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Key Points:  14 

• We proposed a new method for mapping 10 m resolution continuous river networks on a 15 
monthly basin scale using satellite images and DEMs. 16 

• This method provided detailed information on small- and medium-sized rivers with an 17 
overall accuracy of 95.8%. 18 

• There is a strong positive correlation between monthly river network area and precipitation. 19 
 20 
  21 
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Abstract 22 

Characterizing and understanding the changes in the flow regimes of rivers have been challenging. 23 
Existing global river network datasets are not updated and can only identify rivers wider than 30 24 
m. We propose a novel automated method to map river networks on a monthly basin scale for the 25 
first time at 10-m resolution using Sentinel-1 Synthetic Aperture Radar, Sentinel-2 multispectral 26 
images, and the AW3D30 Digital Surface Model. This method achieved an overall accuracy of 27 
95.8%. The total length of the Yellow River network produced is 40,280 km, approximately 3.2 28 
times that of the Global River Widths from Landsat (GRWL) database, more effectively covering 29 
small and medium rivers. The monthly river geometry revealed a positive correlation between 30 
river network area and precipitation. This study is expected to provide a cost-effective alternative 31 
to accurately mapping global river networks and advance our understanding of the changes and 32 
drivers of river systems. 33 

Plain Language Summary 34 

Understanding the impacts of climate change and human activities on water resources across 35 
different regions greatly depends on the knowledge of river networks with high spatial and 36 
temporal resolution. Small tributaries are important components in river network evolution and 37 
water transmission. To date, several studies have mapped interannual variations in rivers with 38 
widths >30 m; however, the distribution and variations in small rivers remain unclear. By 39 
integrating multispectral and radar satellite remote sensing images as well as topographic data, we 40 
created continuous monthly river network maps at the basin scale, allowing us to capture the details 41 
of dynamic changes in river networks with higher spatiotemporal resolution. As a result, the 42 
method used in this study provides detailed information on small and medium rivers, with the 43 
length of the connected rivers being thrice that of the existing datasets. We demonstrate the 44 
possibility of mapping global river networks monthly at a resolution of 10 m, providing valuable 45 
information for global surface water resource planning and management and improving our 46 
understanding of spatial links between land and water interfaces. 47 

1 Introduction 48 

River networks interact with the atmosphere, vegetation, and geomorphology; play 49 
important roles in global hydrological and biogeochemical cycles; and are natural hotspots for 50 
environmental sustainability and economic growth (Raymond et al., 2013; Allen et al., 2018). 51 
Spatial characteristics, such as river surface area and river channel morphology, are essential for 52 
discharge estimation, flood forecasting, riverbed evolution, hydrogeomorphic processes, and 53 
carbon emission assessment. From a long-term and global perspective, characterizing and 54 
understanding the dynamic changes in the flow regimes of rivers have been challenging (Wu et al., 55 
2023). Therefore, there is a pressing need to understand what contributes to global river extent 56 
changes through better observation and modeling.  57 

However, existing river network datasets, mainly from Landsat imagery, can only identify 58 
rivers with channel widths greater than 30 m (Pekel et al., 2016; Allen & Pavelsky, 2018), and 59 
ignore the temporal variations in rivers narrower than 30 m (Lu et al., 2020). Small river 60 
ecosystems are surprisingly active, with frequent land-atmosphere interactions and 50% of the 61 
total carbon emissions (Raymond et al., 2013; Butman et al., 2016). Ignoring the importance of 62 
small rivers underestimates the role of river networks in biogeochemical cycles (Lu et al., 2021). 63 
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Thus, large-scale, accurate, and up-to-date river network maps are beneficial for sustainable 64 
development, government decision-making, and public awareness. 65 

Currently available global and regional river network datasets are mainly derived from 66 
digital elevation models (DEMs) or remote sensing images (Li et al., 2022). The key to developing 67 
hydrological maps from DEMs is to calculate the flow direction of each pixel (Strong & Mudd, 68 
2022; Tarolli & Mudd, 2020), such as the HydroSHEDS and MERIT Hydro datasets. 69 
HydroSHEDS is a global hydrological dataset obtained from the SRTM elevation data with a 70 
resolution of 90 m (Lehner & Grill, 2013). Yamazaki et al. (2019) generated the MERIT Hydro 71 
dataset, which effectively solved the problem of limited coverage of HydroSHEDS at high 72 
latitudes. However, vertical uncertainties in the DEM data may distort the topographic slope and 73 
further affect the flow direction estimation. In addition, global DEM data sources are not updated 74 
in a timely manner, making it difficult to reflect the dynamic changes in river networks (Rinne et 75 
al. 2011; Schenk et al. 2014). 76 

In recent years, Earth observation satellites have become an effective method for obtaining 77 
long-term time series, accurate distributions, and dynamic changes in global river networks (Gong 78 
et al., 2013; Yamazaki et al., 2015; Feng et al., 2019). Using Google Earth Engine (GEE) cloud-79 
based computing resources, the storage, computing, and analysis capabilities of remote sensing 80 
big data have greatly improved (Gorelick et al., 2017). Pekel et al. (2016) produced a Global 81 
Surface Water (GSW) dataset at 30 m resolution using GEE and Landsat images, which presents 82 
the probability of surface water inundation for every pixel recorded by Landsat over the past four 83 
decades. Allen & Pavelsky (2018) built the Global River Widths from Landsat (GRWL) Database 84 
and estimated the total surface area of rivers and streams ≥30 m wide at mean annual discharge, 85 
which is approximately 44% higher than previous estimates based on extrapolations of small 86 
sample sizes (Raymond et al., 2013). Compared with Landsat images, commercial optical remote 87 
sensing images usually have higher spatial resolution and richer spectral information; however, 88 
they are also affected by clouds and shadows when identifying water bodies.  89 

Synthetic aperture radar (SAR) sensors operating in the microwave region of the 90 
electromagnetic spectrum are not limited by meteorological conditions and can penetrate clouds 91 
and vegetation cover. The fusion of SAR and optical images for water classification has been 92 
proven to capture the extent of surface water bodies at a higher spatial and temporal resolution 93 
without being affected by clouds (Slinski et al., 2019; Li et al., 2023). However, river networks 94 
extracted from remote-sensing images are fragmented and exhibit poor connectivity. Recent 95 
studies have suggested that a combination of satellite remote sensing imagery and DEM data can 96 
accurately extract continuous river networks and monitor their dynamic changes (Jones, 2019).  97 

To address these challenges, we developed a new automated method that integrates Sentinel-98 
1 SAR, Sentinel-2 multispectral images, and DEM data to generate monthly river network maps 99 
of the Yellow River basin (YRB) at a resolution of 10 m. The constraint of the topography on the 100 
river flow direction was used to solve the problem of poor connectivity. Furthermore, we evaluate 101 
the accuracy of the method and compare it with existing datasets. Finally, we investigated the 102 
correlation between river network areas and climatic factors. 103 
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2 Materials and Methods 104 

2.1 Study Area 105 

The Yellow River is the second largest river in China, originating in the Qinghai-Tibetan 106 
Plateau and flowing eastward through the Loess Plateau and North China Plain to the Bohai Sea 107 
(Wu et al., 2017; Syvitski et al., 2022). The main stream of the Yellow River has a total length of 108 
more than 5,400 km and a drainage area of more than 750,000 km2 (Wang et al., 2007). The upper 109 
reaches of the Yellow River are dominated by mountains, whereas the middle and lower reaches 110 
are dominated by plains and hills (Figure 1a–c), forming the youngest delta in China (Wang et al., 111 
2022). Nearly 90% of the sediment originates from the middle reaches, and 60% of the river runoff 112 
originates from the upper reaches (Wang et al., 2017; Zhu et al., 2021; Chang et al., 2022).  113 

The Yellow River provides water to 15% of China’s arable land and 12% of the population, 114 
accounting for 2.2% of the national runoff (Yin et al., 2021). It is characterized by water shortages, 115 
less water and more sediment, and different sources of water and sediment (Wang et al., 2019). 116 
With the gradual implementation of soil and water conservation and ecological restoration projects, 117 
the intensity of soil erosion in the Loess Plateau has decreased significantly, and the sediment load 118 
in the main stream of the Yellow River has shown a significant downward trend over the past 20 119 
years (Syvitski et al., 2022). However, with the increasing frequency and intensity of extreme 120 
weather events, particularly rainstorms and droughts, changes in hydrological processes in the 121 
YRB are aggravating, posing challenges to water resource management, flood prevention, and 122 
water and sediment regulation (Lv et al., 2018; Shao et al., 2021). Unfortunately, the existing river 123 
network datasets derived from Landsat remote sensing images or DEMs limit the dynamic 124 
monitoring of temporal and spatial changes of small and medium-sized rivers in the basin. 125 

 126 

Figure 1. Location of the study area. (a) Upper reaches, (b) middle reaches, and (c) lower reaches 127 
in the Yellow River Basin were derived from Sentinel-2 RGB imagery. Note that, RGB bands 128 
include band 4 (red), band 3 (green), and band 2 (blue). 129 
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2.2 Methods 130 

The process of river network generation mainly includes the following two parts: (1) water 131 
body extraction by median composite generation and threshold segmentation algorithms based on 132 
filtered Sentinel-2 multispectral and Sentinel-1 SAR images, and (2) river network extraction 133 
based on Advanced Land Observing Satellite (ALOS) World 3D-30 m (AW3D30) Digital Surface 134 
Model (DSM) flow modeling, noise removal, and connectivity processing. Figure 2 shows the 135 
workflow of the proposed method. 136 

 137 

Figure 2. Workflow of river networks extraction in the Yellow River Basin. 138 
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2.2.1 Datasets 139 

Sentinel-2 multispectral remote sensing images were used as the main data source (Drusch 140 
et al., 2012), and Sentinel-1 SAR images were used to fill observation gaps caused by cloud cover 141 
and missing data. The Sentinel-2 Level-2A products provide orthorectified atmospherically 142 
corrected surface reflectance and can be freely obtained on the GEE platform. A total of 6,357 143 
Sentinel-2 images were selected between January 2019 and December 2019. Considering the 144 
shortage of Sentinel-2 images with cloud cover of less than 20% in cloudy areas and data-missing 145 
regions (Yang et al., 2020b), Sentinel-1 Level-1 Ground Range Detected (GRD) products were 146 
selected as supplements, which consist of focused SAR magnitude data (Torres et al., 2012). 147 

The AW3D30 DSM was obtained by resampling the AW3D product with a spatial 148 
resolution of 30 m and a vertical accuracy of 5 m (Tadono et al., 2014). Among the publicly 149 
available global digital elevation model (DEM) datasets, AW3D30 has the highest accuracy in 150 
mountainous areas (Liu et al., 2019; P. Li et al., 2021). Therefore, we used AW3D30 as auxiliary 151 
data to represent the topographic relief and constrain the river flow direction in the YRB. 152 

Other datasets included the GSW dataset, 2020 Global Land Cover Map released by 153 
Environmental Systems Research Institute (known as ESRI), and the fifth-generation European 154 
Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5) dataset. The GSW 155 
dataset is used to verify the accuracy of the results. ESRI 2020 Land Cover data were used to 156 
generate scatter density maps of water and non-water samples and determine the threshold for 157 
water body extraction. These data can be accessed from the GEE’s public data catalog. 158 
Temperature, precipitation, and evaporation were derived from ERA5 to evaluate the impact of 159 
climate change on river surface area. 160 

2.2.2 Water Body Extraction 161 

For the Sentinel-2 multispectral images, in order to effectively reduce the impact of 162 
omission errors from clouds and cloud shadow detection, opaque clouds and cirrus clouds were 163 
removed using the QA60 band on GEE. The position of the cloud shadow was determined based 164 
on the solar geometric angle and elevation angle attributes of each image, and dark pixels generated 165 
by the cloud shadow were masked. These filtered images were clipped to the study area to derive 166 
a median composite with a cloud cover limit of less than 20%. 167 

The median image composite method was computationally efficient and robust. Sentinel-168 
2 images processed by cloud filtering every month were collected, and the median of each pixel 169 
value was calculated to generate a composite image every month. This method was also applied 170 
to Sentinel-1 images after filtering. Compared to a single Sentinel-1 image, the median composite 171 
image can suppress speckle noise (Figure S1). 172 

We used Simple Non-Iterative Clustering (SNIC) superpixels segmentation algorithm 173 
combining decision trees to segment water bodies (Wang et al., 2023) (Figure S2 and S6). Using 174 
superpixels as subsequent processing units can greatly accelerate data processing efficiency and 175 
reduce the complexity of identifying water bodies. 176 

We then combined the automatic water extraction index (AWEI) (Feyisa et al., 2014), 177 
modified normalized difference water index (MNDWI) (Xu, 2006), normalized difference 178 
vegetation index (NDVI) (Rouse et al., 1974), and enhanced vegetation index (EVI) (Huete et al., 179 
2002) to distinguish between water bodies and non-water areas in Sentinel-2 images (Zou et al., 180 
2018; Deng et al., 2019). The AWEI is divided into AWEInsh and AWEIsh based on the difference 181 
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in noise sources produced by different types of areas. AWEInsh can effectively eliminate non-water 182 
pixels on dark building surfaces in urban background areas, that is for situations where shadows 183 
are not the main noise. AWEIsh works mainly for situations in which shadows are the main problem. 184 
These indices are defined as follows: 185 
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where Blueρ , Greenρ , Redρ , NIRρ , 1SWIRρ , and 2SWIRρ  are the surface reflectance values of the Sentinel-2 191 
Blue (band 2), green (band 3), red (band 4), NIR (band 8), SWIR1 (band 11), and SWIR2 (band 192 
12) bands, respectively. These bands were resampled to 10 m.  193 

We trained the decision tree classifier by collecting 10,093 water samples and 9,905 non-194 
water samples (see Text S1), and generated scatter density maps for water and non-water bodies 195 
(Figure S4). Of the non-water sample points, 99.81% had MNDWI-EVI<0, whereas 92.39% of 196 
the water sample points had MNDWI-EVI>0 (Figure S4e). Of the non-water sample points, 99.83% 197 
had MNDWI-NDVI<0, whereas 91.43% of the water sample points had MNDWI-NDVI>0 198 
(Figure S4f). Furthermore, 95.31% of the water sample points show AWEInsh>-0.6 (Figure S4g), 199 
whereas 91.21% of the water sample points show AWEIsh>0 (Figure S4h). Therefore, we proposed 200 
a new threshold segmentation algorithm for Sentinel-2 water body detection, that is, only the pixels 201 
meeting the criteria ((AWEInsh>-0.6 or AWEIsh>0) and (MNDWI>EVI or MNDWI>NDVI)) were 202 
classified as open surface water pixels, and the remaining were classified as non-water pixels. 203 
Paddy fields with spectral and water color characteristics similar to those of rivers can easily cause 204 
confusion and reduce the accuracy of river network extraction. The NDVI time-series features of 205 
the water objects were analyzed to eliminate paddy fields from the results (Figure S5). 206 

We marked pixels in the missing areas of the Sentinel-2 images as no data and replaced 207 
them with SAR water extraction results after completing the Sentinel-2 water extraction. For 208 
Sentinel-1 SAR images, we used a refined Lee filter to suppress speckle noise while preserving 209 
the image details (Lee et al., 1999; Amitrano et al., 2018). This filter uses a non-square edge 210 
direction window to maintain the edge information, and all elements of the covariance matrix are 211 
filtered using the same parameters to prevent crosstalk between the channels. By calculating 212 
Sentinel-1 Dual-Polarized Water Index (SDWI) (Jia et al., 2019), the difference between water and 213 
non-water bodies are amplified, making the histogram of water bodies resemble a bimodal 214 
distribution. Then, the water threshold in block processing was obtained using the maximum inter-215 
class difference threshold segmentation (OTSU) algorithm to segment and binarize the Sentinel-1 216 
median composite images (Otsu, 1979). 217 
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2.2.3 Delineation of River Centerlines 218 

The river centerline was extracted using the RivWidthCloud algorithm proposed by Yang 219 
et al. (2020a), which can be directly invoked on the GEE platform. The algorithm was based on 220 
the results of the binary water body, which were divided into three steps: (1) calculation of the 221 
distance between each river pixel and the nearest non-river pixel, (2) convolution of the distance 222 
map to obtain the gradient map, and (3) skeletonization and refinement iterations (Figure S7). 223 

Owing to the interference of non-water features, such as mountain shadows, snow, and ice, 224 
there are errors in the water body extraction results. We used the AW3D30 DSM data to fill in the 225 
depressions, calculate the D8 flow direction (Greenlee, 1987), estimate confluence accumulations, 226 
construct river network models, and generate buffers. This method can effectively reduce the errors 227 
caused by mountain shadows and maximally preserve the integrity of water information. 228 

The flow model constructed using the AW3D30 DSM considers the adjacency relationship 229 
between river pixels and can generate continuous river networks. Therefore, we fused it with river 230 
network results extracted from remote sensing images, made directional connections to the 231 
fractured river networks, and generated an accurate and continuous river network with a spatial 232 
resolution of 10 m. Next, we compared the extracted results with those extracted from existing 233 
river network datasets and existing algorithms and quantitatively evaluated the accuracy of the 234 
results in terms of river length, river system density, and river network surface area. 235 

3 Results 236 

Figure S10 shows the dynamic changes in monthly river networks in the YRB in 2019. 237 
River density, that is, the ratio of river length to catchment area, increased from 0.038 km-1 in 238 
January and February to 0.042 km-1 in March and April, owing to upstream melting. The rivers 239 
developed rapidly in May and entered the wet season in July, which significantly improved the 240 
connectivity of river networks. At this time, the total length of the river was 40280 km and the 241 
density of the river system was 0.053 km-1, both of which increased to the annual maximum. After 242 
entering September, the rainy season turned to normal, and the density of the river system 243 
gradually decreased. 244 

To validate the reliability of our algorithm, we used 2,556 random “true water” sampling 245 
points and 2,430 random “true non-water” points (Text S2 and Figure S8). The results indicated 246 
that the overall accuracy was as high as 95.77%. Furthermore, the user accuracy of 95.83% was 247 
obtained by dividing the accurately classified pixels by the total numbers of pixels classified in 248 
water, corresponding to complement of the commission error. In addition, the producer accuracy 249 
also reached a high level of 95.84%, which is the number of reference sites classified accurately 250 
divided by the total number of reference sites for water, representing complement of the omission 251 
error (Figure 4g and Table S1). 252 

Furthermore, we compared our method (Figure 3c, 3g) with other algorithms for detecting 253 
river networks using Sentinel-2 imagery, including MNDWI (Figure 3d, 3h), an approach based 254 
on spectral indices and pixels (Zou et al., 2018) (Figure 3e, 3i), and the active-passive surface 255 
water classification (APWC) method proposed by Slinski et al. (2019) (Figure 3f and 3j). As there 256 
are many medium and large cities with dense populations in the mainstem of the YRB, some pixels 257 
in the area are always covered by shadows because high-rise buildings are too high or the building 258 
spacing is too small. The proposed algorithm effectively suppressed this type of shadow noise. 259 
Note that our algorithm does not require manual editing or data annotation, which makes it possible 260 
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to realize the automatic mapping of large-scale river networks with high spatial resolution on a 261 
high-performance computing platform. 262 

 263 

Figure 3. Comparisons of the results of this method with other methods. Typical city (a) and 264 
mountain area (b) correspond to Figure 1a and 1b; (c) and (g) show the results of our method; (d) 265 
and (h) present the results of MNDWI; (e) and (i) are the results of Zou et al. (2018); (f) and (j) 266 
are the results of the APWC method proposed by Slinski et al. (2019). 267 

4 Discussion 268 

The results were superimposed on the GRWL and GSW datasets to qualitatively evaluate 269 
the spatial distribution and details of the river networks (Figure 4). The results show that our 270 
method can more effectively enhance the contrast between the fine river and the surrounding 271 
background, and can extract more small rivers (Figure 4a-f). However, river networks were the 272 
most accurate and complete when the river width was greater than 30 m, whereas broken river 273 
lines may exist in areas less than 30 m wide. In addition, the influence of ice and snow cover on 274 
river extraction errors cannot be completely eliminated in the Qinghai-Tibet Plateau. 275 

We further calculated the drainage density and open water fraction (OWF, i.e., the ratio of 276 
the water surface area to the catchment area) and quantified the accuracy of our extraction results 277 
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using existing river network datasets. The drainage density of Yellow River networks map we 278 
determined is approximately three times higher than that of the existing GRWL and GSW datasets. 279 
The OWF index of the Yellow River network map was approximately 3.2 times that of the GRWL 280 
dataset. The GSW dataset contained artificial wetlands that were not considered part of the river 281 
networks in this study. Therefore, the OWF index of the GSW dataset is higher than that of our 282 
results. The superior performance of our method can be attributed to the following reasons: first, 283 
we used Sentinel-2 imagery with high spatial resolution to extract more small streams than Landsat 284 
images. Second, the use of Sentienl-1 to compensate for areas of Sentinel-2 images with clouds 285 
and missing data can improve temporal resolution and capture monthly changes in the YRB 286 
(Figure S9). 287 

 288 

Figure 4. Comparisons with different river datasets and our results. The base map shows Yellow 289 
River networks results and the existing the Global River Widths from the Landsat (GRWL) 290 
database. (a), (c), and (e) Water surface results of the existing Global Surface Water (GSW) dataset. 291 
(b), (d), and (f) Water surface results of our method. (g) Confusion matrix for the automated 292 
accuracy assessment of our method. (h) Comparison of the river length (km) in the results of this 293 
study, GRWL dataset and Global River Networks (GRN) dataset. (i) The relationship between the 294 
surface area (yellow line), precipitation (blue column), temperature (red line), and evaporation 295 
(green line) in the Yellow River Basin. 296 

The rules established by Yan et al. (2019) were used to define and code river networks that 297 
could describe the topological relationships, hierarchical structures, and hydraulic connections of 298 
rivers at the same or different orders. The river lengths in our dataset were compared to those in 299 
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the GRWL and Global River Network (GRN) datasets (Yan et al., 2019) in Figure 4h. Overall, the 300 
total length (40,280 km) of the connected rivers provided in our results was 28,587 km longer than 301 
all rivers in the GRWL dataset, and 19,389 km longer than all rivers in the GRN dataset. 302 
Particularly, the length of connected rivers of order ≥4 in our dataset is longer than that of the 303 
GRWL dataset and GRN dataset, indicating that our results have a better coverage of small and 304 
medium-sized rivers (Figure S11). 305 

At the catchment scale, the scale dependence of runoff was attributed to spatial differences 306 
in precipitation, lithology, channel width, and catchment morphology. Assuming that the changes 307 
in soil water content and infiltration are negligible, the change in river network area depends 308 
mainly on the difference between precipitation and evaporation. Figure 4i indicates that the change 309 
in the water surface area during the rainy season was significantly greater than that during the dry 310 
season. The minimum area of the river networks appeared in January, with a total area of 8,306 311 
km2 and the maximum area occurred in August, with a total area of 10,267 km2. Precipitation and 312 
evaporation in the YRB were positively correlated with monthly changes in river network area. 313 
Considering that the average monthly precipitation is 10-20 times that of evaporation, the river 314 
network area is primarily controlled by seasonal precipitation changes, increasing after the spring 315 
and summer rainy seasons and decreasing in autumn and winter. 316 

5 Conclusions 317 

Studies on the impacts of climate change and human activity on river basins are highly 318 
dependent on the spatial and temporal distributions of river networks. However, the lack of 319 
accurate river networks with high spatiotemporal resolution in many regions makes these impacts 320 
poorly understood. In this study, we proposed a method for generating catchment-scale continuous 321 
river network maps for every month by integrating Sentinel-1 SAR and Sentinel-2 multispectral 322 
images with AW3D30 DSM data. This method can reveal detailed information on small and 323 
medium-sized rivers, with the length of the connected rivers being three times that of the existing 324 
datasets. The proposed detection rule can be used to extract large river network areas rapidly. The 325 
error caused by water spectral and morphological diversity as well as seasonal changes is reduced 326 
to the greatest extent, which makes large-scale and long-term water extraction more universal. 327 

Compared to existing water extraction algorithms, the proposed method demonstrates its 328 
capability and effectiveness in the shadow noise environment of urban high-rise buildings and 329 
mountainous areas, indicating that it has certain advantages over other single water indices. In 330 
addition, compared to existing river network products, this method improves the extraction area 331 
of water and the extraction rate of small rivers. Therefore, it provides an alternative economic 332 
means for the long-term monitoring of river network changes, quantifying, and understanding the 333 
contribution of human activities and climate change to river channel evolution. In the future, 334 
further integration of the Surface Water and Ocean Topography mission will facilitate the rapid 335 
acquisition of river width, elevation, and discharge parameters on a global scale. 336 

Open Research 337 

The codes and river network maps of the Yellow River Basin are available in Zenodo (Li et al., 338 
2023). Sentinel-1, Sentinel-2, AW3D30, and GSW datasets used in this study are available at GEE 339 
(https://developers.google.com/earth-engine/datasets/). ESRI 2020 Land Cover is freely available 340 
at https://livingatlas.arcgis.com/landcover/. The ERA5 datasets are available from the Copernicus 341 
ECMWF Climate Data Store (Muñoz Sabater, 2019). 342 
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