Furthermore, additional methods for converting access-based 513 

measures into NDVI terms would help quantify the associated health benefits of such policy 514 

aims. While we were able to achieve good predictions from most of our Equitable Spatial 515 

Distribution models, some had R
2 
values under 0.5, which could affect the accuracy of our NDVI 516 

values for that target. We focus here on C40 cities, however this work could be expanded to 517 

global urban areas more broadly. These advances could help ensure policymakers have the tools 518 

and information needed to advocate for future natural space goals. 519 

 520 

Our approach to translate C40’s Urban Nature Declaration targets into NDVI terms makes it 521 

possible to estimate the health and subsequent economic benefits that could be achieved by 522 

meeting these targets. The use of open-source, globally available data, allows cities around the 523 

world to track their progress and provides more context for the popular but not-well understood 524 

NDVI metric. The specific conversions created in this work are made for the 96 C40 member 525 

cities, representing diverse cultural, political, and climatic contexts. Cities that were not included 526 

in this analysis but share similar climates and population sizes as cities in our study population, 527 

could use these estimates as a benchmark to which they could compare their own levels of urban 528 

natural space. The results of this study could provide useful information for municipal decision-529 

makers and provide leverage to increase political will for expanding urban natural space. 530 

 531 

 532 

 533 

 534 

 535 

 536 

Acknowledgments and Data Availability Statement: 537 

This work is funded by the Wellcome Trust (grant no: 216075/Z/19/Z) and The George 538 

Washington University Milken Institute of Public Health. We appreciate helpful discussions with 539 

the C40 Cities Air Quality and Co-benefits teams. 540 

Data from the European Space Agency’s (ESA) WorldCover and Sentinel-2A datasets (Chander 541 

et al., 2009; Zanaga et al., 2021) were used to quantify urban natural space. All data are publicly 542 

available and accessed through Google Earth Engine (Google Earth Engine, n.d.). Data analysis 543 

and figure creation were done in Spyder 5.0 (Pierre Raybaut, 2009) and Stata 14.0 (StataCorp, 544 

2015). 545 

 546 

All code used in this analysis is available in a Git repository. 547 

 548 

 549 

 550 

 551 



Bibliography: 552 

 553 

Barboza, E. P., Cirach, M., Khomenko, S., Iungman, T., Mueller, N., Barrera-Gómez, J., Rojas-554 

Rueda, D., Kondo, M., & Nieuwenhuijsen, M. (2021). Green space and mortality in 555 

European cities: A health impact assessment study. The Lancet Planetary Health, 5(10), 556 

e718–e730. https://doi.org/10.1016/S2542-5196(21)00229-1 557 

Bondarenk, M., Kerr, David, Sorichetta, Alessandro, Tatem, Andrew, & WorldPop. (2020). 558 

Estimates of 2020 total number of people per grid square, adjusted to match the 559 

corresponding UNPD 2020 estimates and broken down by gender and age groupings, 560 

produced using Built-Settlement Growth Model (BSGM) outputs [dataset]. University of 561 

Southampton. https://doi.org/10.5258/SOTON/WP00698 562 

Brochu, P., Jimenez, M. P., James, P., Kinney, P. L., & Lane, K. (2022). Benefits of Increasing 563 

Greenness on All-Cause Mortality in the Largest Metropolitan Areas of the United States 564 

Within the Past Two Decades. Frontiers in Public Health, 10, 841936. 565 

https://doi.org/10.3389/fpubh.2022.841936 566 

C40 cities. (2021, July 13). 31 mayors introduce even more trees, parks and green space in cities 567 

to save lives and tackle the climate crisis. https://www.c40.org/news/urban-nature-568 

declaration/ 569 

C40 Cities Climate Leadership Group, Nordic Sustainability. (2019). Cities100: Medellín’s 570 

interconnected green corridors. https://www.c40knowledgehub.org/s/article/Cities100-571 

Medellin-s-interconnected-green-corridors?language=en_US 572 

Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric 573 

calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote 574 

Sensing of Environment, 113(5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007 575 



Corbane, C., Martino, P., Panagiotis, P., Aneta, F. J., Michele, M., Sergio, F., Marcello, S., 576 

Daniele, E., Gustavo, N., & Thomas, K. (2020). The grey-green divide: Multi-temporal 577 

analysis of greenness across 10,000 urban centres derived from the Global Human 578 

Settlement Layer (GHSL). International Journal of Digital Earth, 13(1), 101–118. 579 

https://doi.org/10.1080/17538947.2018.1530311 580 

de Keijzer, C., Tonne, C., Sabia, S., Basagaña, X., Valentín, A., Singh-Manoux, A., Antó, J. M., 581 

Alonso, J., Nieuwenhuijsen, M. J., Sunyer, J., & Dadvand, P. (2019). Green and blue 582 

spaces and physical functioning in older adults: Longitudinal analyses of the Whitehall II 583 

study. Environment International, 122, 346–356. 584 

https://doi.org/10.1016/j.envint.2018.11.046 585 

Dean, D., Garber, M. D., Anderson, G. B., & Rojas-Rueda, D. (2024). Health implications of 586 

urban tree canopy policy scenarios in Denver and Phoenix: A quantitative health impact 587 

assessment. Environmental Research, 241, 117610. 588 

https://doi.org/10.1016/j.envres.2023.117610 589 

European Commission. Joint Research Centre. (2019). Description of the GHS Urban Centre 590 

Database 2015: Public release 2019 : version 1.0. Publications Office. 591 

https://data.europa.eu/doi/10.2760/037310 592 

Garrett, J. K., White, M. P., Elliott, L. R., Wheeler, B. W., & Fleming, L. E. (2020). Urban 593 

nature and physical activity: Investigating associations using self-reported and 594 

accelerometer data and the role of household income. Environmental Research, 190, 595 

109899. https://doi.org/10.1016/j.envres.2020.109899 596 

Gascon, M., Sánchez-Benavides, G., Dadvand, P., Martínez, D., Gramunt, N., Gotsens, X., 597 

Cirach, M., Vert, C., Molinuevo, J. L., Crous-Bou, M., & Nieuwenhuijsen, M. (2018). 598 



Long-term exposure to residential green and blue spaces and anxiety and depression in 599 

adults: A cross-sectional study. Environmental Research, 162, 231–239. 600 

https://doi.org/10.1016/j.envres.2018.01.012 601 

Georgiou, M., Morison, G., Smith, N., Tieges, Z., & Chastin, S. (2021). Mechanisms of Impact 602 

of Blue Spaces on Human Health: A Systematic Literature Review and Meta-Analysis. 603 

International Journal of Environmental Research and Public Health, 18(5), 2486. 604 

https://doi.org/10.3390/ijerph18052486 605 

Google Earth Engine. (n.d.). FAQ. https://earthengine.google.com/faq/ 606 

Hoornweg, D., Sugar, L., & Gomez, C. L. T. (2020). Cities and Greenhouse Gas Emissions: 607 

Moving Forward. Urbanisation, 5(1), 43–62. https://doi.org/10.1177/2455747120923557 608 

Huang, C., Yang, J., Clinton, N., Yu, L., Huang, H., Dronova, I., & Jin, J. (2021). Mapping the 609 

maximum extents of urban green spaces in 1039 cities using dense satellite images. 610 

Environmental Research Letters, 16(6), 064072. https://doi.org/10.1088/1748-611 

9326/ac03dc 612 

Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use 613 

of normalized difference vegetation index (NDVI) in the era of popular remote sensing. 614 

Journal of Forestry Research, 32(1), 1–6. https://doi.org/10.1007/s11676-020-01155-1 615 

Kaplan, R. (1993). The role of nature in the context of the workplace. 616 

http://deepblue.lib.umich.edu/handle/2027.42/30542 617 

Kondo, M. C., Mueller, N., Locke, D. H., Roman, L. A., Rojas-Rueda, D., Schinasi, L. H., 618 

Gascon, M., & Nieuwenhuijsen, M. J. (2020). Health impact assessment of Philadelphia’s 619 

2025 tree canopy cover goals. The Lancet Planetary Health, 4(4), e149–e157. 620 

https://doi.org/10.1016/S2542-5196(20)30058-9 621 



Li, H., Browning, M. H. E. M., Rigolon, A., Larson, L. R., Taff, D., Labib, S. M., Benfield, J., 622 

Yuan, S., McAnirlin, O., Hatami, N., & Kahn, P. H. (2023). Beyond “bluespace” and 623 

“greenspace”: A narrative review of possible health benefits from exposure to other 624 

natural landscapes. Science of The Total Environment, 856, 159292. 625 

https://doi.org/10.1016/j.scitotenv.2022.159292 626 

Lindsay, E., Frauenfelder, R., Rüther, D., Nava, L., Rubensdotter, L., Strout, J., & Nordal, S. 627 

(2022). Multi-Temporal Satellite Image Composites in Google Earth Engine for 628 

Improved Landslide Visibility: A Case Study of a Glacial Landscape. Remote Sensing, 629 

14(10), 2301. https://doi.org/10.3390/rs14102301 630 

London environment strategy. (2018). Greater London Authority. 631 

Measuring Vegetation (NDVI & EVI). (2000, August 30). [Text.Article]. NASA Earth 632 

Observatory. 633 

https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2634 

.php 635 

Mizen, A., Song, J., Fry, R., Akbari, A., Berridge, D., Parker, S. C., Johnson, R., Lovell, R., 636 

Lyons, R. A., Nieuwenhuijsen, M., Stratton, G., Wheeler, B. W., White, J., White, M., & 637 

Rodgers, S. E. (2019). Longitudinal access and exposure to green-blue spaces and 638 

individual-level mental health and well-being: Protocol for a longitudinal, population-639 

wide record-linked natural experiment. BMJ Open, 9(4), e027289. 640 

https://doi.org/10.1136/bmjopen-2018-027289 641 

Nieuwenhuijsen, M., Gascon, M., Martinez, D., Ponjoan, A., Blanch, J., Garcia-Gil, M., Ramos, 642 

R., Foraster, M., Mueller, N., Espinosa, A., Cirach, M., Khreis, H., Dadvand, P., & 643 

Basagaña, X. (2018). Air Pollution, Noise, Blue Space, and Green Space and Premature 644 



Mortality in Barcelona: A Mega Cohort. International Journal of Environmental 645 

Research and Public Health, 15(11), 2405. https://doi.org/10.3390/ijerph15112405 646 

Pericak, A. A., Thomas, C. J., Kroodsma, D. A., Wasson, M. F., Ross, M. R. V., Clinton, N. E., 647 

Campagna, D. J., Franklin, Y., Bernhardt, E. S., & Amos, J. F. (2018). Mapping the 648 

yearly extent of surface coal mining in Central Appalachia using Landsat and Google 649 

Earth Engine. PLOS ONE, 13(7), e0197758. 650 

https://doi.org/10.1371/journal.pone.0197758 651 

Pierre Raybaut. (2009). Spyder (Version 5) [Python]. pythonhosted. org 652 

Rojas-Rueda, D., Nieuwenhuijsen, M. J., Gascon, M., Perez-Leon, D., & Mudu, P. (2019). Green 653 

spaces and mortality: A systematic review and meta-analysis of cohort studies. The 654 

Lancet. Planetary Health, 3(11), e469–e477. https://doi.org/10.1016/S2542-655 

5196(19)30215-3 656 

Rouse, W., Haas, R. H., Shnell, J A, & Deering, D W. (1974). MONITORING VEGETATION 657 

SYSTEMS IN THE GREAT PLAINS WITH ERTS. 658 

Schinasi, L. H., Quick, H., Clougherty, J. E., & De Roos, A. J. (2019). Greenspace and Infant 659 

Mortality in Philadelphia, PA. Journal of Urban Health, 96(3), 497–506. 660 

https://doi.org/10.1007/s11524-018-00335-z 661 

Sonia, Ghosh, T., Gacem, A., Alsufyani, T., Alam, M. M., Yadav, K. K., Amanullah, M., & 662 

Cabral-Pinto, M. M. S. (2022). Geospatial Evaluation of Cropping Pattern and Cropping 663 

Intensity Using Multi Temporal Harmonized Product of Sentinel-2 Dataset on Google 664 

Earth Engine. Applied Sciences, 12(24), Article 24. 665 

https://doi.org/10.3390/app122412583 666 

StataCorp. (2015). Stata (14.0) [Computer software]. StataCorp LLC. 667 



Stephen Kaplan & Rachel Kaplan. (1989). The Experience of Nature: A psychological 668 

perspective. Cambridge University Press. 669 

Stowell, J. D., Ngo, C., Jimenez, M. P., Kinney, P. L., & James, P. (2023). Development of a 670 

global urban greenness indicator dataset for 1,000+ cities. Data in Brief, 48, 109140. 671 

https://doi.org/10.1016/j.dib.2023.109140 672 

Turner, S., Sandt, L., Toole, J., Benz, R., & Patten, R. (2006). Federal Highway Administration 673 

University Course on Bicycle and Pedestrian Transportation (Research Publication 674 

FHWA-HRT-05-099). U.S. Department of Transportation. 675 

https://www.fhwa.dot.gov/publications/research/safety/pedbike/05085/chapt8.cfm 676 

Twohig-Bennett, C., & Jones, A. (2018). The health benefits of the great outdoors: A systematic 677 

review and meta-analysis of greenspace exposure and health outcomes. Environmental 678 

Research, 166, 628–637. https://doi.org/10.1016/j.envres.2018.06.030 679 

Urban green spaces: A brief for action. (2017). The World Health Organization Regional Office 680 

for Europe. https://www.euro.who.int/__data/assets/pdf_file/0010/342289/Urban-Green-681 

Spaces_EN_WHO_web3.pdf 682 

Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and 683 

environmental justice: The challenge of making cities ‘just green enough.’ Landscape 684 

and Urban Planning, 125, 234–244. https://doi.org/10.1016/j.landurbplan.2014.01.017 685 

Yang, B.-Y., Zhao, T., Hu, L.-X., Browning, M. H. E. M., Heinrich, J., Dharmage, S. C., 686 

Jalaludin, B., Knibbs, L. D., Liu, X.-X., Luo, Y.-N., James, P., Li, S., Huang, W.-Z., 687 

Chen, G., Zeng, X.-W., Hu, L.-W., Yu, Y., & Dong, G.-H. (2021). Greenspace and 688 

human health: An umbrella review. The Innovation, 2(4), 100164. 689 

https://doi.org/10.1016/j.xinn.2021.100164 690 



You, N., Dong, J., Huang, J., Du, G., Zhang, G., He, Y., Yang, T., Di, Y., & Xiao, X. (2021). 691 

The 10-m crop type maps in Northeast China during 2017–2019. Scientific Data, 8(1), 692 

Article 1. https://doi.org/10.1038/s41597-021-00827-9 693 

Yuan, Y., Huang, F., Lin, F., Zhu, P., & Zhu, P. (2021). Green space exposure on mortality and 694 

cardiovascular outcomes in older adults: A systematic review and meta-analysis of 695 

observational studies. Aging Clinical and Experimental Research, 33(7), 1783–1797. 696 

https://doi.org/10.1007/s40520-020-01710-0 697 

Zanaga, D., Van De Kerchove, Ruben, De Keersmaecker, Wanda, Souverijns, Niels, 698 

Brockmann, Carsten, Quast, Ralf, Wevers, Jan, Grosu, Alex, Paccini, Audrey, Vergnaud, 699 

Sylvain, Cartus, Oliver, Santoro, Maurizio, Fritz, Steffen, Georgieva, Ivelina, Lesiv, 700 

Myroslava, Carter, Sarah, Herold, Martin, Li, Linlin, Tsendbazar, Nandin-Erdene, … 701 

Arino, Olivier. (2021). ESA WorldCover 10 m 2020 v100 (Version v100) [dataset]. 702 

Zenodo. https://doi.org/10.5281/ZENODO.5571936 703 

 704 


