References
1. Clark MB, Amaral PP, Schlesinger FJ, Dinger ME, Taft RJ, Rinn JL, et
al. The reality of pervasive transcription. PLoS Biol.
2011;9(7):e1000625; discussion e1102.
2. Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA
Structures and Interactions by Sequencing-Based Approaches. Trends
Biochem Sci. 2019;44(1):33-52.
3. Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and
potential clinical applications. Mol Ther Oncolytics. 2021;22:219-31.
4. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and
future. Genetics. 2013;193(3):651-69.
5. Luo S, Lu JY, Liu L, Yin Y, Chen C, Han X, et al. Divergent lncRNAs
Regulate Gene Expression and Lineage Differentiation in Pluripotent
Cells. Cell Stem Cell. 2016;18(5):637-52.
6. Zhang X, Yang F, Liu F, Tian Q, Hu M, Li P, et al. Conservation of
Differential Animal MicroRNA Processing by Drosha and Dicer. Front Mol
Biosci. 2021;8:730006.
7. Duchaine TF, Fabian MR. Mechanistic Insights into MicroRNA-Mediated
Gene Silencing. Cold Spring Harb Perspect Biol. 2019;11(3).
8. Gulyaeva LF, Kushlinskiy NE. Regulatory mechanisms of microRNA
expression. J Transl Med. 2016;14(1):143.
9. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA Translation
and Stability by microRNAs. In: Kornberg RD, Raetz CRH, Rothman JE,
Thorner JW, editors. Annual Review of Biochemistry, Vol 79. Annual
Review of Biochemistry. 792010. p. 351-79.
10. Ryczek N, Lys A, Makalowska I. The Functional Meaning of 5 &
PRIME;UTR in Protein-Coding Genes. Int J Mol Sci. 2023;24(3).
11. Gebert LFR, MacRae IJ. Regulation of microRNA function in animals.
Nat Rev Mol Cell Biol. 2019;20(1):21-37.
12. Kapoor P, Chowdhry A, Bagga DK, Bhargava D, Aishwarya S. MicroRNAs
in oral fluids (saliva and gingival crevicular fluid) as biomarkers in
orthodontics: systematic review and integrated bioinformatic analysis.
Prog Orthod. 2021;22(1):31.
13. Song Z, Gao R, Yan B. Potential roles of microRNA-1 and microRNA-133
in cardiovascular disease. RCM. 2020;21(1):57-64.
14. Cheng M, Yang J, Zhao X, Zhang E, Zeng Q, Yu Y, et al. Circulating
myocardial microRNAs from infarcted hearts are carried in exosomes and
mobilise bone marrow progenitor cells. Nat Commun. 2019;10(1):959.
15. Zhang T, Zhang G, Yang W, Chen H, Hu J, Zhao Z, et al. Lnc-PFAR
facilitates autophagy and exacerbates pancreatic fibrosis by reducing
pre-miR-141 maturation in chronic pancreatitis. Cell Death Dis.
2021;12(11):996.
16. Xiao L, Wu J, Wang JY, Chung HK, Kalakonda S, Rao JN, et al. Long
Noncoding RNA uc.173 Promotes Renewal of the Intestinal Mucosa by
Inducing Degradation of MicroRNA 195. Gastroenterology.
2018;154(3):599-611.
17. Yang C, Wu D, Gao L, Liu X, Jin Y, Wang D, et al. Competing
endogenous RNA networks in human cancer: hypothesis, validation, and
perspectives. Oncotarget. 2016;7(12):13479-90.
18. Moradi MT, Fallahi H, Rahimi Z. Interaction of long noncoding RNA
MEG3 with miRNAs: A reciprocal regulation. Journal of Cellular
Biochemistry. 2019;120(3):3339-52.
19. Li ZH, Jiang P, Li J, Peng MJ, Zhao X, Zhang X, et al. Tumor-derived
exosomal lnc-Sox2ot promotes EMT and stemness by acting as a ceRNA in
pancreatic ductal adenocarcinoma. Oncogene. 2018;37(28):3822-38.
20. Wang H, Lu B, Chen J. Knockdown of lncRNA SNHG1 attenuated
Aβ25-35-inudced neuronal injury via regulating KREMEN1 by acting as a
ceRNA of miR-137 in neuronal cells. Biochemical and Biophysical Research
Communications. 2019;518(3):438-44.
21. Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of
host miRNA properties and their association with epigenetics, long
non-coding RNAs, and Xeno-infectious factors. Cell Biosci.
2021;11(1):43.
22. Jens M, Rajewsky N. Competition between target sites of regulators
shapes post-transcriptional gene regulation. Nat Rev Genet.
2015;16(2):113-26.
23. Sun Q, Song YJ, Prasanth KV. One locus with two roles:
microRNA-independent functions of microRNA-host-gene locus-encoded long
noncoding RNAs. Wiley Interdiscip Rev RNA. 2021;12(3):e1625.
24. He D, Wu D, Muller S, Wang L, Saha P, Ahanger SH, et al.
miRNA-independent function of long noncoding pri-miRNA loci. Proc Natl
Acad Sci U S A. 2021;118(13).
25. Lu Y, Zhao X, Liu Q, Li C, Graves-Deal R, Cao Z, et al. lncRNA
MIR100HG-derived miR-100 and miR-125b mediate cetuximab resistance via
Wnt/β-catenin signaling. Nat Med. 2017;23(11):1331-41.
26. Mu X, Wu H, Liu J, Hu X, Wu H, Chen L, et al. Long noncoding RNA
TMPO-AS1 promotes lung adenocarcinoma progression and is negatively
regulated by miR-383-5p. Biomedicine & Pharmacotherapy.
2020;125:109989.
27. Zhang Y, Tang X, Shi M, Wen C, Shen B. MiR-216a decreases MALAT1
expression, induces G2/M arrest and apoptosis in pancreatic cancer
cells. Biochemical and Biophysical Research Communications.
2017;483(2):816-22.
28. Yang H, Liu P, Zhang J, Peng X, Lu Z, Yu S, et al. Long noncoding
RNA MIR31HG exhibits oncogenic property in pancreatic ductal
adenocarcinoma and is negatively regulated by miR-193b. Oncogene.
2016;35(28):3647-57.
29. Zhuo M, Yuan C, Han T, Cui J, Jiao F, Wang L. A novel feedback loop
between high MALAT-1 and low miR-200c-3p promotes cell migration and
invasion in pancreatic ductal adenocarcinoma and is predictive of poor
prognosis. BMC Cancer. 2018;18(1):1032.
30. Quinton LJ, Walkey AJ, Mizgerd JP. Integrative Physiology of
Pneumonia. Physiol Rev. 2018;98(3):1417-64.
31. Leone M, Bouadma L, Bouhemad B, Brissaud O, Dauger S, Gibot S, et
al. Hospital-acquired pneumonia in ICU. Anaesthesia Critical Care &
Pain Medicine. 2018;37(1):83-98.
32. Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers K, et
al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia.
An Official Clinical Practice Guideline of the American Thoracic Society
and Infectious Diseases Society of America. Am J Respir Crit Care Med.
2019;200(7):e45-e67.
33. MacIntyre CR, Chughtai AA, Barnes M, Ridda I, Seale H, Toms R, et
al. The role of pneumonia and secondary bacterial infection in fatal and
serious outcomes of pandemic influenza a(H1N1)pdm09. BMC Infect Dis.
2018;18(1):637.
34. Chai W, Li J, Shangguan Q, Liu Q, Li X, Qi D, et al. Lnc-ISG20
Inhibits Influenza A Virus Replication by Enhancing ISG20 Expression. J
Virol. 2018;92(16).
35. Xu S, Chen L, Tang Y, Yuan P, Yan J, Zheng Y, et al. Lnc-RP5
Regulates the miR-129-5p/Notch1/PFV Internal Promoter Axis to Promote
the Expression of the Prototype Foamy Virus Transactivator Tas. Virol
Sin. 2020;35(1):73-82.
36. Gui F, Peng H, Liu Y. Elevated circulating lnc-ANRIL/miR-125a axis
level predicts higher risk, more severe disease condition, and worse
prognosis of sepsis. J Clin Lab Anal. 2019;33(6):e22917.
37. Liu W, Geng F, Yu L. Long non-coding RNA MALAT1/microRNA 125a axis
presents excellent value in discriminating sepsis patients and exhibits
positive association with general disease severity, organ injury,
inflammation level, and mortality in sepsis patients. J Clin Lab Anal.
2020;34(6):e23222.
38. Wang D, Zhang J, Sun Y, Lv N, Sun J. Long non-coding RNA NKILA
weakens TNF-α-induced inflammation of MRC-5 cells by miR-21
up-regulation. Artificial Cells, Nanomedicine, and Biotechnology.
2020;48(1):498-505.
39. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical
Characteristics of Coronavirus Disease 2019 in China. N Engl J Med.
2020;382(18):1708-20.
40. Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC.
Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus
Disease 2019 (COVID-19): A Review. JAMA. 2020;324(8):782-93.
41. Tang H, Gao Y, Li Z, Miao Y, Huang Z, Liu X, et al. The noncoding
and coding transcriptional landscape of the peripheral immune response
in patients with COVID-19. Clin Transl Med. 2020;10(6):e200.
42. Vishnubalaji R, Shaath H, Alajez NM. Protein Coding and Long
Noncoding RNA (lncRNA) Transcriptional Landscape in SARS-CoV-2 Infected
Bronchial Epithelial Cells Highlight a Role for Interferon and
Inflammatory Response. Genes (Basel). 2020;11(7).
43. Wang R, Xue S, Liu Y, Peng M, Guo B. The correlation of long
non-coding RNA NEAT1 and its targets microRNA (miR)-21, miR-124, and
miR-125a with disease risk, severity, and inflammation of allergic
rhinitis. Medicine (Baltimore). 2021;100(4):e22946.
44. Alfahad AJ, Alzaydi MM, Aldossary AM, Alshehri AA, Almughem FA,
Zaidan NM, et al. Current views in chronic obstructive pulmonary disease
pathogenesis and management. Saudi Pharm J. 2021;29(12):1361-73.
45. Mei D, Tan WSD, Tay Y, Mukhopadhyay A, Wong WSF. Therapeutic RNA
Strategies for Chronic Obstructive Pulmonary Disease. Trends Pharmacol
Sci. 2020;41(7):475-86.
46. Ming X, Duan W, Yi W. Long non-coding RNA NEAT1 predicts elevated
chronic obstructive pulmonary disease (COPD) susceptibility and acute
exacerbation risk, and correlates with higher disease severity,
inflammation, and lower miR-193a in COPD patients. Int J Clin Exp
Pathol. 2019;12(8):2837-48.
47. Wang Y, Lyu X, Wu X, Yu L, Hu K. Long non-coding RNA PVT1, a novel
biomarker for chronic obstructive pulmonary disease progression
surveillance and acute exacerbation prediction potentially through
interaction with microRNA-146a. J Clin Lab Anal. 2020;34(8):e23346.
48. Qian Y, Mao ZD, Shi YJ, Liu ZG, Cao Q, Zhang Q. Comprehensive
Analysis of miRNA-mRNA-lncRNA Networks in Non-Smoking and Smoking
Patients with Chronic Obstructive Pulmonary Disease. Cell Physiol
Biochem. 2018;50(3):1140-53.
49. Fan S, Ren Y, Zhang W, Zhang H, Wang C. Long non-coding maternally
expressed gene 3 regulates cigarette smoke extract-induced apoptosis,
inflammation and cytotoxicity by sponging miR-181a-2-3p in 16HBE cells.
Oncol Lett. 2021;21(1):45.
50. Zhao J, Pu J, Hao B, Huang L, Chen J, Hong W, et al. LncRNA
RP11-86H7.1 promotes airway inflammation induced by TRAPM2.5 by acting
as a ceRNA of miRNA-9-5p to regulate NFKB1 in HBECS. Sci Rep.
2020;10(1):11587.
51. Barta JA, Powell CA, Wisnivesky JP. Global Epidemiology of Lung
Cancer. Ann Glob Health. 2019;85(1).
52. Duma N, Santana-Davila R, Molina JR. Non–Small Cell Lung Cancer:
Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clinic
Proceedings. 2019;94(8):1623-40.
53. Sun Q, Hao Q, Prasanth KV. Nuclear Long Noncoding RNAs: Key
Regulators of Gene Expression. Trends Genet. 2018;34(2):142-57.
54. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T.
Emerging roles of long non-coding RNA in cancer. Cancer Sci.
2018;109(7):2093-100.
55. Jin D, Guo J, Wu Y, Du J, Yang L, Wang X, et al. m(6)A mRNA
methylation initiated by METTL3 directly promotes YAP translation and
increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to
induce NSCLC drug resistance and metastasis. J Hematol Oncol.
2019;12(1):135.
56. Tang Q, Hann SS. HOTAIR: An Oncogenic Long Non-Coding RNA in Human
Cancer. Cellular Physiology and Biochemistry. 2018;47(3):893-913.
57. Jiang CY, Yang Y, Yang Y, Guo L, Huang J, Liu XR, et al. Long
Noncoding RNA (IncRNA) HOTAIR Affects Tumorigenesis and Metastasis of
Non-Small Cell Lung Cancer by Upregulating miR-61. Oncology Research.
2018;26(5):725-34.
58. Sun YJ, Li J, Chen CH. Effects of miR-221 on the apoptosis of
non-small cell lung cancer cells by lncRNA HOTAIR. European Review for
Medical and Pharmacological Sciences. 2019;23(10):4226-33.
59. Zhan YY, Abuduwaili K, Wang XL, Shen YL, Nuerlan S, Liu CL.
Knockdown of Long Non-Coding RNA HOTAIR Suppresses Cisplatin Resistance,
Cell Proliferation, Migration and Invasion of DDP-Resistant NSCLC Cells
by Targeting miR-149-5p/Doublecortin-Like Kinase 1 Axis. Cancer
Management and Research. 2020;12:7725-37.
60. Chen SS, Peng M, Zhou GZ, Pu YC, Yi MC, Zhu Y, et al. Long
non-coding RNA HOTAIR regulates the development of non-small cell lung
cancer through miR-217/DACH1 signaling pathway. European Review for
Medical and Pharmacological Sciences. 2019;23(2):670-8.
61. Qu R, Chen X, Zhang C. LncRNA ZEB1-AS1/miR-409–3p/ZEB1 feedback
loop is involved in the progression of non-small cell lung cancer.
Biochemical and Biophysical Research Communications. 2018;507(1):450-6.
62. Zhong Y, Lin H, Li Q, Liu C, Zhong L. Downregulation of long
non‑coding RNA GACAT1 suppresses proliferation and induces apoptosis of
NSCLC cells by sponging microRNA‑422a. Int J Mol Med. 2021;47(2):659-67.
63. Li J, Xia R, Liu T, Cai X, Geng G. LncRNA-ATB Promotes Lung Squamous
Carcinoma Cell Proliferation, Migration, and Invasion by Targeting
MicroRNA-590-5p/NF90 Axis. DNA and Cell Biology. 2020;39(3):459-73.
64. Zhang Y, Zhang Y, Zeng Q, Li C, Zhou H, Liu J, et al.
IL-1(3-Triggered Long Non-coding RNA CHRF Induces Non-Small Cell Lung
Cancer by Modulating the microRNA-489/Myd88 Axis. Journal of Cancer.
2022;13(8):2620-30.
65. Zhao L, Wang L, Wang Y, Ma P. Long non-coding RNA CCAT1 enhances
human non-small cell lung cancer growth through downregulation of
microRNA-218. Oncology Reports. 2020;43(4):1045-52.
66. Zhou Y, Shi H, Du Y, Zhao G, Wang X, Li Q, et al. lncRNA DLEU2
modulates cell proliferation and invasion of non-small cell lung cancer
by regulating miR-30c-5p/SOX9 axis. Aging-Us. 2019;11(18):7386-401.
67. Li P, Xing W, Xu J, Yuan D, Liang G, Liu B, et al. microRNA-301b-3p
downregulation underlies a novel inhibitory role of long non-coding RNA
MBNL1-AS1 in non-small cell lung cancer. Stem Cell Research & Therapy.
2019;10.
68. Ku GW, Kang Y, Yu S-L, Park J, Park S, Jeong IB, et al. LncRNA
LINC00240 suppresses invasion and migration in non-small cell lung
cancer by sponging miR-7-5p. Bmc Cancer. 2021;21(1).
69. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of
LncRNA-XIST inhibited development of non-small cell lung cancer by
activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell
death. Aging-Us. 2019;11(18):7830-46.
70. Lv X, Lian Y, Liu Z, Xiao J, Zhang D, Yin X. Exosomal long
non-coding RNA LINC00662 promotes non-small cell lung cancer progression
by miR-320d/E2F1 axis. Aging-Us. 2021;13(4):6010-24.
71. Wu JL, Meng FM, Li HJ. High expression of lncRNA MEG3 participates
in non-small cell lung cancer by regulating microRNA-7-5p. European
Review for Medical and Pharmacological Sciences. 2018;22(18):5938-45.
72. Yuan S, Xiang Y, Wang G, Zhou M, Meng G, Liu Q, et al.
Hypoxia-sensitive LINC01436 is regulated by E2F6 and acts as an oncogene
by targeting miR-30a-3p in non-small cell lung cancer. Molecular
Oncology. 2019;13(4):840-56.
73. Wu Z-H, Zhou J, Hu G-H, Liu J, Li W-C, Lai X-H, et al. LncRNA CASC2
inhibits lung adenocarcinoma progression through forming feedback loop
with miR-21/p53 axis. Kaohsiung Journal of Medical Sciences.
2021;37(8):675-85.
74. Qian B, Wang DM, Gu XS, Zhou K, Wu J, Zhang CY, et al. LncRNA H19
serves as a ceRNA and participates in non-small cell lung cancer
development by regulating microRNA-107. European Review for Medical and
Pharmacological Sciences. 2018;22(18):5946-53.
75. Ren J, Fu J, Ma T, Yan B, Gao R, An Z, et al. LncRNA H19-elevated
LIN28B promotes lung cancer progression through sequestering miR-196b.
Cell Cycle. 2018;17(11):1372-80.
76. Wang L, Cao L, Wen C, Li J, Yu G, Liu C. LncRNA LINC00857 regulates
lung adenocarcinoma progression, apoptosis and glycolysis by targeting
miR-1179/SPAG5 axis. Human Cell. 2020;33(1):195-204.
77. Shen Q, Jiang Y. LncRNA NNT-AS1 promotes the proliferation, and
invasion of lung cancer cells via regulating miR-129-5p expression.
Biomedicine & Pharmacotherapy. 2018;105:176-81.
78. Chen L, Qiu CH, Chen Y, Wang Y, Zhao JJ, Zhang M. LncRNA SNHG16
drives proliferation, migration, and invasion of lung cancer cell
through modulation of miR-520/VEGF axis. European Review for Medical and
Pharmacological Sciences. 2020;24(18):9522-31.
79. Tang L, Wang S, Wang Y, Li K, Li Q. LncRNA-UCA1 regulates lung
adenocarcinoma progression through competitive binding to miR-383. Cell
Cycle. 2022.
80. Feng J, Li J, Qie P, Li Z, Xu Y, Tian Z. Long non-coding RNA
(lncRNA) PGM5P4-AS1 inhibits lung cancer progression by up-regulating
leucine zipper tumor suppressor (LZTS3) through sponging microRNA
miR-1275. Bioengineered. 2021;12(1):196-207.
81. Li H, Guo X, Li Q, Ran P, Xiang X, Yuan Y, et al. Long non-coding
RNA 1308 promotes cell invasion by regulating the miR-124/ADAM 15 axis
in non-small-cell lung cancer cells. Cancer Management and Research.
2018;10:6599-609.
82. Pan X, Chen S, Ye L, Xu S, Wang L, Sun Y. Long non-coding RNA
DLGAP1-AS1 modulates the development of non-small-cell lung cancer via
the microRNA-193a-5p/DTL axis. Laboratory Investigation. 2022.
83. Chen L, Ren P, Zhang Y, Gong B, Yu D, Sun X. Long non-coding RNA
GAS5 increases the radiosensitivity of A549 cells through interaction
with the miR-21/PTEN/Akt axis. Oncology Reports. 2020;43(3):897-907.
84. Li H, Chen S, Liu J, Guo X, Xiang X, Dong T, et al. Long non-coding
RNA PVT1-5 promotes cell proliferation by regulating miR-126/SLC7A5 axis
in lung cancer. Biochemical and Biophysical Research Communications.
2018;495(3):2350-5.
85. Zhao L, Song X, Guo Y, Ding N, Wang T, Huang L. Long non-coding RNA
SNHG3 promotes the development of non-small cell lung cancer via the
miR-1343-3p/NFIX pathway. International Journal of Molecular Medicine.
2021;48(2).
86. Wang F, Quan Q. The long non-coding RNA
SNHG4/microRNA-let-7e/KDM3A/p21 pathway is involved in the development
of non-small cell lung cancer. Molecular Therapy-Oncolytics.
2021;20:634-45.
87. Lu Q, Shan S, Li Y, Zhu D, Jin W, Ren T. Long noncoding RNA SNHG1
promotes non-small cell lung cancer progression by up-regulating MTDH
via sponging miR-145-5p. Faseb Journal. 2018;32(7):3957-67.
88. Feng T, Feng N, Zhu T, Li Q, Zhang Q, Wang Y, et al. A SNP-mediated
lncRNA (LOC146880) and microRNA (miR-539-5p) interaction and its
potential impact on the NSCLC risk. Journal of Experimental & Clinical
Cancer Research. 2020;39(1).
89. Papi A, Brightling C, Pedersen SE, Reddel HK. Asthma. The Lancet.
2018;391(10122):783-800.
90. Nanda A, Wasan AN. Asthma in Adults. Medical Clinics of North
America. 2020;104(1):95-108.
91. Serebrisky D, Wiznia A. Pediatric Asthma: A Global Epidemic. Ann
Glob Health. 2019;85(1).
92. Li X, Ye S, Lu Y. Long non-coding RNA NEAT1 overexpression
associates with increased exacerbation risk, severity, and inflammation,
as well as decreased lung function through the interaction with
microRNA-124 in asthma. J Clin Lab Anal. 2020;34(1):e23023.
93. Ma L, Zhang Q, Hao J, Wang J, Wang C. LncRNA PVT1 exacerbates the
inflammation and cell-barrier injury during asthma by regulating
miR-149. J Biochem Mol Toxicol. 2020;34(11):e22563.
94. Liang Z, Tang F. The potency of lncRNA MALAT1/miR-155/CTLA4 axis in
altering Th1/Th2 balance of asthma. Biosci Rep. 2020;40(2).
95. Boulet LP. Airway remodeling in asthma: update on mechanisms and
therapeutic approaches. Current Opinion in Pulmonary Medicine.
2018;24(1):56-62.
96. Wang X, Xu R, Chi D, Dai C, Sheng M. Role of NEAT1/MiR-9-5p/SLC26A2
Pathway on Human Airway Smooth Muscle Cell. Yonsei Med J.
2021;62(9):858-67.
97. Lin L, Li Q, Hao W, Zhang Y, Zhao L, Han W. Upregulation of LncRNA
Malat1 Induced Proliferation and Migration of Airway Smooth Muscle Cells
via miR-150-eIF4E/Akt Signaling. Front Physiol. 2019;10:1337.
98. Zhang X-y, Tang X-y, Li N, Zhao L-m, Guo Y-l, Li X-s, et al. GAS5
promotes airway smooth muscle cell proliferation in asthma via
controlling miR-10a/BDNF signaling pathway. Life Sciences.
2018;212:93-101.
99. Wang W-L, Luo X-M, Zhang Q, Zhu H-Q, Chen G-Q, Zhou Q. The lncRNA
PVT1/miR-590-5p/FSTL1 axis modulates the proliferation and migration of
airway smooth muscle cells in asthma. Autoimmunity. 2021;54(3):138-47.
100. Lin L, Li Q, Hao W, Zhang Y, Zhao L, Han W. Upregulation of LncRNA
Malat1 Induced Proliferation and Migration of Airway Smooth Muscle Cells
via miR-150-eIF4E/Akt Signaling. Frontiers in Physiology. 2019;10.
101. Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome:
Advances in Diagnosis and Treatment. Jama. 2018;319(7):698-710.
102. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.
Epidemiology, Patterns of Care, and Mortality for Patients With Acute
Respiratory Distress Syndrome in Intensive Care Units in 50 Countries.
Jama. 2016;315(8):788-800.
103. Matthay MA, Zemans RL, Zimmerman GA, Arabi YM, Beitler JR, Mercat
A, et al. Acute respiratory distress syndrome. Nat Rev Dis Primers.
2019;5(1):18.
104. Huang X, Xiu H, Zhang S, Zhang G. The Role of Macrophages in the
Pathogenesis of ALI/ARDS. Mediators Inflamm. 2018;2018:1264913.
105. Vassiliou AG, Kotanidou A, Dimopoulou I, Orfanos SE. Endothelial
Damage in Acute Respiratory Distress Syndrome. Int J Mol Sci.
2020;21(22).
106. Vergadi E, Vaporidi K, Tsatsanis C. Regulation of Endotoxin
Tolerance and Compensatory Anti-inflammatory Response Syndrome by
Non-coding RNAs. Front Immunol. 2018;9:2705.
107. Zhao G, Su Z, Song D, Mao Y, Mao X. The long noncoding RNA MALAT1
regulates the lipopolysaccharide-induced inflammatory response through
its interaction with NF-κB. FEBS Lett. 2016;590(17):2884-95.
108. Wang H, Song S, Mu X. Long non-coding RNA HOTAIR knockdown
alleviates lipopolysaccharide-induced acute respiratory distress
syndrome and the associated inflammatory response by modulating the
microRNA-30a-5p/PDE7A axis. Exp Ther Med. 2021;22(4):1160.
109. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. New England
Journal of Medicine. 2018;378(19):1811-23.
110. Desai O, Winkler J, Minasyan M, Herzog EL. The Role of Immune and
Inflammatory Cells in Idiopathic Pulmonary Fibrosis. Front Med
(Lausanne). 2018;5:43.
111. Maher TM, Strek ME. Antifibrotic therapy for idiopathic pulmonary
fibrosis: time to treat. Respir Res. 2019;20(1):205.
112. Rout-Pitt N, Farrow N, Parsons D, Donnelley M. Epithelial
mesenchymal transition (EMT): a universal process in lung diseases with
implications for cystic fibrosis pathophysiology. Respir Res.
2018;19(1):136.
113. Liu Y, Li Y, Xu Q, Yao W, Wu Q, Yuan J, et al. Long non-coding
RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by
competitively binding miR-200c. Biochimica et Biophysica Acta (BBA) -
Molecular Basis of Disease. 2018;1864(2):420-31.
114. Xu Q, Cheng D, Liu Y, Pan H, Li G, Li P, et al. LncRNA-ATB
regulates epithelial-mesenchymal transition progression in pulmonary
fibrosis via sponging miR-29b-2-5p and miR-34c-3p. J Cell Mol Med.
2021;25(15):7294-306.
115. Xu H, Chen Y, Zhuang J, Zhu S, Xu B, Hong J. The role and mechanism
of lncRNA NEAT1 in the fibrosis of pulmonary epithelial cell. Molecular
& Cellular Toxicology. 2020;16(2):185-91.
116. Li X, Yu T, Shan H, Jiang H, Sun J, Zhao X, et al. lncRNA PFAL
promotes lung fibrosis through CTGF by competitively binding miR-18a.
Faseb j. 2018;32(10):5285-97.
117. Jiang H, Chen Y, Yu T, Zhao X, Shan H, Sun J, et al. Inhibition of
lncRNA PFRL prevents pulmonary fibrosis by disrupting the miR-26a/smad2
loop. Am J Physiol-Lung Cell Mol Physiol. 2018;315(4):L563-L75.
118. Liu X, Gao S, Xu H. lncRNAPCAT29 inhibits pulmonary fibrosis via
the TGF‑β1‑regulated RASAL1/ERK1/2 signal pathway. Mol Med Rep.
2018;17(6):7781-8.
119. Wu QY, Jiao BY, Gui WW, Zhang QY, Wang F, Han L. Long non-coding
RNA SNHG1 promotes fibroblast-to-myofibroblast transition during the
development of pulmonary fibrosis induced by silica particles exposure.
Ecotoxicology and Environmental Safety. 2021;228.
120. Deng W, Zhang Y, Fang P, Shi H, Yang S. Silencing lncRNA Snhg6
mitigates bleomycin-induced pulmonary fibrosis in mice via
miR-26a-5p/TGF-β1-smads axis. Environ Toxicol. 2022.
121. Ballester B, Milara J, Cortijo J. Idiopathic Pulmonary Fibrosis and
Lung Cancer: Mechanisms and Molecular Targets. Int J Mol Sci.
2019;20(3).