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Introduction

This document describes technical aspects of the construction of regression trees and forests

(Text S1) and of the calculation of an alternate feature importance metric called the Gini

importance (Text S2 and Figure S4). These sections are not novel contributions of the work,

but may be informative for readers unfamiliar with regression tree modeling.

Also in the supporting information is Table S3, which enumerates the hyperparameters

used to train the regression forest emulators discussed in the main text.
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Text S1

Regression trees are built recursively, starting with the root node. Each potential combi-

nation of input feature and threshold — such combinations will hereafter be referred to as

splits — is enumerated and scored. The best-scoring split across all features is assigned to

the root node, and the training data are partitioned according to that split. Left and right

child nodes are added to the root, each of which then repeats the process of selecting its own

split using only the subset of the training data that falls to it.

Potential splits are scored using a quantity called impurity. The impurity of a subset

{(xi,yi)}Mi=1 of input-target pairs in the training dataset is

η =
1

M

M∑
i=1

∥yi − ȳ∥22 (1)

where ȳ = M−1
∑

yi is the mean of the target vectors. In the single-output case where the

yi are scalars, η is simply the variance of the targets; in the multioutput case, η is the sum

of the component-wise variances. The score of a potential split is the sum of the impurities

of the left and right datasets that would result — the lower the better. In other words,

better-scoring splits partition the training targets into subsets that are similar to each other,

and thus well-approximated by their means.

Nodes are added to the tree in this manner until some stopping condition is met (typi-

cally a limit on the depth of the tree) at which point the node becomes a leaf. Instead of

evaluating splits and further partitioning the data, the node stores the mean of the remaining

training targets to return later. At prediction time, the tree returns the mean of the targets

corresponding to training samples that fell to the same leaf node as the given input.
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Text S2

The Gini importance, a feature importance metric unique to tree-based models, builds on

the node impurity η defined in (1). Specifically, let ηn and Mn be the impurity and number

of training samples, respectively, at node n. Moreover, let kn be the feature used in the split

at node n, and let ℓn and rn be its left and right children. The Gini importance of feature

k for a tree T is

gk(T ) ∝
∑
kn=k

Mn

(
ηn −

Mℓn

Mn

ηℓn − Mrn

Mn

ηrn

)
(2)

where the term in parentheses is the reduction in impurity node n achieves by splitting on

feature k. The Gini importance is therefore the average impurity gain of all nodes splitting on

feature k, weighted by the number of training samples passing through each node. Features

have high Gini importance if they are used at many nodes, used at nodes that significantly

reduce training impurity, or used at nodes through which many samples pass (e.g., those

close to the root). The proportionality sign in (2) indicates that the importances are scaled

to sum to unity over all features.

The value gk(T ) defined in (2) is a single scalar describing the importance of feature k

to the output of tree T . In this study, though, the targets yi are vectors. Accordingly, we

define a vector-valued impurity analogous to (1) by

η =
1

M

M∑
i=1

(yi − ȳi)⊙ (yi − ȳi)

where ⊙ indicates component-wise multiplication. We can then use η in (2) to obtain a

vector-valued Gini importance gk(T ), each component of which gives the weighted average

impurity reduction splitting on feature k achieves for the corresponding output component.

The Gini importance can be extended to regression forests by averaging the importances

calculated for each constituent tree. However, because trees may make predictions of varying

size, and so contribute differently to the forest’s output, we define a weight vector wT for

each tree T by

wT =
M∑
i=1

|T (xi)|

where the absolute value is applied component-wise. Each component of the weight vector

wT is thus the average norm of the of the predictions of T on the training data in the
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corresponding target component. The Gini importance vector for the forest is then the

weighted average

gk =

(∑
T

wT

)−1

⊙

(∑
T

wT ⊙ gT (k)

)
where the reciprocal operation is taken component-wise. This weighting is particularly im-

portant for boosted forests, wherein earlier trees make large predictions (and so have a

greater influence on the final output), while later trees correspond to minor corrections, as

suggested by the schematic in Figure 3b.

4



Table S3 Hyperparameters used by random and boosted forests in this work.

Value Hyperparameter

300 number of trees in the ensemble

15 maximum depth of each tree

0.15 fraction of training dataset sampled to train each tree

0.5 fraction of features sampled at each node to choose the split

0.1 learning rate multiplying each tree’s predictions (boosted forests only)
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Figure S4 As in Figure 10, but for just the boosted forest with Gini importances in blue

and SHAP values in red.
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