Reference
Abdulkadir, N. (2017). Bacterial Pigments and its Significance.MOJ Bioequivalence & Bioavailability , 4 (3).
https://doi.org/10.15406/mojbb.2017.04.00073
Ahmed, A., Ahmad, A., Li, R., AL-Ansi, W., Fatima, M., Mushtaq, B. S.,
Basharat, S., Li, Y., & Bai, Z. (2021). Recent advances in synthetic,
industrial and biological applications of violacein and its heterologous
production. Journal of Microbiology and Biotechnology ,31 (11), 1465–1480. https://doi.org/10.4014/jmb.2107.07045
Balasubramanian, V., Rajaram, R., Palanichamy, S., Subramanian, G.,
Mathivanan, K., & Pugazhendhi, A. (2018). Lanosterol expressed
bio-fouling inhibition on Gulf of Mannar coast, India. Progress in
Organic Coatings , 115 , 100–106.
https://doi.org/10.1016/j.porgcoat.2017.11.009
Bhaskar, P. V, & Bhosle, N. B. (2005). Microbial extracellular
polymeric substances in marine biogeochemical processes. In REVIEW
ARTICLES CURRENT SCIENCE (Vol. 88, Issue 1).
Casillo, A., Lanzetta, R., Parrilli, M., & Corsaro, M. M. (2018).
Exopolysaccharides from marine and marine extremophilic bacteria:
Structures, properties, ecological roles and applications. InMarine Drugs (Vol. 16, Issue 2). MDPI AG.
https://doi.org/10.3390/md16020069
Chatragadda, R., & Dufossé, L. (2021). Ecological and biotechnological
aspects of pigmented microbes: A way forward in development of food and
pharmaceutical grade pigments. In Microorganisms (Vol. 9, Issue
3, pp. 1–27). MDPI AG. https://doi.org/10.3390/microorganisms9030637
Chew, S. C., & Yang, L. (2015). Biofilms. In Encyclopedia of Food
and Health (pp. 407–415). Elsevier Inc.
https://doi.org/10.1016/B978-0-12-384947-2.00069-6
Choi, S. Y., Lim, S., Cho, G., Kwon, J., Mun, W., Im, H., & Mitchell,
R. J. (2020). Chromobacterium violaceum delivers violacein, a
hydrophobic antibiotic, to other microbes in membrane vesicles.Environmental Microbiology , 22 (2), 705–713.
https://doi.org/10.1111/1462-2920.14888
Choi, S. Y., Lim, S., Yoon, K. hye, Lee, J. I., & Mitchell, R. J.
(2021). Biotechnological Activities and Applications of Bacterial
Pigments Violacein and Prodigiosin. In Journal of Biological
Engineering (Vol. 15, Issue 1). BioMed Central Ltd.
https://doi.org/10.1186/s13036-021-00262-9
Choi, S. Y., Yoon, K. H., Lee, J. Il, & Mitchell, R. J. (2015).
Violacein: Properties and production of a versatile bacterial pigment.
In BioMed Research International (Vol. 2015). Hindawi Publishing
Corporation. https://doi.org/10.1155/2015/465056
Dang, H., & Lovell, C. R. (2016). Microbial Surface Colonization and
Biofilm Development in Marine Environments. Microbiology and
Molecular Biology Reviews , 80 (1), 91–138.
https://doi.org/10.1128/mmbr.00037-15
de Carvalho, C. C. C. R. (2018). Marine biofilms: A successful microbial
strategy with economic implications. In Frontiers in Marine
Science (Vol. 5, Issue APR). Frontiers Media S. A.
https://doi.org/10.3389/fmars.2018.00126
Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric
substances (EPSs) in ocean systems. Frontiers in Microbiology ,8 (MAY). https://doi.org/10.3389/fmicb.2017.00922
Donlan, R. M. (2001). Biofilm Formation: A Clinically Relevant
Microbiological Process. In Clinical Infectious Diseases (Vol.
33). https://academic.oup.com/cid/article/33/8/1387/347551
Dulo, B., Phan, K., Githaiga, J., Raes, K., & De Meester, S. (2021).
Natural Quinone Dyes: A Review on Structure, Extraction Techniques,
Analysis and Application Potential. In Waste and Biomass
Valorization (Vol. 12, Issue 12, pp. 6339–6374). Springer Science and
Business Media B.V. https://doi.org/10.1007/s12649-021-01443-9
Elsayis, A., Hassan, S. W. M., Ghanem, K. M., & Khairy, H. (2022).
Optimization of melanin pigment production from the halotolerant black
yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria.BMC Microbiology , 22 (1).
https://doi.org/10.1186/s12866-022-02505-1
Galasso, C., Corinaldesi, C., & Sansone, C. (2017). Carotenoids from
marine organisms: Biological functions and industrial applications. InAntioxidants (Vol. 6, Issue 4). MDPI.
https://doi.org/10.3390/antiox6040096
Glasser, N. R. (2017). Physiological and biochemical mechanisms of
phenazine-mediated survival in Pseudomonas aeruginosa . 2017 .
Gopal, J. V., Subashini, E., & Kannabiran, K. (2013). Extraction of
quinone derivative from Streptomyces sp. VITVSK1 isolated from Cheyyur
saltpan, Tamilnadu, India. Journal of the Korean Society for
Applied Biological Chemistry , 56 (4), 361–367.
https://doi.org/10.1007/s13765-013-3052-6
Hakvåg, S., Fjærvik, E., Klinkenberg, G., Borgos, S. E. F., Josefsen, K.
D., Ellingsen, T. E., & Zotchev, S. B. (2009). Violacein-producing
Collimonas sp. from the sea surface microlayer of costal waters in
Trøndelag, Norway. Marine Drugs , 7 (4), 576–588.
https://doi.org/10.3390/md7040576
Hodgson, D. A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P. R.,
Taton, A., Squier, A. H., & Keely, B. J. (2004). Environmental factors
influencing the pigment composition of in situ benthic microbial
communities in east Antarctic lakes. Aquatic Microbial Ecology ,37 (3), 247–263. https://doi.org/10.3354/ame037247
Kirti, K., Amita, S., Priti, S., Mukesh Kumar, A., & Jyoti, S. (2014).
Colorful World of Microbes: Carotenoids and Their Applications.Advances in Biology , 2014 , 1–13.
https://doi.org/10.1155/2014/837891
Krishna, J. G., Basheer, S., & Muthusamy, C. (2011). Prodigiosin
from Marine Bacterium: Production, Characterization and Application as
Dye in Textile Industry Isolation and characterization of bioactive
compounds from deep sea organisms and associated microbes View project
SERB FTYS View project . http://www.ripublication.com/ijbb.htm
Kusmita, L., Mutiara, E. V., Nuryadi, H., Pratama, P. A., Wiguna, A. S.,
& Radjasa, O. K. (2017). Characterization of carotenoid pigments from
bacterial symbionts of soft-coral Sarcophyton sp. from North Java Sea.International Aquatic Research , 9 (1), 61–69.
https://doi.org/10.1007/s40071-017-0157-2
Lami, R. (2019). Quorum Sensing in Marine Biofilms and Environments. InQuorum Sensing: Molecular Mechanism and Biotechnological
Application (pp. 55–96). Elsevier.
https://doi.org/10.1016/B978-0-12-814905-8.00003-4
Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A.,
Raaijmakers, J. M., Lemanceau, P., Mazurier, S., Heide, L.,
Blankenfeldt, W., Weller, D. M., & Thomashow, L. S. (2010). Diversity
and evolution of the Phenazine Biosynthesis Pathways. Applied and
Environmental Microbiology , 76 (3), 866–879.
https://doi.org/10.1128/AEM.02009-09
McErlean, C. S. P., & Moody, C. J. (2007). First synthesis of
N-(3-carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4- benzoquinone, an
unusual quinone isolated from Embelia ribes. Journal of Organic
Chemistry , 72 (26), 10298–10301.
https://doi.org/10.1021/jo702101w
Nawaz, A., Chaudhary, R., Shah, Z., Dufossé, L., Fouillaud, M., Mukhtar,
H., & Haq, I. U. (2021). An overview on industrial and medical
applications of bio‐pigments synthesized by marine bacteria. InMicroorganisms (Vol. 9, Issue 1, pp. 1–24). MDPI AG.
https://doi.org/10.3390/microorganisms9010011
Pierson, L. S., & Pierson, E. A. (2010). Metabolism and function of
phenazines in bacteria: Impacts on the behavior of bacteria in the
environment and biotechnological processes. In Applied
Microbiology and Biotechnology (Vol. 86, Issue 6, pp. 1659–1670).
https://doi.org/10.1007/s00253-010-2509-3
Poddar, K., Padhan, B., Sarkar, D., & Sarkar, A. (2021). Purification
and optimization of pink pigment produced by newly isolated bacterial
strain Enterobacter sp. PWN1. SN Applied Sciences , 3 (1).
https://doi.org/10.1007/s42452-021-04146-x
Ramesh, C. H., Mohanraju, R., Murthy, K. N., & Karthick, & P. (2017).
Molecular characterization of marine pigmented bacteria showing
antibacterial activity. In Indian Journal of Geo Marine Sciences(Vol. 46, Issue 10).
Ramesh, C., Vinithkumar, N. V., & Kirubagaran, R. (2019). Marine
pigmented bacteria: A prospective source of antibacterial compounds. InJournal of Natural Science, Biology and Medicine (Vol. 10, Issue
2, pp. 104–113). Wolters Kluwer Medknow Publications.
https://doi.org/10.4103/jnsbm.JNSBM_201_18
Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., &
Dufossé, L. (2020). Applications of prodigiosin extracted from marine
red pigmented bacteria Zooshikella sp. and actinomycete streptomyces sp.Microorganisms , 8 (4).
https://doi.org/10.3390/microorganisms8040556
Sakai-Kawada, F. E., Ip, C. G., Hagiwara, K. A., & Awaya, J. D. (2019).
Biosynthesis and bioactivity of prodiginine analogs in marine bacteria,
Pseudoalteromonas: A mini review. Frontiers in Microbiology ,10 (JULY), 1–9. https://doi.org/10.3389/fmicb.2019.01715
Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R., & Briand, J. F.
(2013). Marine biofilms on artificial surfaces: Structure and dynamics.
In Environmental Microbiology (Vol. 15, Issue 11, pp.
2879–2893). https://doi.org/10.1111/1462-2920.12186
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus
biofilm: An emerging battleground in microbial communities. InAntimicrobial Resistance and Infection Control (Vol. 8, Issue 1).
BioMed Central Ltd. https://doi.org/10.1186/s13756-019-0533-3
Silva, T. R. e., Silva, L. C. F., de Queiroz, A. C., Alexandre Moreira,
M. S., de Carvalho Fraga, C. A., de Menezes, G. C. A., Rosa, L. H.,
Bicas, J., de Oliveira, V. M., & Duarte, A. W. F. (2021). Pigments from
Antarctic bacteria and their biotechnological applications. InCritical Reviews in Biotechnology (Vol. 41, Issue 6, pp.
809–826). Taylor and Francis Ltd.
https://doi.org/10.1080/07388551.2021.1888068
Soliev, A. B., Hosokawa, K., & Enomoto, K. (2011). Bioactive pigments
from marine bacteria: Applications and physiological roles. InEvidence-based Complementary and Alternative Medicine (Vol.
2011). https://doi.org/10.1155/2011/670349
Susmita Mishra, M. (2014). Studies on Pigment Production by
Microorganisms Using Raw Materials of Agro-industrial Origin .
Tarangini, K., & Mishra, S. (2013). Production, Characterization and
Analysis of Melanin from Isolated Marine Pseudomonas sp. using Vegetable
waste. Research Journal of Engineering Sciences
___________________________________________
ISSN Res. J. Engineering Sci , 2 (5), 2278–9472.
https://www.researchgate.net/publication/273694696
Velmurugan, P., Venil, C. K., Veera Ravi, A., & Dufossé, L. (2020).
Marine Bacteria Is the Cell Factory to Produce Bioactive Pigments: A
Prospective Pigment Source in the Ocean. In Frontiers in
Sustainable Food Systems (Vol. 4). Frontiers Media S.A.
https://doi.org/10.3389/fsufs.2020.589655
Venil, C. K., Zakaria, Z. A., & Ahmad, W. A. (2013). Bacterial pigments
and their applications. In Process Biochemistry (Vol. 48, Issue
7, pp. 1065–1079). https://doi.org/10.1016/j.procbio.2013.06.006
Wang, Z., Tschirhart, T., Schultzhaus, Z., Kelly, E. E., Chen, A., Oh,
E., Nag, O., Glaser, E. R., Kim, E., Lloyd, P. F., Charles, P. T., Li,
W., Leary, D., Compton, J., Phillips, D. A., Dhinojwala, A., Payne, G.
F., Vora, G. J., Wang, C. Z., & Karyn Johnson, E. N. (2020).Melanin Produced by the Fast-Growing Marine Bacterium Vibrio
natriegens through Heterologous Biosynthesis: Characterization and
Application . https://doi.org/10.1128/AEM
Yada, S., Wang, Y., Zou, Y., Nagasaki, K., Hosokawa, K., Osaka, I.,
Arakawa, R., & Enomoto, K. (2008). Isolation and characterization of
two groups of novel marine bacteria producing violacein. Marine
Biotechnology , 10 (2), 128–132.
https://doi.org/10.1007/s10126-007-9046-9
Zhao, J., Li, X., Hou, X., Quan, C., & Chen, M. (2019). Widespread
existence of quorum sensing inhibitors in marine bacteria: Potential
drugs to combat pathogens with novel strategies. Marine Drugs ,17 (5). https://doi.org/10.3390/md17050275
Zhao, Y., Cheng, Q., Shen, Z., Fan, B., Xu, Y., Cao, Y., Peng, F., Zhao,
J., & Xue, B. (2020). Structure of prodigiosin from serratia marcescens
njzt-1 and its cytotoxicity on tsc2-null cells. Food Science and
Technology (Brazil) , 41 , 189–196.
https://doi.org/10.1590/fst.35719