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Abstract14

Under anthropogenic warming, future changes to climate variability beyond specific modes15

such as the El Niño-Southern Oscillation (ENSO) have not been well-characterized. In16

the Community Earth System Model version 2 Large Ensemble (CESM2-LE) climate17

model, the future change to sea surface temperature (SST) variability is spatially het-18

erogeneous. We examined these projected changes (between 1960-2000 and 2060-2100)19

in the North Pacific using a local linear stochastic-deterministic model, which allowed20

us to quantify the effect of changes to three drivers on SST variability: ocean “memory”21

(the SST damping timescale), ENSO teleconnections, and stochastic noise forcing. The22

ocean memory declines in most areas, but lengthens in the central North Pacific. This23

change is primarily due to changes in air-sea feedbacks and ocean damping, with the shal-24

lowing mixed layer depth playing a secondary role. An eastward shift of the ENSO tele-25

connection pattern is primarily responsible for the pattern of SST variance change.26

Plain Language Summary27

In this study we investigated the physical reasons why fluctuations of sea surface28

temperatures – i.e., variations from the seasonal cycle – change as the world warms. These29

changes are important because extreme fluctuations above the normal state, so-called30

marine heat waves, can have severe ecological and economic impacts. Combining a con-31

ceptual model with a state-of-the-art climate model, we examined the reasons why sea32

surface temperature variability in the North Pacific is projected to change heterogeneously:33

some areas experience higher variability in the future, some less. Three different processes34

are important: ocean memory (i.e., how long temperature anomalies persist), the remote35

influence of El Niño, and the random weather variations in the atmosphere. While changes36

in all three processes affect future sea surface temperature variability changes, geograph-37

ical shifts in how El Niño affects the upper ocean’s temperature are the most important.38

1 Introduction39

Anthropogenic emissions of greenhouse gasses are causing profound changes to the40

Earth’s climate. Changes to the climate mean state have been studied for over half a cen-41

tury (e.g., Manabe and Wetherald (1967)) and are often used to set targets for reduc-42

ing greenhouse gas emissions. In contrast, changes to climate variability—characterized43
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statistically by variance and occurrence of extreme events and of importance for regional44

adaptation strategies—under future warming scenarios are less well understood.45

There is a substantial body of literature characterizing future changes to specific46

modes of climate variability such as the El Niño-Southern Oscillation (ENSO) (Cai et47

al., 2020; Cai et al., 2018; Geng et al., 2022; Maher et al., 2023; Timmermann et al., 1999;48

Wengel et al., 2021; Ying et al., 2022) and the Madden-Julian Oscillation (Bui & Mal-49

oney, 2018, 2020; Jenney et al., 2021; Rushley et al., 2019). However the broader study50

of climate variability changes is an emerging field with many outstanding questions (Rodgers51

et al., 2021; Stouffer & Wetherald, 2007; van der Wiel & Bintanja, 2021).52

The recent advent of large ensemble climate model simulations offers an opportu-53

nity to robustly quantify future variance and extreme event changes (Deser et al., 2020;54

Li et al., 2021; Maher et al., 2019; Rodgers et al., 2021). Conducting a large number of55

simulations with the same climate model with identical external forcing but perturbed56

initial conditions allows for a clear identification of the forced signal as it changes over57

time, leaving only model and scenario uncertainty (Hawkins & Sutton, 2009).58

In this study, we examined the projected change to sea surface temperature (SST)59

variability in the North Pacific and its physical drivers using the Community Earth Sys-60

tem Model version 2 Large Ensemble (CESM2-LE), which consists of 100 ensemble mem-61

ber simulations (Rodgers et al., 2021). Changes to SST variability are of key importance62

to both physical and biological components of the climate system: SSTs couple the ocean63

and atmosphere via radiative and turbulent heat fluxes (Deser et al., 2010) and control64

many physiological processes of marine organisms (Smith et al., 2023). The occurrence65

of marine heatwaves, prolonged periods of anomalously high SST that result in severe66

ecological and socioeconomic impacts (Smith et al., 2021), is directly related to SST vari-67

ability from a moving baseline perspective (Amaya et al., 2023; Oliver et al., 2021).68

Strikingly, the projected change in SST variance in CESM2-LE between 1960-200069

and 2060-2100 is not spatially uniform (Figure 1c), and the aim of this study was to iden-70

tify the drivers responsible for this pattern of variability change. Note that these pro-71

jected changes in variance will directly translate (if the other statistical moments remain72

constant) to changes of threshold exceedances of upper percentiles (e.g., the 90th per-73

centile) that are often used to define marine heatwaves (e.g., Jacox et al. (2020)). Thus74

our results have direct applicability to the study of future marine heat wave changes. We75
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Figure 1. (a) SST variance during 1960-2000 from HadISST and (b) from CESM2-LE. (c)

SST variance change in CESM2-LE between 1960-2000 and 2060-2100. (d) Relative SST vari-

ance change between those time periods. Stippled areas in (c) and (d) show where the change in

variance is not significant at the 5% level.

used a local linear stochastic SST model to quantify the relative effect of changes to three76

drivers on the overall change in SST variance: ocean memory, ENSO teleconnections,77

and stochastic noise forcing.78

2 Methods79

2.1 Data80

We used the Community Earth System Model version 2 Large Ensemble in this study.81

CESM2 is a coupled Earth system model with active ocean biogeochemistry (Danaba-82

soglu et al., 2020). The model incorporates the CAM6 atmosphere model and POP2 ocean83

model, both on ∼ 1◦ horizontal grids, as well as coupled land, sea ice, wave, marine bio-84

geochemical, and river runoff models. The large ensemble consists of 100 ensemble mem-85

bers run from 1850 to 2100 and forced by CMIP6 historical (1850-2014) and SSP3-7.086

protocols (2015-2100) (Rodgers et al., 2021). The SSP3-7.0 scenario, which has a high87

rate of emissions, was selected to investigate climate variability and its projected future88

changes. Anomalies were calculated by subtracting the ensemble mean from each ensem-89

–4–



manuscript submitted to AGU Advances

ble member. We excluded SST data from our analysis at grid points where the ensemble-90

mean sea ice fraction exceeded 15% for any month during the time period considered.91

Additionally we used several observational and reanalysis products to compare the92

CESM2-LE results in the historical period (1960-2000 unless otherwise noted). We used93

SSTs from the Hadley Centre Global Sea Ice and Sea Surface Temperature v1.1 dataset94

(HadISST; Rayner (2003)); sea level pressure and 850-hPa winds from the ECMWF Re-95

analysis v5 (ERA5; Hersbach et al. (2020)); mixed layer depth from the Ocean Reanal-96

ysis System 5 (ORAS5; Zuo et al. (2019)), which is defined as the depth where the den-97

sity exceeds the near surface density by 0.01 kg m−3; turbulent surface heat fluxes from98

the 1◦ Objectively Analyzed air-sea Fluxes (OAFLUX; Yu and Weller (2007)); and ra-99

diative surface heat fluxes from OAFLUX (derived from the ISCCP-D product; Rossow100

and Schiffer (1999)) and Clouds and Earth’s Radiant Energy Systems Energy Balanced101

and Filled Ed4.2 product (CERES EBAF; Kato et al. (2018)). Anomalies were calcu-102

lated by subtracting the climatology for the entire time period used and then detrend-103

ing with a linear fit. We excluded HadISST data from our analysis at grid points with104

sea ice cover (i.e., NaN values in the data) during any month from January 1960 to Jan-105

uary 2000.106

For the radiative heat fluxes, we calculated anomalies separately for OAFLUX (Jan-107

uary 1985 to February 2000) and CERES EBAF (March 2000 to December 2022), and108

then combined the two sets of anomalies. We spatially smoothed this heat flux data us-109

ing a moving average filter with 3-by-3-grid-cell window size. For computations requir-110

ing both heat flux and SST data, we also spatially smoothed the HadISST data in the111

same manner. Note that the CESM2-LE data was not smoothed.112

2.2 Linear Stochastic-Deterministic Model113

To quantify the effect of different drivers on SST variance, we used an extension114

of the original local linear stochastic climate model (Frankignoul & Hasselmann, 1977;115

Hasselmann, 1976) with seasonally modulated feedback and noise forcing (De Elvira &116

Lemke, 1982; Nicholls, 1984) and an ENSO teleconnection term (Newman et al., 2016;117

Newman et al., 2003; Schneider & Cornuelle, 2005). We use the formulation developed118

by Stuecker (2023), Stuecker et al. (2017), and Zhao et al. (2019) that includes seasonal119
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modulations in the feedback, noise forcing, and the ENSO teleconnection term:120

∂T ′(t)

∂t
= λ̃T ′(t) + β̃N(t) + ξ(t), (1)121

where T ′ is the SST anomaly at a given location, λ̃ is a seasonally modulated feedback122

coefficient, β̃ is a seasonally modulated ENSO teleconnection coefficient, N is the Niño3.4123

index (the SST anomaly averaged over 5◦N-5◦S, 170◦W-120◦W), and ξ is stochastic forc-124

ing (i.e., “weather noise”). Averaged over the annual cycle, λ̃ must be negative so that125

SST anomalies are damped and do not grow without bound. λ̃−1 has units of time and126

represents the decay timescale of SST anomalies, thus we refer to it hereafter to as the127

“ocean memory” (Shi et al., 2022).128

The parameters λ̃ and β̃ are defined as129

λ̃ = λ0 + λ1 sin(ωat) + λ2 cos(ωat), (2)130

β̃ = β0 + β1 sin(ωat) + β2 cos(ωat), (3)131

where ωa is the angular frequency of the annual cycle (2π/12 months−1) and λ1, λ2, β1,132

and β2 determine the amplitude and phase of the seasonal modulation. Physically, the133

seasonal modulation of these coefficients reflects seasonal changes of air-sea heat fluxes134

and the mixed layer heat capacity, the latter which is proportional to the mixed layer135

depth (Frankignoul et al., 2002; Stuecker et al., 2017). For ease of display we present these136

coefficients as annual averages in this report (the amplitude and phase of λ̃ and β̃ are137

shown in Figure S1 in the Supporting Information).138

The noise term ξ represents stochastic forcing from the atmosphere. It includes all139

processes that are uncorrelated with local SST anomalies and remote ENSO forcing, pri-140

marily anomalous air-sea heat fluxes and anomalous Ekman advection of the SST gra-141

dient due to weather variability (Larson et al., 2018). ξ should be nearly white given the142

fast decorrelation timescale of the atmosphere (Hasselmann, 1976; Lorenz, 1963).143

At each grid point for each ensemble member, equation 1 was fitted to the SST anomaly144

data using multiple linear regression (see Zhao et al., 2019). ∂T ′/∂t was computed us-145

ing the forward finite difference method. The noise forcing ξ was taken to be the resid-146

ual from the fit. This residual is well-described by white noise (see Figure S2 in the Sup-147

porting Information), supporting the suitability of our choice of theoretical SST model.148
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2.3 SST Feedback Decomposition149

The SST feedback coefficient λ̃ is the sum of several different atmospheric and oceanic150

feedbacks (Frankignoul, 1985; Haney, 1971; Patrizio & Thompson, 2021, 2022):151

λ̃ = λ̃SH + λ̃LH + λ̃SW + λ̃LW + λ̃ent + λ̃diff + λ̃other (4)152

where λ̃SH, λ̃LH, λ̃SW, λ̃LW are the feedbacks associated with the sensible, latent, short-153

wave, and longwave components of the air-sea heat flux, respectively; λ̃ent is the feed-154

back due to entrainment as the mixed layer deepens in fall and winter; λ̃diff is the feed-155

back due to horizontal eddy diffusion, and λ̃other is the feedback due to non-local and156

other processes not considered here.157

We calculate the air-sea heat flux feedbacks given heat flux component x by fitting158

the following equation using multiple linear regression:159

Q′
x(t) = λ̃∗

xT
′(t) + β̃∗

xN(t) + ξ∗x(t), (5)160

where Q′
x(t) is the heat flux anomaly (defined as positive downward), λ̃∗

x is the feedback161

for that heat flux component (with units Wm−2K−1), and ξ∗x(t) is the noise forcing. λ̃∗
x162

is related to the feedbacks λ̃x in equation 4 by the following:163

λ̃x =
λ̃∗
x

ρcpH̃
(6)164

where ρ is the density of seawater (1024 kg m−3), cp is the heat capacity of seawater (4001165

J kg−1 K−1), and H̃ is the monthly mixed layer depth climatology. To fit this equation166

to observations, we used the whole time period available for the heat flux data to min-167

imize the error: January 1985 to December 2022 instead of the 1960-2000 period for fit-168

ting equation 1.169

The feedback due to entrainment is170

λ̃ent = − w̃ent

H̃

(
1−

〈
∂T ′

b

∂T ′

〉)
, (7)171

where w̃ent is the entrainment velocity climatology, the time derivative of the mixed layer172

depth climatology H̃, and T ′
b is the temperature below the mixed layer, with angled brack-173

ets denoting the ensemble/time mean (see Frankignoul (1985)). If T ′
b is uncorrelated with174

T ′, and assuming a mixed layer of average depth 75 meters with an annual cycle ampli-175

tude of 100 meters, λ̃ent ≈ −0.1 months−1 when averaged over the annual cycle. En-176

trainment also leads to the phenomenon of “reemergence”: often the SST anomaly from177
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the previous winter persists under the mixed layer during summer and in fall is re-entrained178

into the mixed layer, leading to the reemergence of SST anomalies (Alexander & Deser,179

1995; Deser et al., 2003). Reemergence is not modeled in this work.180

The feedback due to horizontal eddy diffusion is181

λ̃diff =
∂

∂T ′

(
κ∇2T ′

)
, (8)182

where κ is the horizontal eddy diffusivity. Assuming SST anomalies with a sinusoidal183

spatial structure of wavelength L, the feedback can be estimated via scaling analysis as184

λ̃diff ≈ −κ
4π2

L2
. (9)185

For L ≈ 1000 km (i.e., a length scale of ∼ 160 km) and κ ≈ 500 m2s−1 (note that κ is186

a function of length scale and geographic location; see Nummelin et al. (2021)), λdiff ≈187

−0.05 months−1.188

Equation 4 can be rewritten as189

λ̃ =
λ̃∗
turb

ρcpH̃
+

λ̃∗
rad

ρcpH̃
+ λ̃res, (10)190

where λ̃∗
turb is the turbulent (λ̃∗

SH+λ̃∗
LH) heat flux feedback, λ̃∗

rad is the radiative (λ̃∗
SW+λ̃∗

LW)191

heat flux feedback, and λ̃res is the residual feedback. λ̃res includes λ̃ent, λ̃diff, λ̃other, and192

errors in estimating the air-sea feedbacks. From the estimations above, λ̃ent+λ̃diff ≈ −0.15193

months−1, thus we expect λ̃res to have a similar value if there are not substantial errors194

in the calculation of the feedbacks and contributions from other unmodeled feedbacks.195

Because the large number of degrees of freedom in CESM2-LE (100 members) allows for196

robust statistical estimates of the atmospheric feedbacks, we expect λ̃res to primarily re-197

flect damping by entrainment and diffusion. However, for observations/reanalysis, un-198

certainties in the heat flux, SST, and mixed layer depth data may compound to produce199

substantial errors in the calculated feedbacks and thus λ̃res may primarily reflect these200

errors rather than just damping from oceanic processes.201

The change in the feedback can be expanded from equation 10 as202

∆λ̃ =
∆λ̃∗

turb

ρcpH̃0

+
∆λ̃∗

rad

ρcpH̃0

+
−λ̃∗

turb,0 − λ̃∗
rad,0

ρcpH̃2
0

∆H̃︸ ︷︷ ︸
∆λ̃H

+∆λ̃res, (11)203

where ∆ indicates the change between the two time periods, a subscript 0 indicates that204

the value from the first time period is used and ∆λ̃H is the change in the air-sea heat205

flux feedback due to the change in the mixed layer depth climatology.206
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2.4 Applicability of the Linear Stochastic-Deterministic Model207

Equation 1 describes SSTs forced solely by the atmosphere: anomalous air-sea heat208

fluxes and anomalous Ekman advection of the mean SST gradient from stochastic weather209

processes and remote forcing from ENSO. Contributions to the variance from internal210

ocean dynamics (e.g., geostrophic advection, mixed layer depth variability, and entrain-211

ment) are neglected (Frankignoul & Reynolds, 1983). This simplification is inadequate212

to explain SST variance in the equatorial oceans, where coupled ocean-atmosphere dy-213

namics in the Pacific give rise to ENSO; in western boundary currents, where ocean dy-214

namics are important (Qiu, 2002; Reynolds, 1978; Schneider & Miller, 2001); and in the215

areas of the North Atlantic and Southern Ocean where the thermohaline circulation con-216

tributes to SST variability on long timescales (Delworth & Greatbatch, 2000; Zhang et217

al., 2019).218

In previous studies, the applicability of a linear stochastic model to SST dynam-219

ics was tested by goodness of fit to a theoretical power spectrum (Frankignoul, 1985; Reynolds,220

1978), by establishing a threshold of sea surface height variance over which oceanic pro-221

cesses were assumed to dominate (Hall & Manabe, 1997), or by comparing advection of222

SST anomalies with the estimated feedback term (Frankignoul et al., 2002).223

We used an objective criterion based on the lagged covariance of SST anomalies224

T ′ and net surface heat flux anomalies Q′, RTQ (see Frankignoul and Kestenare, 2002;225

Frankignoul, 1985; Frankignoul and Reynolds, 1983). If SST anomalies are both damped226

and forced by Q′, at negative lags (when the ocean leads), RTQ should be negative, cor-227

responding to damping of SST anomalies by Q′. At positive lags (when the atmosphere228

leads), RTQ should be positive, corresponding to forcing of SST anomalies by Q′. Thus229

we considered that any grid point which had RTQ < 0 at negative lags (averaged over230

lags -3 to -1 months and all ensemble members) and RTQ > 0 at positive lags (aver-231

aged over lags 1 to 3 months and all ensemble members) to be well represented by a lin-232

ear stochastic model forced by the atmosphere. The grid points that did not meet this233

criterion were excluded from our analysis and are shown as white hashed areas in the234

figures. As expected these grid points are in areas of high oceanic variability and strong235

air-sea coupling, such as the equatorial Pacific and Kuroshio-Oyashio Extension region.236

For observations, as with the calculation of the air-sea heat flux feedbacks, this criteria237
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was evaluated using data from January 1985 to December 2022. Figure S3 in the Sup-238

porting Information shows RTQ at several representative locations.239

2.5 Isolating SST Variance Contribution from Each Driver240

Once λ̃, β̃, and ξ are determined, the SST variance due to changes in the correspond-241

ing drivers–the ocean memory, ENSO teleconnection, and noise forcing—can be isolated.242

We used two forward integrations, one isolating the SST anomalies forced only by the243

ENSO teleconnection T ′
N and the other isolating SST anomalies forced only by noise T ′

ξ:244

T ′
N,k+1 = T ′

N,k +
(
λ̃kT

′
N,k + β̃kNk

)
∆t, (12)245

T ′
ξ,k+1 = T ′

ξ,k +
(
λ̃kT

′
ξ,k + ξk

)
∆t, (13)246

where k is the time index and ∆t is the time step (one month). ξk was constructed us-247

ing a shuffled fit residual (for each ensemble member): for each calendar month, the year248

was randomly shuffled, producing noise forcing that is temporally uncorrelated (i.e., white)249

but retains spatial correlations and seasonal variance modulation present in the fit resid-250

ual. Our results differ little if the original fit residual (that contains both spatial corre-251

lations and a slight temporal autocorrelation) or a version in which the time dimension252

of the noise forcing is shuffled in a different random order at each grid point (and thus253

is white in both time and space; see Figure S4 in the Supporting Information).254

We performed these integrations at each grid point and ensemble member for the255

following cases:256

• T ′
N,A using λ̃, β̃, and N(t) at their 1960-2000 values257

• T ′
ξ,A using λ̃ and ξ(t) at their 1960-2000 values258

• T ′
N,B using λ̃, β̃, and N(t) at their 2060-2100 values259

• T ′
ξ,B using λ̃ and ξ(t) at their 2060-2100 values260

• T ′
N,C using λ̃ at its 1960-2000 values, and β̃ and N(t) at their 2060-2100 values261

• T ′
ξ,C using λ̃ at its 1960-2000 values and ξ(t) at its 2060-2100 values262

Each integration was initialized with the SST anomaly at the beginning of the specified263

time period (2060-2100 for case C). We calculated the change in variance due to the change264
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in each driver using the following expressions:265

∆λσ2(T ′) =
[
σ2

(
T ′
N,B

)
+ σ2

(
T ′
ξ,B

)]
−

[
σ2

(
T ′
N,C

)
+ σ2

(
T ′
ξ,C

)]
, (14)266

∆Nσ2(T ′) = σ2
(
T ′
N,C

)
− σ2

(
T ′
N,A

)
, (15)267

∆ξσ2(T ′) = σ2
(
T ′
ξ,C

)
− σ2

(
T ′
ξ,A

)
, (16)268

where ∆xσ2(T ′) is the change in SST variance due to changes to the driver x, σ2(T ′
x,n)269

is the variance of the integrated SST time series corresponding to the case letter n (A,270

B, or C) above.271

2.6 Statistical Significance Testing272

All parameters shown in this report (e.g., σ2(T ′
x,n), λ̃, β̃) were calculated for each273

ensemble member, creating 100 independent samples. Welch’s t-test was then used to274

assess the statistical significance of ensemble-mean changes of these parameters between275

1960-2000 and 2060-2100 (Welch, 1947). Except in areas with minimal changes, the null276

hypothesis of no change between the two time periods is rejected at the 5% level.277

3 Results & Discussion278

3.1 Ocean Memory and Its Future Changes279

The ocean memory varies considerably across the North Pacific, both in observa-280

tions and CESM2. Over most of the North Pacific, the ocean memory diagnosed from281

the observations is between 2-6 months (Figure 2a). Equatorward of about 20◦N, par-282

ticularly toward the eastern side the basin, the ocean memory is substantially longer,283

typically around 9 months. The magnitude of the ocean memory is largely consistent with284

previous estimations (e.g., Frankignoul and Reynolds (1983) and Schneider and Cornuelle285

(2005)) and the autocorrelation timescale of large-scale modes such as the the Pacific286

Decadal Oscillation (Newman et al., 2016).287

In the observations, the contribution of the different heat fluxes to the total feed-288

back (Figure 3a-c) shows strong damping from turbulent heat fluxes (almost entirely the289

latent heat feedback) particularly in a band at 25◦N in the western North Pacific. Over290

much of the North Pacific poleward of 20◦N, the radiative heat flux feedback (almost291

entirely shortwave feedback) is positive, indicative of the low cloud-SST feedback, where292

negative SST anomalies are associated with increased atmospheric stability, leading to293
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Figure 2. Equation 1 parameters fit to HadISST (a)-(c) and CESM2-LE (d)-(i) SST data in

shaded contours, with CESM2-LE projected changes on the bottom row (j)-(l). (b), (e), (h) vec-

tors and contours are the 850-hPa winds and sea level pressure regressed onto the Niño3.4 index,

the latter with 0.25-hPa/K spacing (positive values are solid lines and negative lines are dashed,

with a thicker line at the zero contour). Stippling in (d)-(f) indicates that the parameters derived

from observations lie outside the 5th-95th percentile range of those derived from the CESM2-LE

ensemble members. Stippling in (j)-(l) indicates where the changes are not significant at the

5% level. The ocean memory and ENSO teleconnection panels show the mean over the seasonal

cycle, and all CESM2-LE panels are the ensemble mean. Locations where the SST data is not

well-described by a local linear stochastic model are shown as white hatched areas (see Section

2.4).

the formation of low clouds which reduce surface shortwave radiation and further cool294

the ocean (Clement et al., 2009; Norris & Leovy, 1994; Xie, 2023).295

The ocean memory in CESM2-LE is similar in magnitude to observations, rang-296

ing between about 2 and 9 months, but has a distinct spatial pattern (Figure 2d, g). The297

ocean memory is shorter in the western North Pacific than in the east, which can mostly298

be attributed to strong damping by turbulent heat fluxes (Figure 3d). As in the obser-299

vations, the turbulent and radiative feedbacks are dominated by the latent heat and short-300

wave feedbacks, respectively (see Figure S5 in the Supporting Information). A large area301
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of particularly long ocean memory is present between Hawai‘i and North America, re-302

sulting from relatively weak turbulent heat flux damping and positive radiative feedback,303

likely from the low cloud-SST feedback.304

Interestingly, the phases of λ̃ and H̃ differ: λ̃ is most strongly negative between Au-305

gust and December (depending on location) whereas H̃ is deepest between December306

and March (see Figure S1 in the Supporting Information). That implies that the sea-307

sonality of the air-sea heat flux feedbacks play a strong role in the seasonal modulation308

of λ̃ in addition to that of the mixed layer depth.309

In observations, the residual feedback has considerable spatial structure (Figure310

3c), with areas of negative and strongly positive feedbacks. In CESM2-LE, the residual311

feedback is negative everywhere except for coastal areas off China and Mexico. As re-312

lated in Section 2.2, entrainment and horizontal eddy diffusion are expected to damp SST313

anomalies, with a combined feedback on the order of -0.15 months−1, which corresponds314

well with the results from CESM2-LE. However, the strong positive feedbacks in obser-315

vations could be the result of errors in the heat flux and mixed layer depth data. The316

magnitude of the feedbacks λ̃∗
x for different heat flux components are similar between317

observations and CESM2-LE (see Figure S5 in the Supporting Information). However,318

the mixed layer depth is typically somewhat deeper in CESM2-LE than in the ORAS5319

reanalysis, which would lead to the λ̃rad and λ̃turb being greater in magnitude in obser-320

vations compared to CESM2-LE. Part of that discrepancy may be due to the different321

mixed layer definitions used: a density-based definition for ORAS5 (see Section 2.1) and322

a buoyancy-based definition for CESM2 (Large et al., 1997).323

In the future climate in CESM2-LE, the ocean memory declines over most of the324

basin except for a zonally-elongated area in the central North Pacific where it increases325

(Figure 2j). The changes to the individual feedbacks are are spatially varied, but it ap-326

pears that the change in ocean memory is primarily driven by changes to the radiative327

and residual feedbacks, suggesting that changes in clouds and ocean dynamics are most328

important for the change in ocean memory. In common with other climate models (e.g.,329

Capotondi et al. (2012) and Shi et al. (2022)), the mixed layer depth in the North Pa-330

cific in CESM2-LE is shallower nearly everywhere in the future climate, leading to a re-331

duced heat capacity and correspondingly shorter ocean memory (Figure 3g). However,332

the magnitude of the feedback change due to the shallower mixed layer is relatively mi-333
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Figure 3. (a)-(f) Turbulent, radiative, and residual SST feedbacks in HadISST and CESM2-

LE for 1960-2000. (g)-(i) Changes to those feedbacks in CESM2-LE between 1960-2000 and

2060-2100, with (j) showing the contribution of the mixed layer depth change. Stippling in (g)-(i)

indicates where the changes are not significant at the 5% level. All panels show the feedbacks

averaged over the seasonal cycle and the CESM2-LE panels showing the ensemble mean. Loca-

tions where the SST data does not meet the criterion described in Section 2.4 are shown as white

hatched areas.

nor compared to the changes to the other feedbacks, in contrast with the findings of Shi334

et al. (2022), who attributed the projected decline in ocean memory in CMIP6 models335

primarily to mixed layer depth shallowing.336

3.2 ENSO Teleconnection and Its Future Changes337

The ENSO teleconnection, represented by β̃ multiplied by the standard deviation338

of Niño3.4, in both observations and CESM2-LE (Figure 2b, e, h) exhibits the well-known339

”atmospheric bridge“ pattern: cooling (warming) of SSTs in the central North Pacific340

and warming (cooling) in the eastern North Pacific during El Niño (La Niña) (Alexan-341

der et al., 2002; Lau & Nath, 1996; Taschetto et al., 2020). This pattern is caused by anoma-342

lous tropical heating in the central Pacific during El Niño which excites atmospheric Rossby343

wave trains that propagate poleward and induce changes in atmospheric circulation and344
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surface heat fluxes. The Aleutian Low deepens during El Niño, resulting in anomalous345

cold and dry northwesterly winds over the central North Pacific that cool SSTs and anoma-346

lous warm and humid southeasterly winds over the eastern North Pacific that warm SSTs.347

These changes in wind, air temperature, and humidity modulate the air-sea heat fluxes,348

resulting in SST anomalies. These large-scale atmospheric patterns are evident in the349

sea level pressure and 850-hPa wind regressed onto the Niño3.4 index (line contours and350

vectors in Figure 2b, e, h).351

The spatial pattern of the teleconnection in CESM2-LE for 1960-2000 is broadly352

similar to the observed pattern but is displaced slightly to the west and is somewhat stronger353

in magnitude. The westward displacement likely is due to the ENSO SST anomaly in354

CESM2 extending further west than in observations (Chen et al., 2021). However, in most355

of the North Pacific the observed teleconnection falls within two cross-ensemble stan-356

dard deviations. At the center of action in the central North Pacific, the annually-averaged357

teleconnection coefficient β̃ is much stronger in observations than in CESM2-LE for ei-358

ther time period (see Figure S6 in the Supporting Information). However, the ensem-359

ble mean Niño3.4 standard deviation in CESM2-LE is about 50% greater than in obser-360

vations: 1.30 K and 1.26 K for 1960-2000 and 2060-2100, respectively, compared to the361

observed value of 0.86 K for 1960-2000 in HadISST. Thus, the overall magnitude of forc-362

ing of the teleconnection on SST anomalies is comparable between the model and ob-363

servations.364

In CESM2-LE, the ENSO teleconnection pattern shifts to the northeast in the fu-365

ture climate. The teleconnection, both in its effect on atmospheric circulation and SSTs,366

weakens slightly. That shift likely is caused by the eastward shift of the location of max-367

imum precipitation during ENSO due to the expansion of the western Pacific warm pool368

(see Power et al. (2013) and Yan et al. (2020)). Changes to the atmospheric waveguide369

may also contribute to the teleconnection shift.370

3.3 Noise Forcing and Its Future Changes371

The variance of the noise forcing ξ has a broad maximum at 40◦N in both the ob-372

servations and CESM2-LE, stretching from Japan to about 150◦W (Figure 2c, f, i). This373

coincides with the subarctic SST front and the North Pacific storm track, thus high at-374

mospheric and oceanic variability in this region is expected. The noise in observations375
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has considerably greater variance than in CESM2-LE even though the SST variance is376

similar. Because SST variance increases with increasing ocean memory (in an AR-1 pro-377

cess; see von Storch and Zwiers, 1999), the greater noise variance in observations is com-378

pensated by the somewhat shorter ocean memory to yield comparable overall SST vari-379

ance to CESM2-LE.380

The future change of the noise forcing variance is spatially heterogeneous in CESM2-381

LE. Although increasing in most areas, particularly in the eastern North Pacific between382

Hawai‘i and North America, there are areas in the central and southeastern parts of the383

basin where noise variance decreases. The strong increase in variance north of Japan is384

potentially due to a poleward shift of the Kuroshio (Yang et al., 2016).385

3.4 Drivers of future SST Variance Change386

As described in Section 2.5 we used the fitted values of λ̃, β̃, and ξ to create sev-387

eral sets of reconstituted SST data forced either by ENSO or by the noise residual ξ. The388

variance of the ENSO-forced SSTs is appreciably smaller than the noise-forced SSTs (Fig-389

ure 4b-c). However, the change in variance of the ENSO-forced SSTs due to the shift390

of the ENSO teleconnection is comparable in magnitude to the change in variance of the391

noise-forced SSTs (Figure 4e-f). The sum of the individual variance changes sums to close392

to the true variance change, supporting the validity of integrating the forcings separately393

(compare Figure 4a and g).394

The pattern of variance change due to each of the three drivers closely resembles395

the changes to the corresponding parameters in Figure 2j-i. Increases in the ocean mem-396

ory lead to increased SST variance and vice versa, as expected for an AR-1 process (see397

von Storch and Zwiers, 1999). Likewise, increases in the magnitude of the ENSO tele-398

connection and noise forcing lead to increases in SST variance, and vice versa. The change399

in the strength of the ENSO teleconnection is almost entirely a function of the change400

in β̃ as the change in the Niño3.4 variance is small between the two time periods in CESM2-401

LE.402

Figure 4h shows the contribution of each driver to the overall variance change by403

assigning the change due to each driver to a color channel (red=∆ξσ2(T ′), green=∆Nσ2(T ′),404

blue=∆λσ2(T ′)). At each grid point, a driver was only considered to contribute to the405

change in variance if its associated variance change was of the same sign as the total SST406
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Figure 4. (a) The total SST variance change as in Figure 1c. (b) and (c) The SST variance

associated with ENSO-only and noise-only forcing, respectively, for 1960-2000. (d)-(f) The SST

variance changes associated with the change in ocean memory, the ENSO teleconnection, and

stochastic noise. The grey contours represent the same changes as in Figure 2j-l: the change of

the ocean memory λ̃−1, ENSO teleconnection β̃σ(Niño3.4), and the noise variance σ(ξ), respec-

tively. The zero contour line is thicker, with contour intervals of 0.67 months, 0.04 K/month,

and 0.02 K/month, respectively. (g) The total SST variance change computed by summing (d),

(e), and (f). (h) The contribution of the change of each driver to the SST variance change. Hue

indicates the relative contribution of each driver and brightness corresponds to the magnitude of

the total SST variance change (see Figure S7 in the Supporting Information). Locations where

the SST data does not meet the criterion described in Section 2.4 are shown as white hatched

areas. Stippling indicates where the changes are not significant at the 5% level.

variance change (i.e., if at some grid point ∆σ2(T ′) > 0 and ∆λσ2(T ′) < 0, the change407

in λ̃ was considered to not contribute to the overall change in variance). Then the vari-408

ance of the drivers that do contribute to the SST variance change is represented by a mix409

of colors, with the hue signifying the relative contribution of each driver, and the bright-410

ness being proportional to the magnitude of the total SST variance change. The con-411

struction of this visualization is detailed in Figure S7 in the Supporting Information.412

As evidenced by the large areas of green in Figure 4h, the shift of the ENSO tele-413

connection dominates the SST variance change pattern. The arcuate pattern in the cen-414

tral North Pacific and the decrease in variance in the Gulf of Alaska are almost entirely415

due to the shift in the teleconnection. The change in the stochastic noise forcing con-416

tributes to a lesser extent, with its greatest influence being northeast of Hawai‘i. In most417
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of the North Pacific, decreased SST variance due to declining ocean memory is compen-418

sated for by increased variance due to increasing stochastic noise forcing. That mem-419

ory is generally declining and noise increasing implies that the “damped-persistence” pre-420

dictability of SST anomalies will decline in the future in most areas.421

We also assessed the contribution of the change of each driver by using the pat-422

tern correlation, defined as the Pearson correlation coefficient between two arrays weighted423

by the cosine of the latitude. Areas of the arrays where the RTQ criterion described in424

Section 2.4 are not met were removed. In the North Pacific (10◦N-60◦N, 120◦E-100◦W)425

the pattern correlations between the total variance change (as in Figure 4g) and the vari-426

ance changes due to individual drivers are 0.15 for ∆λσ2(T ′), 0.76 for ∆Nσ2(T ′), and427

0.47 for ∆ξσ2(T ′). Those correlations support the above conclusion that the shift in the428

ENSO teleconnection is most important to the overall change in SST variance, followed429

by the change in the stochastic noise, with the change in ocean memory playing only a430

minor role.431

4 Conclusions432

In this work, we have demonstrated a conceptual model of SST variability that can433

explain the drivers behind future change of projected SST variance. By using this frame-434

work, we were able to quantify the SST variance change between 1960-2000 and 2060-435

2100 to three drivers:436

• Ocean Memory – The ocean memory declines over most of the North Pacific with437

an elongated region in the center of the basin exhibiting longer memory in the fu-438

ture. We attribute this change primarily to changes in air-sea feedbacks and ocean439

damping, the latter presumably due to changes in horizontal diffusion and entrain-440

ment. The latent heat and shortwave feedbacks, the latter likely due to the low441

cloud-SST feedback, are the most important air-sea feedbacks. The shallowing mixed442

layer depth appears to play a secondary role. The change in ocean memory plays443

a minor role in the overall change in SST variance as its impact is largely com-444

pensated for by increases in stochastic noise forcing.445

• ENSO Teleconnections – The “atmospheric bridge,” which connects North Pacific446

SSTs to ENSO events via atmospheric Rossby waves, shifts to the northeast in447

the future climate. Although the extratropical SST variance associated with re-448
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mote ENSO forcing is much smaller than the variance driven by stochastic noise,449

the shift of the ENSO teleconnection pattern results in a large change in SST vari-450

ance, dominating the overall change in SST variance.451

• Stochastic Noise Forcing – The noise forcing, computed as a residual from a fit452

to an extended local linear stochastic-deterministic model (equation 1), increases453

in most of the North Pacific. Its impact on SST variance is somewhat attenuated454

by the change in the ocean memory.455

These findings have implications for predictability – the generally lower ocean mem-456

ory and higher noise forcing suggests that predictability of a simple “damped persistence”457

model will decline in skill in the future climate in most regions. ENSO is a major source458

of SST predictability on seasonal timescales, hence the shift of its teleconnections results459

in ENSO-associated changes in predictability in different regions. Our results highlight460

the importance of studies into future ENSO changes and its regional impacts.461

Although this study was focused narrowly on the North Pacific and the CESM2-462

LE model, our framework should be equally applicable to other extratropical oceans and463

other climate models. Different large ensemble climate models show considerable diver-464

sity in their future ENSO dynamics (Maher et al., 2023), thus contribution of the var-465

ious drivers of SST variability may differ greatly between models. This study also did466

not determine the physical mechanisms responsible for the change in ocean memory and467

stochastic noise forcing and how they relate to climate mean state changes. We aim to468

answer these questions in future work.469
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