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Key points 14 

• We enhance Noah-MP snow albedo modeling by implementing physical snow radiative 15 

transfer and aging processes from the latest SNICAR 16 

• The Noah-MP/SNICAR simulated snow albedo exhibits superior performance compared 17 

to the default snow albedo scheme at validation sites 18 

• Noah-MP/SNICAR quantifies the impact of snow grain size, shape, and light-absorbing 19 

particles on snow albedo and radiative forcing 20 

 21 

Abstract 22 

The widely-used Noah-MP land surface model (LSM) currently adopts snow albedo 23 

parameterizations that are semi-physical in nature with nontrivial uncertainties. To improve 24 

physical representations of snow albedo processes, a state-of-the-art snowpack radiative transfer 25 

model, the latest version of Snow, Ice, and Aerosol Radiative (SNICAR) model, is integrated into 26 

Noah-MP in this study. The coupled Noah-MP/SNICAR represents snow grain properties (e.g., 27 

shape and size), snow aging, and physics-based snow-aerosol-radiation interaction processes. We 28 

compare Noah-MP simulations employing the SNICAR scheme and the default semi-physical 29 

Biosphere-Atmosphere Transfer Scheme (BATS) against in-situ snow albedo observations at three 30 

Rocky Mountain field stations. The agreement between simulated and in-situ observed ground 31 

snow albedo in the broadband, visible, and near-infrared spectra is enhanced in Noah-32 
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MP/SNICAR simulations relative to Noah-MP/BATS simulations. The SNICAR scheme 33 

improves the temporal variability of modeled broadband snow albedo, with a nearly twofold higher 34 

correlation with observations (r=0.66) than the default BATS snow albedo scheme (r=0.37). The 35 

underestimated variability in Noah-MP/BATS is a result of inadequate physical linkage between 36 

snow albedo and environmental/snowpack conditions, which is substantially improved by the 37 

SNICAR scheme. Importantly, the Noah-MP/SNICAR model, with constraints of snow grain size 38 

from the MODIS snow covered area and grain size (MODSCAG) satellite data, physically 39 

represents and quantifies the snow albedo and absorption of shortwave radiation in response to 40 

snow grain size, non-spherical snow shapes, and light-absorbing particles (LAPs). The coupling 41 

framework of the Noah-MP/SNICAR model provides a means to reduce the bias in simulating 42 

snow albedo. 43 

 44 

Plain Language Summary 45 

Snow albedo, defined as the proportion of sun light reflected on the snowpack influences 46 

snowpack growth, melting rate, surface energy and water cycles, as well as regional and global 47 

hydrological and climate change. The community Noah-MP land surface model uses semi-48 

physical snow albedo parameterizations with critical uncertainties. In this study, the integration of 49 

the latest version of the Snow, Ice, and Aerosol Radiative (SNICAR) model into Noah-MP aims 50 

to enhance the accuracy of snow albedo simulations. The coupled Noah-MP/SNICAR model 51 

encompasses various aspects of snow, including its grain properties, aging, and interactions among 52 

snow, aerosols, and radiation. We evaluate Noah-MP simulations using SNICAR and the default 53 

Biosphere-Atmosphere Transfer Scheme (BATS) snow albedo schemes against albedo 54 

observations at three Rocky Mountain stations. The SNICAR scheme enhances accuracy of snow 55 

albedo simulations, showing a correlation with observations that is twice as high as simulations 56 

using the default BATS snow albedo scheme. The variability of snow albedo in Noah-MP/BATS 57 

is underestimated due to the inadequate physical relationship between snow albedo and 58 

environmental/snowpack conditions. This issue is addressed and significantly improved by Noah-59 

MP/SNICAR. It is worth noting that the Noah-MP/SNICAR model takes into account the 60 

constraints of fresh snow grain size from satellite data.  61 

 62 

1. Introduction 63 

Snow albedo is defined as the ratio of the snow-reflected solar radiation to the total solar 64 

radiation incident on the snowpack. The observed high snow albedo is a result of the considerable 65 

portion of the visible spectrum of solar energy on the snow surfaces (Cohen & Rind, 1991). The 66 

albedo of snow exerts a substantial influence on multiple facets in the Earth system, including the 67 

evolution of the snowpack, rates of melting, surface energy and water cycles, and regional and 68 

global hydrological and climate change (Barnett et al., 2005; Flanner et al., 2011; Qian et al., 2015; 69 

Skiles et al., 2018; Zhang et al., 2019). This can be attributed to the positive snow albedo feedback 70 

and the complex interactions that occur between the land and the atmosphere (Hall, 2004). 71 

Variations in snow albedo resulting from temperature warming or cooling can lead to 72 
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enhancements or reductions in the absorption of solar radiation, hence intensifying the initial 73 

warming or cooling (Thackeray & Fletcher, 2016).  74 

There is still limitation and uncertainty in the representation of snow albedo processes 75 

within many land surface models (LSMs) coupled to regional and global weather and climate 76 

models, which consequently affects the estimation of land surface energy and water balances. For 77 

example, systematical snow albedo biases were found in one widely-used LSM, the Noah with 78 

multi-parameterization options (Noah-MP) (Niu et al., 2011) which is a land component within 79 

the Weather Research & Forecasting (WRF) model, the NOAA Unified Forecast System (UFS) 80 

model, and the National Water Model (NWM) among many others, as demonstrated by various 81 

studies (Abolafia‐Rosenzweig et al., 2021, 2022a; Chen et al., 2014; He et al., 2019, 2021; Liu et 82 

al., 2021, 2022; Wang et al., 2020; Xiao et al., 2021). The snow albedo in Noah-MP is represented 83 

using semi-physical or empirical functions (Verseghy, 2007; Yang et al., 1997), which lack 84 

physical treatments of snow albedo response to the evolution of snow properties such as aging and 85 

metamorphism. This approach leads to an inconsistent treatment between snow albedo and other 86 

snowpack properties (He and Flanner, 2020). To enhance the accuracy of snow albedo modeling, 87 

it is necessary to have a comprehensive understanding of the underlying physical mechanisms that 88 

influence snow albedo. Subsequently, these processes need to be represented in a more physically 89 

realistic manner. 90 

The albedo of snow is determined by a complex combination of multiple factors, such as 91 

snow depth, the size and shape of snow grains, and the concentration of light-absorbing particles 92 

(LAPs) (Warren and Wiscombe, 1980). It has been known that snow albedo is affected by LAPs 93 

mainly in the visible band (Warren and Wiscombe, 1980) and by grain size mainly in the near-94 

infrared (NIR) band (Wiscombe and Warren, 1980). Following the occurrence of snowfall, snow 95 

crystals experience fast alterations in their size and shape, exhibiting a tendency for snow grains 96 

to progressively increase in size over time (Colbeck, 1982). The alteration in snow grain size 97 

influences the interaction between the snow surface and incoming solar radiation. The presence of 98 

larger grains in snow leads to an increase in the path length traveled by photons, resulting in a 99 

lower albedo (Warren 1982). The Snow, Ice, and Aerosol Radiative (SNICAR) model (Flanner et 100 

al, 2007, 2021) is one of the most widely used open-source snowpack radiative transfer models, 101 

which resolves the aforementioned physical processes and simulates snow albedo by considering 102 

snowpack properties such as grain size and shape, as well as environmental conditions including 103 

the presence of LAPs. 104 

Simulating snow albedo using SNICAR has many advantages compared to the current 105 

semi-physical snow albedo schemes, such as the Biosphere-Atmosphere Transfer Scheme (BATS) 106 

in Noah-MP (Abolafia-Rosenzweig et al., 2022a; Yang et al., 1997). (1) The study conducted by 107 

Abolafia-Rosenzweig et al. (2022a) demonstrated the issue of using a constant parameter to 108 

represent the fresh snow albedo in Noah-MP/BATS, which is typically adopted by empirical/semi-109 

physical schemes, whereas the measured albedo of fresh snow exhibits significant variability 110 

especially in the NIR band. In contrast, fresh snow albedo is influenced by several environmental 111 

conditions and physical processes in the SNICAR model, such as temperature, downward solar 112 

spectrum, snow grain size and shapes, LAPs within snow, and the thickness and density of the 113 
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snowpack. The SNICAR treatment is more physically realistic, as highlighted by Wang et al. 114 

(2020). (2) The inclusion of different snow grain shapes, such as spheres, spheroids, hexagonal 115 

plates, and Koch snowflakes, is necessary to depict the types of non-spherical snow grains that are 116 

commonly observed (Liou et al., 2014; He et al., 2018a, 2023a; Robledano et al., 2023). This 117 

representation is currently absent in Noah-MP, while it has been included in SNICAR. (3) The 118 

representation of snow aging processes is empirical and incomplete in Noah-MP due to the 119 

absence of the simulation of snow grain size. Instead, the simulated snow grain size in SNICAR 120 

can be validated using either in-situ measurements or remote-sensing products. This approach 121 

offers the advantage of requiring less arbitrary tuning of empirical snow aging parameters which 122 

is needed by current Noah-MP snow albedo schemes. (4) SNICAR simulates the interaction 123 

between snow, aerosols, and radiation (Flanner et al., 2021; He et al. 2018a; Skiles & Painter, 124 

2019), encompassing three LAPs: black carbon (BC), organic carbon (OC), and dust. Additionally, 125 

the latest SNICAR coupled into the Community Land Model (CLM5) and the DOE’s Energy 126 

Exascale Earth System Model (E3SM) Land Model (ELM) also includes the internal mixing of 127 

BC and dust with snow grains (He et al., 2023a; Hao et al., 2023). However, these treatments are 128 

either missing or not physically represented in Noah-MP. (5) SNICAR presents the effect of solar 129 

zenith angle on snow albedo (for direct radiation) physically, while Noah-MP parameterizes this 130 

effect semi-empirically such as in BATS. (6) SNICAR computes vertical solar radiation absorption 131 

and heating rate for individual snow layers and the top soil layer, which changes snow and soil 132 

temperature profiles but is missing in the current Noah-MP albedo schemes. (7) SNICAR has a 133 

hyperspectral calculation capability that is more accurate than narrowband calculations (Wang et 134 

al., 2022), and can be expanded to incorporate or compare with spectral radiation obtained by 135 

remote sensing, while current Noah-MP snow albedo schemes only use two (visible and NIR) 136 

bands.  137 

Recent studies have implemented SNICAR in some LSMs coupled to global climate 138 

models, such as the CLM within Community Earth System Model (CESM) (Flanner et al., 2007; 139 

He et al., 2023a) and the DOE’s ELM (Hao et al., 2023). This study aims to implement the latest 140 

SNICAR version that has several new features and enhancements (He et al., 2023a) into the newly 141 

refactored Noah-MP version 5 by accounting for snow grain shape, size, snow-aerosol-radiation 142 

interaction, and snow aging processes (Section 2), and to evaluate modeled snow albedo using in 143 

situ albedo observations at three Rocky Mountain field stations (Section 3). We use in situ 144 

observations of upward/downward shortwave radiation and snow depth and satellite-derived snow 145 

grain size to evaluate and constrain the modeled snowpack and radiation conditions. We first 146 

evaluate whether the coupled Noah-MP/SNICAR model can accurately reproduce the observed 147 

mean and variability of snow albedo, and then perform the process-level model experiments to 148 

quantify the effects of snow grain size, shape, and LAPs on snow albedo and radiative forcing 149 

(Section 4). We also compare the snow albedo between enhanced Noah-MP/SNICAR simulation 150 

and the default Noah-MP/BATS simulation (Section 4). Section 5 discusses the potential 151 

uncertainties and future directions, and Section 6 concludes the study. 152 

 153 

2. Noah-MP and its coupling with SNICAR  154 
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2.1. Noah-MP model description 155 

Noah-MP (Niu et al., 2011; Yang et al., 2011) is one of the most widely used open-source 156 

community LSMs worldwide, which has been used in various research and operational models 157 

pertaining to weather, climate, and hydrology. The newest version of Noah-MP (version 5.0) (He 158 

et al., 2023c) has undergone recent refactoring and incorporating contemporary Fortran code 159 

styles, data structures, and standards. This refactoring has significantly improved the model's 160 

modularity, interoperability, and applicability (He et al., 2023b). 161 

Noah-MP is featured as a multi-parameterization LSM that enables the user to combine 162 

different physics schemes for modeling individual land surface processes (Niu et al. 2011). The 163 

Noah-MP snow module has the capability to simulate a maximum of three snow layers, with the 164 

number of layers being dependent on snow depth. Noah-MP treats explicit snow layers when snow 165 

depth is larger than 2.5 cm, and implicitly represents a very shallow (<2.5 cm) snow layer by 166 

combining it with the top soil layer in energy and water balance calculations. Snow layer 167 

temperature, snow depth, and snow water and ice contents are calculated based on snowpack water 168 

and energy balances. The model considers many key snow processes such as snow layer division 169 

and combination, liquid water holding within the snowpack, snow compaction, snow melting and 170 

refreezing, frost and sublimation at the ground snow surface, and the interception of snow by 171 

vegetation. The technical report by He et al. (2023c) provides a comprehensive description of the 172 

various aspects related to snowpack mass and energy processes. 173 

Within Noah-MP, there exist two semi-physical snow albedo schemes, namely CLASS 174 

(Verseghy, 2007) and BATS (Yang et al., 1997). The mathematical equations of the two snow 175 

albedo schemes are described in detail in He et al. (2023c). Both schemes simulate snow albedo in 176 

the visible and NIR bands under direct and diffuse radiation, but CLASS assumes the same snow 177 

albedo for direct and diffuse radiation as well as visible and NIR bands, which is physically 178 

unrealistic. Furthermore, both schemes do not explicitly simulate the evolution of snow properties 179 

(e.g., snow aging/metamorphism, grain size, and shape). A recent study (Abolafia-Rosenzweig et 180 

al., 2022a, 2022b) has tried to optimize the BATS albedo parameters using in-situ snow albedo 181 

measurements, which however still showed nontrivial remaining biases particularly for fresh snow 182 

albedo due to a lack of physical representation of relevant albedo processes. 183 

 184 

2.2 Noah-MP/SNICAR coupling 185 

In this study, we couple the refactored Noah-MP version 5 with the latest version of 186 

SNICAR (https://github.com/ESCOMP/CTSM/pull/1861) that has recently been implemented 187 

into CLM5 (He et al., 2023a). 188 

2.2.1 Multiple physics options for SNICAR albedo calculations 189 

 The SNICAR scheme we implement into Noah-MP incorporates several key physical 190 

processes and updates following He et al. (2023a): (1) two options for radiative transfer solvers, 191 

with one for a traditional tri-diagonal matrix two-stream solver (Toon et al., 1989) and one for a 192 

new adding-doubling solver (Dang et al., 2019); (2) three options for ice optical properties (Flanner 193 
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et al., 2021) using different ice refractive indices from Warren (1984), Warren and Brandt (2008), 194 

and Picard et al. (2016); (3) updated aerosol optical properties of BC and OC from Flanner et al. 195 

(2021); (4) six options of downward solar spectra for multiple atmospheric conditions (Flanner et 196 

al., 2021), including mid-latitude winter, mid-latitude summer, sub-Arctic winter, sub-Arctic 197 

summer, Summit Greenland, and high mountain; (5) four types of snow grain shapes including 198 

sphere, spheroid, hexagonal, and snowflake (He et al., 2017); (6) three dust types including 199 

Saharan dust, Colorado dust, and Greenland dust (Flanner et al., 2021); (7) two options for either 200 

internal or external mixing of dust (He et al., 2019b) or BC (He et al., 2017) with snow grains; (8) 201 

two options for wavelength band setup, including 5-band and hyperspectral (480-band with 10-nm 202 

spectral resolution) capabilities. Both 5-band and 480-band albedo results are then averaged to two 203 

(visible and NIR) bands’ values to be used in Noah-MP surface energy flux calculations. We 204 

implement all these SNICAR albedo calculation processes and the ability of choosing different 205 

physics options to simulate each individual processes into Noah-MP. 206 

2.2.2 Model inputs 207 

We incorporate additional input datasets that are required for SNICAR (Flanner et al., 208 

2021; He et al., 2023a) through an updated model I/O interface. SNICAR requires the input 209 

variables including direct/diffuse radiation, surface downward solar spectrum, solar zenith angle 210 

(only for direct radiation), albedo of the surface underlying snowpack, vertical profiles of snow 211 

grain size, snow layer thickness, snow density, and mass concentrations of LAPs (BC, mineral 212 

dust, and OC), snow grain shape, and optical properties of ice and LAPs. The optical properties of 213 

ice and LAPs for each snow layer and spectral bands, including single-scattering albedo, mass 214 

extinction cross section, and asymmetry parameter, are archived as look-up table datasets derived 215 

by Flanner et al. (2021) and He et al. (2023a). 216 

2.2.3 Snow grain size and aging processes 217 

The evolution of snow effective grain size is represented by snow aging processes and 218 

implemented into the Noah-MP/SNICAR model. The change in effective snow grain size is based 219 

on the dry and wet snow processes, including liquid-water-induced metamorphism, dry snow 220 

metamorphism, refreezing of liquid water, and the addition of freshly fallen snow (Flanner et al., 221 

2007; Lawrence et al., 2019). The liquid-water-induced metamorphism is parameterized based on 222 

measured grain growth rates under different liquid water contents (Brun, 1989). The dry snow 223 

metamorphism is determined by snow temperature, temperature gradient, density, and initial snow 224 

grain size distribution based on a microphysical particle model that simulates diffusive vapor flux 225 

amongst collections of ice crystals with various size and inter-particle spacing (Flanner and 226 

Zender, 2006). This process reproduces the typical observed rapid snow aging and increased snow 227 

grain size under the conditions of combined warm snow, large temperature gradient, and low 228 

density. The effective radius of refrozen liquid water is set to 1000 m (Oleson et al., 2013). The 229 

air temperature is a key factor in determining the grain size of freshly fallen snow. At temperatures 230 

below -30 degrees Celsius, a minimum of 54.5 m (radius) is imposed (Lawrence et al., 2019). A 231 

limit is imposed on the maximum of 204.5 m (radius) when the temperature exceeds 0 degrees 232 

Celsius. A linear ramp is employed within the temperature range between -30 to 0 degrees Celsius 233 

(Lawrence et al., 2019). These maximum and minimum limits are tunable parameters. In our 234 
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investigation, we discover that grain size and snow albedo are sensitive to the minimum and 235 

maximum values of the grain size of freshly fallen snow. In Section 3.3.3, we have optimized these 236 

two parameters to match with the snow grain size acquired from a satellite product (see Section 237 

3.2). In situations where there is a non-zero snow mass but an explicit snow layer has not yet been 238 

established (i.e., snow depth <2.5 cm), the effective snow grain size is assigned as the effective 239 

radius of freshly fallen snow (Lawrence et al., 2019). When snow layers are combined or divided, 240 

the effective snow grain size is calculated as a mass-weighted mean of those of the two layers. 241 

Lastly, the effective snow grain size is limited to a range of 30-1500 m, as this range covers the 242 

majority of snow grain size in reality and corresponds to the defined optical properties that are 243 

archived in look-up tables (Flanner et al., 2021; He et al., 2023a). 244 

2.2.4 Snow-aerosol-radiation interactions  245 

Additionally, we implement a mass-conserving approach to account for the presence of 246 

LAPs within snow, encompassing the mechanisms of atmospheric aerosol deposition on the 247 

uppermost snow layer, aerosol mass reduction via inter-layer meltwater drainage, and aerosol mass 248 

changes due to snow layer combination and subdivision (Flanner et al., 2007; Lawrence et al., 249 

2019). The Noah-MP/SNICAR model tracks the mass of nine aerosol particle species within each 250 

snow layer including hydrophilic BC, hydrophobic BC, hydrophilic OC, hydrophobic OC, and 251 

mineral dust with five particle size bins (μm in diameter, Table S2): 0.1-1.0, 1.0-2.5, 2.5-5.0, 5.0-252 

10.0, and 10.0-100.0 (Flanner et al., 2021). Each species exhibits distinct optical characteristics 253 

(Flanner et al., 2021; He et al., 2023a) and meltwater removal efficiencies (Lawrence et al., 2019). 254 

2.2.5 Albedo output and snowpack heating 255 

The results simulated from the Noah-MP/SNICAR model include the spectral snow albedo 256 

and the fraction of solar flux that is absorbed by each individual snow layer and the top soil layer. 257 

The spectral snow albedo is partitioned into visible and NIR bands by computing the spectrally 258 

weighted mean based on downward solar spectra (Flanner et al., 2007). The layer-wise snowpack 259 

heating due to snow and LAPs absorption of solar radiation from SNICAR is coupled with Noah-260 

MP snow and soil temperature computations to alter the temperature for each snow layer and the 261 

underlying top soil layer. 262 

 263 

3. Model experiments and evaluation data  264 

3.1 In-situ observations  265 

In-situ observations of snow albedo and snow depth data are obtained from three high-266 

elevation locations, East River, Irwin, and Senator Beck, within the southern Rocky Mountains in 267 

the state of the Colorado, United States (Figure 1; Abolafia-Rosenzweig et al., 2022a, 2022b). The 268 

longitudes, latitudes, elevation, vegetation types, available observed spectrum bands of snow 269 

albedo (broadband, visible, and NIR), and atmospheric forcing variables for each site are provided 270 

in Table S1. The comprehensive methodologies for measuring solar radiation, albedo and snow 271 

depth can be found in Abolafia-Rosenzweig et al. (2022a). 272 
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The snow albedo and snow depth measurements have undergone rigorous quality control 273 

procedures to ensure their accuracy and reliability. To eliminate the effect of low sun angle on 274 

albedo, we use averages of albedo and snow depth measured between 11:00 and 13:00 local time 275 

for the three sites during the periods of investigation. The analysis is further limited to periods 276 

when the observed snow depth is more than 0.5 m at the East River site and 0.2 m in the Senator 277 

Beck and Irwin sites, in order to ensure that understory vegetation is completely buried by 278 

snowpack to eliminate the influence of vegetation on snow albedo, following Abolafia-279 

Rosenzweig et al. (2022a). Observed albedo values that exceed 1.0 or fall below 0.0 are removed. 280 

 281 

 282 

Figure 1. Locations of the three study sites with topography. 283 

 284 

3.2 MODIS snow covered area and grain size (MODSCAG) product 285 

We use a daily 463-m MODSCAG product (Painter et al, 2009) to evaluate and optimize 286 

modeled snow grain size. Based on spectral unmixing and physically based snow radiative transfer 287 

models that remove soil and vegetation portions of the observed pixel, MODSCAG provides snow 288 

grain size at roughly 10:30 LST (local solar time). For a clear sky day, the mean absolute error 289 

(MAE) for snow grain size from MODSCAG compared to field measurements at a single site is 290 

51 µm (Painter et al., 2009). For both clear and cloud sky days, the gap-filled MODSCAG has a 291 

root mean square error (RMSE) of 118 µm for snow grain size compared to observations at three 292 

sites in the western United States (Bair et al., 2019). The MODSCAG data are obtained from the 293 

University of California, Santa Barbara (UCSB) website at 294 

https://snow.ucsb.edu/products/MODSCAG/WUS/. The snow grain size values are extracted from 295 

the encompassing MODSCAG grid cell of the three field sites studied in this work. 296 
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 297 

3.3 Site-specific model setup and simulations 298 

Noah-MP simulations adopt model-physics settings from the options used in continental-299 

scale convection-permitting WRF/Noah-MP climate simulations (He et al., 2019a; Liu et al., 2017; 300 

Rasmussen et al., 2023) that have reasonably captured key land surface states and fluxes over the 301 

continental U.S., except for different snow albedo options tested in this study. The snow-related 302 

parameters within Noah-MP follows the values used in the latest release of Noah-MP version 5.0 303 

(He et al., 2023c). Leaf area index (LAI) is characterized by vegetation type based on a 10-yr 304 

monthly climatology of MODIS products (Yang et al., 2011). The vegetation type for each 305 

research site is grassland, and the canopy height is set as documented at each specific site 306 

(Abolafia-Rosenzweig et al., 2022a). For each study site, Noah-MP is first spun up for 11-13 years 307 

to get the steady-state as listed in Table S1, followed by model analysis for subsequent years 308 

(Abolafia-Rosenzweig et al., 2022a). The analysis period ranges between October 2018 to August 309 

2021 in Irwin, October 2011 to 2020 October in Senator Beck, and July 2017 to November 2019 310 

in East River.  311 

3.3.1 Atmospheric forcing 312 

The Noah-MP simulations utilize atmospheric forcing derived from a combination of two 313 

sources: the hourly forcing data obtained from the 1-km observation-constrained NOAA's 314 

Analysis of Record for Calibration data set (AORC; National Weather Service, 2021) which are 315 

then replaced with in-situ observed data when accessible from each study site. The atmospheric 316 

forcing variables observed at each location are listed in Table S1. To minimize simulation 317 

uncertainty due to downward direct/diffuse shortwave radiation in visible and NIR bands, we use 318 

both the observed total downward shortwave radiation and the observed fraction of direct/diffuse 319 

and visible/NIR radiation when observational data are available. 320 

3.3.2 Aerosol deposition flux 321 

All model simulations are driven by the hourly aerosol (BC, dust, and OC) wet and dry 322 

deposition fluxes from the MERRA-2 reanalysis (Randles et al., 2017). MERRA-2 provides the 323 

wet and dry deposition fluxes for hydrophobic and hydrophilic (aged) OC and BC as well as dust 324 

with 5 size bins at a spatial resolution of 0.625°×0.5°. The aerosol deposition fluxes at three in-325 

situ locations are determined by spatial interpolation based on the nearest neighbor grids of 326 

MERRA-2 values. Additionally, the sizes of MERRA-2 dust aerosol are converted to size bins that 327 

are compatible with those in Noah-MP/SNICAR (Table S2). 328 

3.3.3 Fresh snow grain size optimization 329 

We optimize the tunable minimum and maximum values of freshly fallen snow grain size 330 

in SNICAR by comparing the simulated snow grain size to the MODSCAG data (Section 3.2). We 331 

define the fresh snow cases based on the following criteria: 1) a daily observed increment of snow 332 

depth exceeding 0.02 m following Abolafia-Rosenzweig et al. (2022a); 2) a precipitation amount 333 

surpassing 0.0 mm/day following Wang et al. (2020); and 3) the model simulation indicates a 334 

complete (100%) snow cover fraction. The original values are 54.526 µm for the minimum and 335 
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204.526 µm for the maximum. In this study, the minimal value is optimized to 33.0 µm, which is 336 

determined by identifying the smallest snow grain size from the MODSCAG data across all study 337 

sites and study periods. The maximum value is optimized to 91.0 µm to match modeled average 338 

snow grain size with the MODSCAG averaged value over all study sites and study periods. 339 

3.3.4 Model experiments 340 

 We conduct five model experiments, as shown in Table 1. The first simulation (Exp1) 341 

serves as the baseline case using the SNICAR snow albedo scheme. The SNICAR configuration 342 

includes the utilization of an adding-doubling solver, a midlatitude winter atmosphere profile with 343 

five wavelength bands, a hexagonal snow grain shape, the Colorado dust type, ice optical 344 

properties obtained from Picard et al. (2016), the inclusion of BC, dust, and OC, and the internal 345 

mixing of BC and dust with snow grains. Additionally, the simulation incorporates optimized 346 

parameters with respect to the fresh snow grain size mentioned in Section 3.3.3. Subsequently, we 347 

perform four sensitivity simulations (Exp2-5) to comprehend the impacts of snow grain size, snow 348 

grain shapes, and LAPs on snow albedo and surface radiative balance. The second simulation 349 

(Exp2) is identical to Exp1, except that it employs the original SNICAR parameters for fresh snow 350 

grain size. The third simulation (Exp3) is identical to Exp1, except for the modification of the 351 

hexagonal snow grain shape to the spherical shape. The fourth simulation (Exp4) is identical to 352 

Exp1, except that it does not account for the influence of LAPs in snow. The final simulation 353 

(Exp5) utilizes the default Noah-MP BATS snow albedo scheme instead of SNICAR. All 354 

simulations are forced with the in-situ observed snow depth to reduce the albedo uncertainty 355 

introduced by snow depth bias, as previous studies have shown nontrivial snow depth bias 356 

simulated by Noah-MP (Abolafia-Rosenzweig et al., 2021; Chen et al., 2014; He et al., 2019a; 357 

2021; Ikeda et al., 2021). Specifically, the observed snow depth is directly inserted to ensure the 358 

simulated snow depth aligns with the observed values during periods when observations are 359 

available (Figure S1). The snow depth is subsequently transformed into snow water and ice by 360 

multiplying with the modeled snow density, as typically done in snow depth data assimilation 361 

procedures. We note that this may introduce uncertainty to snow water equivalent in the model 362 

due to the lack of direct observations of snow density. 363 

 364 

Table 1. Noah-MP model configurations for different experiments. 365 

Experiments Snow albedo 

scheme 

Snow grain size Snow shape Snow impurities 

Exp1 

(baseline) 

SNICAR Optimized Hexagonal w/ LAPs 

Exp2 Same as Exp1 Original Same as Exp1 Same as Exp1 

Exp3 Same as Exp1 Same as Exp1 Sphere Same as Exp1 

Exp4 Same as Exp1 Same as Exp1 Same as Exp1 w/o LAPs 

Exp5 BATS - - - 

 366 

 3.4 Evaluation metrics 367 
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Statistical metrics are computed to assess the performance between simulated and observed 368 

snow albedo. Bias is employed as a metric to assess the extent to which the modeled albedo is 369 

capable of properly replicating the average condition of the observed values. The root mean square 370 

error (RMSE) is employed as a metric to assess the accuracy of the model capability in estimating 371 

the observed value. The Pearson’s correlation coefficient (r) is used to quantify the temporal 372 

correlation of modeled and observed snow albedo. 373 

 374 

4. Results  375 

4.1 Model evaluation 376 

4.1.1 Snow grain size 377 

The Noah-MP/SNICAR simulation using original SNICAR grain size parameters (i.e., 378 

Exp2) produces systematically higher fresh and aged snow grain sizes by about two times 379 

compared to MODSCAG (Figure 2). This discrepancy can be attributed to the overestimate of 380 

fresh snow grain size. When optimizing the size parameters of the freshly fallen snow grains (i.e., 381 

Exp1; see Section 3.3.3), the modeled average fresh snow grain sizes (85 µm) at three research 382 

sites agree very well with the values (85 µm) obtained from MODSCAG (Figure 2). Additionally, 383 

our results demonstrate that by improving the fresh snow grain size simulation in Noah-384 

MP/SNICAR, we can further effectively decrease the bias in the simulated aged (non-fresh) snow 385 

grain size. The mean value of the modeled aged snow grain size decreases from 182 to 103 µm, 386 

which matches very well with the observed value of 101 µm (Figure 2). 387 

 388 

 389 

Figure 2. Comparison of the average fresh and aged snow grain size obtained from MODSCAG, 390 

and the simulated results from Noah-MP/SNICAR simulations with the original and optimized 391 

fresh snow grain size parameters at three study sites during the periods when MODSCAG data is 392 

accessible. The uncertainty bar represents the spatiotemporal variability of snow grain size within 393 

one standard deviation. The fresh snow is defined in Section 3.3.3. 394 



manuscript submitted to JAMES 

 12 

 395 

4.1.2 Snow albedo during all periods 396 

Overall, the Noah-MP/SNICAR baseline simulation (i.e., Exp1) captures the observed 397 

snow albedo values, but with a higher broadband albedo by about 0.072 and less temporal 398 

variability (Figure 3a-c). The broadband overestimates mainly arise from the overestimated visible 399 

snow albedo by about 0.086, likely caused by the uncertainty in aerosol deposition and/or snow 400 

density, because snow grain size and snow depth are constrained by observations. This also 401 

explains the good agreement between modeled and observed mean NIR snow albedo (Figure 3a-402 

c), since NIR snow albedo is sensitive to grain size. Uncertainty in snow grain shape could also 403 

slightly (by up to ~0.02) contribute to the overestimated visible snow albedo based on sensitivity 404 

analysis (Section 4.2.2). The missing treatment of small-scale snow surface roughness in the model 405 

could also contribute to the snow albedo overestimates (Manninen et al., 2021), but it generally 406 

has a stronger impact on NIR albedo and hence may not be the main culprit here. Nevertheless, 407 

the model reproduces the observed pattern of the visible albedo larger than the NIR albedo. The 408 

underestimated temporal variability of snow albedo at both visible and NIR bands is partially 409 

caused by the underestimated variability of snow grain size (Figure 2), particularly during ablation 410 

periods (Figure 3g-i). This is mainly due to the uncertainty in snow aging processes, which are less 411 

constrained by observations. The uncertainty in aerosol deposition and evolution in snow could 412 

also contribute to the underestimated visible albedo temporal variability because the visible snow 413 

albedo is more sensitive to snow impurity than snow grain size (Section 4.2.3). 414 

4.1.3 Fresh snow albedo 415 

The Noah-MP/SNICAR baseline simulation of broadband fresh-snow albedo reproduces 416 

the mean and variability of observations due to the well-captured fresh snow grain size (Figure 2), 417 

with higher accuracy in the Senator Beck and Irwin sites than East River sites (Figure 3d-f). The 418 

simulated median broadband value closely matches the value of observed fresh-snow albedo at the 419 

Senator Beck site (0.88 observed vs. 0.87 modeled) and the Irwin site (0.84 observed vs. 0.83 420 

modeled). At the East River site, the modeled median value (0.83) is higher than the observed 421 

values (0.76) with underestimated temporal variability. For the visible band, the median fresh snow 422 

albedo is slightly overestimated by 0.03 at both Senator Beck and Irwin sites (Figure 3d-e). For 423 

the NIR band, the median fresh snow albedo is underestimated by about 0.03 at the Senator Beck 424 

site and about 0.07 at the Irwin site. Thus, low broadband biases at Irwin and Senator Beck are 425 

attributable to compensatory errors in visible and NIR bands.  426 

4.1.4 Snow albedo during melting periods 427 

We evaluate snow albedo during the melting period, which is delineated as the time 428 

spanning from March to June (Figure 3g-i). As snow melts, its albedo decreases with increased 429 

temporal variability in comparison to fresh snow albedo. The simulated snow albedo generally 430 

captures the observations during melting periods at broadband, visible, and NIR bands, with a 431 

similar bias pattern as that of the entire snow period (Figure 3a-c). Specifically, the overestimated 432 

broadband albedo (by 0.066) is dominated by the overestimate in the visible band (mean bias = 433 

0.093), with NIR albedo better simulated (mean bias = 0.043). This is likely due to the uncertainty 434 
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in aerosol content in snow, snow density, and/or snow grain shape as discussed in Sections 4.1.2 435 

and 5. The underestimated temporal variability of snow albedo at all bands can be explained by 436 

the uncertainty in snow aging processes and aerosol content in snow as mentioned in Section 4.1.2. 437 

 438 

 439 

Figure 3. Site-level comparisons of snow albedo (a-c), fresh snow albedo (d-f), and snow albedo 440 

over the melt period (March-June) (g-i) from observations (Observed) and Noah-MP/SNICAR 441 

simulations (Modeled) at the Senator Beck (left panels), Irwin (middle panels), and East River 442 

(right panels) stations. The boxes are the interquartile ranges, the horizontal lines plotted in the 443 

boxes are the median values, and the whiskers indicate the maximum and minimum values of the 444 

results.  445 

 446 

4.1.5 Comparison with default Noah-MP/BATS snow albedo scheme 447 

We further compare the Noah-MP/SNICAR simulation with the Noah-MP simulation 448 

using the default semi-physical BATS snow albedo scheme that has been recently optimized by 449 

Abolafia‐Rosenzweig et al. (2022a). Overall, the Noah-MP/SNICAR results outperform those of 450 

Noah-MP/BATS at all three sites (Figure 4). The SNICAR scheme improves the temporal 451 

variation (slope in the scatter plots) and correlation (r in scatter plots) with the observations for 452 

snow albedo at all bands. We note that the underestimated variability in the Noah-MP/BATS snow 453 

albedo suggests inadequate physical linkage and sensitivity between snow albedo and 454 

environmental/snowpack conditions in the BATS scheme, which is substantially improved by the 455 

SNICAR scheme. In terms of mean Bias and RMSE, there are few variations between the two 456 

simulations for the Senator Beck and East River sites, while the Irwin site shows a significant 457 
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improvement (about 50%). Noah-MP/SNICAR improves the issue of conditional bias existing in 458 

Noah-MP/BATS, i.e., the tendency of underestimating high albedo values and overestimating low 459 

albedo values. SNICAR enhances the variability in the visible snow albedo, which mitigates the 460 

overestimate of visible snow albedo in BATS. In the Noah-MP/BATS simulation, the visible snow 461 

albedo is consistently around 0.9 (blue dots in Figure 4b and 4e), which is not realistic. This could 462 

be because the BATS scheme uses a fixed parameter for fresh snow albedo (Abolafia-Rosenzweig 463 

et al., 2022a; Wang et al., 2020). However, in the Noah-MP/SNICAR simulation, the fresh snow 464 

albedo is dynamically dependent on environmental conditions such as changes in temperature, 465 

snow depth, snow grain size, and the concentrations of LAPs. Furthermore, the simulation of NIR 466 

snow albedo is significantly improved by Noah-MP/SNICAR relative to Noah-MP/BATS, leading 467 

to a notable decrease in the variability bias and bringing the simulated values much closer to the 468 

observed ones. 469 

 470 

 471 

Figure 4. Scatter plots comparing observed, Noah-MP/BATS (blue dots), and Noah-472 

MP/SNICAR (red dots) simulated ground snow albedo in broadband (a, d, and g), visible (b and 473 

e), and near-infrared (c and f) wavelengths at the Senator Beck (top panels), Irwin (middle 474 

panels), and East River (bottom panels) stations. 475 

 476 
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4.2 Effects of snow grain size, snow shape, and LAPs on albedo and radiative forcing 477 

Here, we quantify the modeled snow albedo and absorbed solar radiation in response to 478 

key snow albedo factors in Noah-MP/SNICAR simulations. 479 

4.2.1 Snow grain size 480 

The optimization of fresh snow grain size parameters (Section 3.3.3) leads to a decrease in 481 

snow grain size, which better agrees with observations (Figure 2) and in turn increases snow albedo 482 

(Figure 5a-c). The broadband snow albedo at the Senator Beck, Iwrin, and East River sites 483 

increases on average by 0.022, 0.012, and 0.021, respectively. The albedo changes induce surface 484 

radiative forcing (SRF) values of -14.1, -6.4, and -12.8 W m-2 (Figure 6a-c). The changes in snow 485 

grain size have a more pronounced impact on the NIR band compared to the visible band, which 486 

is consistent with previous studies showing higher NIR snow albedo sensitivity to snow grain size 487 

(e.g., Flanner et al., 2021). As a result, there are greater fluctuations in the SRF in the NIR band, 488 

leading to a decrease in the absorbed broadband solar radiation. In addition, the albedo and SRF 489 

changes induced by snow grain size changes are more pronounced for fresh snow compared to 490 

those in the melting period, mostly due to alterations in the fresh snow grain size by the parameter 491 

optimization. 492 

 493 

 494 

Figure 5. Changes in snow albedo due to changes in snow grain size from original fresh snow 495 

grain parameters to optimized ones (a-c), snow grain shape from sphere to hexagonal shape (d-f), 496 

and light-absorbing particles (LAPs) from no LAPs to with LAPs (g-i) in three stations, Senator 497 

Beck (left panels), Irwin (middle panels), and East River (right panels). The error bars represent 498 

the range of values within one standard deviation of temporal variability. The color of the plots 499 
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represents the data for the entire snow season (All), as well as the cases for fresh snow and the 500 

melting period (March-June). 501 

 502 

4.2.2 Snow grain shape 503 

In contrast to a spherical shape, a hexagonal grain shape exhibits a greater snow albedo 504 

(Figure 5d-f) and a lower SRF (Figure 6d-f). This is because non-spherical grains have a smaller 505 

asymmetry factor and weaker forward scattering compared to their spherical counterparts (Dang 506 

et al., 2016; He et al., 2017; 2018b), which is more representative of real-world conditions (Flanner 507 

et al., 2021; Hao et al., 2023; He et al., 2023a). The broadband snow albedo in the Senator Beck, 508 

Irwin, and East River stations increases by an average of 0.037, 0.042, and 0.038, respectively. 509 

This increase in albedo results in changes in surface solar radiation absorption of -26.7, -29.8, and 510 

-25.8 W m-2. During the melting period, the influence of the snow non-sphericity has a greater 511 

impact on snow albedo and SRF compared to the time when the snow is fresh, due to the larger 512 

snow grain size and shallower snowpack during melting periods (He et al., 2018b; He, 2022). 513 

Although the rise in albedo and the decrease in SRF occur in both the visible and NIR bands, it is 514 

more pronounced in the NIR band, because the NIR albedo is more sensitive to snow grain shape 515 

(Dang et al., 2016; Flanner et al., 2021). 516 

 517 

 518 

Figure 6. Similar to Figure 5, but for the induced surface radiative forcing (SRF). 519 

 520 

4.2.3 Light-absorbing particles 521 
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Figures 5g-i and 6g-i display the changes in snow albedo and SRF caused by the LAPs, 522 

respectively. Overall, including LAPs in snow causes a decrease in the broadband snow albedo by 523 

an average of -0.012 at the Senator Beck station. This reduction in albedo results in a SRF of 8.4 524 

W m−2. The Irwin and East River sites exhibit greater changes in snow albedo and SRF compared 525 

to the Senator Beck site, mostly due to the higher concentrations of LAPs present in these two 526 

locations. The LAPs-induced SRF at the Irwin station is 21.9 W m−2, while in the Easter River 527 

station it is 16.4 W m−2. These changes correspond to a decrease in the broadband snow albedo of 528 

-0.031 in the Irwin station and -0.023 in the Easter River station. The effects of LAPs are much 529 

more pronounced in the visible band than the NIR band, consistent with literature (e.g., Warren 530 

and Wiscombe, 1980; Flanner et al., 2007). The melting period exhibits greater LAPs-induced 531 

changes in snow albedo and SRF compared to the fresh snow period, because of larger snow grain 532 

sizes and higher snowpack density during melting periods (Flanner et al., 2021; He, 2022) as well 533 

as the enrichment of LAPs as snow melts (Niu et al., 2017). In addition, the higher downward solar 534 

radiation during melting periods also contributes to the higher SRF compared to winter. 535 

 536 

5. Uncertainty discussions and future directions 537 

Snow grain shape, size, and snow LAPs all contribute to the potential uncertainty in snow 538 

albedo calculations and solar radiation processes. In the three study sites, the shape of snow grains 539 

has a considerable impact on snow albedo over the whole snow season. However, because there is 540 

no model process that accounts for the dynamic evolution of snow grain morphologies and no 541 

direct observational constraints, the model's assumption of non-spherical shape throughout the 542 

period is uncertain (He et al., 2023a). In reality, the shape of snow grains demonstrates 543 

geographical variation and temporal variability, which necessitates additional refinements (Hao et 544 

al., 2023). During the melting phase, the snow albedo biases and the effects of LAPs on snow 545 

albedo are stronger than during the accumulation period (i.e., fresh snow). Nonetheless, the coarse 546 

resolution of the MERRA-2 aerosol deposition data is accompanied by uncertainty. Furthermore, 547 

the LAPs associated with snow are influenced by tunable model parameters such as snow aging 548 

scaling factor and inter-layer melt-water scavenging efficiency factor, both of which affect the size 549 

evolution of snow grains and the concentrations of LAPs within the snow through positive 550 

feedback mechanisms (Qian et al., 2014). Because of the lack of direct observed data, these model 551 

parameters are poorly constrained and warrant further exploration to reduce uncertainty in 552 

calculating the interactive effects of grain size and snow LAPs on snow albedo particularly during 553 

melting period. 554 

Furthermore, it is important to acknowledge that the input data, such as atmospheric 555 

forcing, are fundamental yet unavoidable sources of uncertainties. We strive to utilize in-situ 556 

observed forcing data to the greatest extent possible in order to decrease the level of uncertainty. 557 

In Noah-MP, certain snowpack physical processes, such as densification, still have uncertainties 558 

(e.g., He et al., 2019, 2021), which may contribute to the bias in the estimation of snow albedo. To 559 

mitigate this uncertainty, we used observed snow depth data to constrain model simulations. 560 

Looking beyond this study, we plan to evaluate over a larger study domain and conduct regional 561 

simulations in a coupled land-atmosphere modeling system to assess the feedback induced by the 562 
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enhanced SNICAR snow albedo scheme, such as the western United States that experience burning 563 

or/and regular dust-on-snow events (e.g., Gleason et al., 2019; Skiles et al., 2015). 564 

 565 

6. Conclusions  566 

We integrated the widely-used state-of-the-art snow albedo model, the latest version of 567 

SNICAR, into the refactored Noah-MP version 5, and evaluated in detail using ground 568 

measurements at three Rocky Mountain observation sites. The coupled Noah-MP/SNICAR model 569 

physically accounts for the aerosol-snow-radiation interaction, snow grain growth and aging, and 570 

effects of snow grain size and shape on snow albedo. The Noah-MP/SNICAR simulation well 571 

reproduces the observed broadband, visible, and NIR snow albedo, although it slightly 572 

overestimates the visible and broadband snow albedo. The SNICAR scheme significantly 573 

improves the temporal variability of snow albedo (particularly in the NIR band) comparing to the 574 

semi-physical BATS snow albedo scheme in Noah-MP. The remaining bias in Noah-MP/SNICAR 575 

could be attributed to uncertainties in the deposition and evolution of snow impurities and snow 576 

aging processes as well as atmospheric forcing and other potential snowpack physics (e.g., 577 

densification), which requires further studies. The individual impacts of snow grain size, non-578 

spherical snow grain shape, and snow impurity on snow albedo and surface radiative forcing have 579 

different signs and magnitudes. Overall, the average changes in the broadband snow albedo due to 580 

the optimization of fresh snow grain size, the use of non-spherical snow shape, and including LAPs 581 

at three stations are 0.018, 0.039, and -0.022. This study substantially enhances the physical 582 

representations of snow albedo processes in Noah-MP, which offers a stronger snow albedo 583 

modeling capability for future studies considering the wide use of Noah-MP. Future efforts are 584 

needed to investigate the climate effects of aerosols in snow via land-atmosphere interaction and 585 

snow albedo feedback in fully coupled meteorology-chemistry-snow models. 586 
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