Reference
Abdulkadir, N. (2017). Bacterial Pigments and its Significance.MOJ Bioequivalence & Bioavailability , 4 (3). https://doi.org/10.15406/mojbb.2017.04.00073
Ahmed, A., Ahmad, A., Li, R., AL-Ansi, W., Fatima, M., Mushtaq, B. S., Basharat, S., Li, Y., & Bai, Z. (2021). Recent advances in synthetic, industrial and biological applications of violacein and its heterologous production. Journal of Microbiology and Biotechnology ,31 (11), 1465–1480. https://doi.org/10.4014/jmb.2107.07045
Balasubramanian, V., Rajaram, R., Palanichamy, S., Subramanian, G., Mathivanan, K., & Pugazhendhi, A. (2018). Lanosterol expressed bio-fouling inhibition on Gulf of Mannar coast, India. Progress in Organic Coatings , 115 , 100–106. https://doi.org/10.1016/j.porgcoat.2017.11.009
Bhaskar, P. V, & Bhosle, N. B. (2005). Microbial extracellular polymeric substances in marine biogeochemical processes. In REVIEW ARTICLES CURRENT SCIENCE (Vol. 88, Issue 1).
Casillo, A., Lanzetta, R., Parrilli, M., & Corsaro, M. M. (2018). Exopolysaccharides from marine and marine extremophilic bacteria: Structures, properties, ecological roles and applications. InMarine Drugs (Vol. 16, Issue 2). MDPI AG. https://doi.org/10.3390/md16020069
Chatragadda, R., & Dufossé, L. (2021). Ecological and biotechnological aspects of pigmented microbes: A way forward in development of food and pharmaceutical grade pigments. In Microorganisms (Vol. 9, Issue 3, pp. 1–27). MDPI AG. https://doi.org/10.3390/microorganisms9030637
Chew, S. C., & Yang, L. (2015). Biofilms. In Encyclopedia of Food and Health (pp. 407–415). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00069-6
Choi, S. Y., Lim, S., Cho, G., Kwon, J., Mun, W., Im, H., & Mitchell, R. J. (2020). Chromobacterium violaceum delivers violacein, a hydrophobic antibiotic, to other microbes in membrane vesicles.Environmental Microbiology , 22 (2), 705–713. https://doi.org/10.1111/1462-2920.14888
Choi, S. Y., Lim, S., Yoon, K. hye, Lee, J. I., & Mitchell, R. J. (2021). Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. In Journal of Biological Engineering (Vol. 15, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13036-021-00262-9
Choi, S. Y., Yoon, K. H., Lee, J. Il, & Mitchell, R. J. (2015). Violacein: Properties and production of a versatile bacterial pigment. In BioMed Research International (Vol. 2015). Hindawi Publishing Corporation. https://doi.org/10.1155/2015/465056
Dang, H., & Lovell, C. R. (2016). Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiology and Molecular Biology Reviews , 80 (1), 91–138. https://doi.org/10.1128/mmbr.00037-15
de Carvalho, C. C. C. R. (2018). Marine biofilms: A successful microbial strategy with economic implications. In Frontiers in Marine Science (Vol. 5, Issue APR). Frontiers Media S. A. https://doi.org/10.3389/fmars.2018.00126
Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in Microbiology ,8 (MAY). https://doi.org/10.3389/fmicb.2017.00922
Donlan, R. M. (2001). Biofilm Formation: A Clinically Relevant Microbiological Process. In Clinical Infectious Diseases (Vol. 33). https://academic.oup.com/cid/article/33/8/1387/347551
Dulo, B., Phan, K., Githaiga, J., Raes, K., & De Meester, S. (2021). Natural Quinone Dyes: A Review on Structure, Extraction Techniques, Analysis and Application Potential. In Waste and Biomass Valorization (Vol. 12, Issue 12, pp. 6339–6374). Springer Science and Business Media B.V. https://doi.org/10.1007/s12649-021-01443-9
Elsayis, A., Hassan, S. W. M., Ghanem, K. M., & Khairy, H. (2022). Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria.BMC Microbiology , 22 (1). https://doi.org/10.1186/s12866-022-02505-1
Galasso, C., Corinaldesi, C., & Sansone, C. (2017). Carotenoids from marine organisms: Biological functions and industrial applications. InAntioxidants (Vol. 6, Issue 4). MDPI. https://doi.org/10.3390/antiox6040096
Glasser, N. R. (2017). Physiological and biochemical mechanisms of phenazine-mediated survival in Pseudomonas aeruginosa . 2017 .
Gopal, J. V., Subashini, E., & Kannabiran, K. (2013). Extraction of quinone derivative from Streptomyces sp. VITVSK1 isolated from Cheyyur saltpan, Tamilnadu, India. Journal of the Korean Society for Applied Biological Chemistry , 56 (4), 361–367. https://doi.org/10.1007/s13765-013-3052-6
Hakvåg, S., Fjærvik, E., Klinkenberg, G., Borgos, S. E. F., Josefsen, K. D., Ellingsen, T. E., & Zotchev, S. B. (2009). Violacein-producing Collimonas sp. from the sea surface microlayer of costal waters in Trøndelag, Norway. Marine Drugs , 7 (4), 576–588. https://doi.org/10.3390/md7040576
Hodgson, D. A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P. R., Taton, A., Squier, A. H., & Keely, B. J. (2004). Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes. Aquatic Microbial Ecology ,37 (3), 247–263. https://doi.org/10.3354/ame037247
Kirti, K., Amita, S., Priti, S., Mukesh Kumar, A., & Jyoti, S. (2014). Colorful World of Microbes: Carotenoids and Their Applications.Advances in Biology , 2014 , 1–13. https://doi.org/10.1155/2014/837891
Krishna, J. G., Basheer, S., & Muthusamy, C. (2011). Prodigiosin from Marine Bacterium: Production, Characterization and Application as Dye in Textile Industry Isolation and characterization of bioactive compounds from deep sea organisms and associated microbes View project SERB FTYS View project . http://www.ripublication.com/ijbb.htm
Kusmita, L., Mutiara, E. V., Nuryadi, H., Pratama, P. A., Wiguna, A. S., & Radjasa, O. K. (2017). Characterization of carotenoid pigments from bacterial symbionts of soft-coral Sarcophyton sp. from North Java Sea.International Aquatic Research , 9 (1), 61–69. https://doi.org/10.1007/s40071-017-0157-2
Lami, R. (2019). Quorum Sensing in Marine Biofilms and Environments. InQuorum Sensing: Molecular Mechanism and Biotechnological Application (pp. 55–96). Elsevier. https://doi.org/10.1016/B978-0-12-814905-8.00003-4
Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., Mazurier, S., Heide, L., Blankenfeldt, W., Weller, D. M., & Thomashow, L. S. (2010). Diversity and evolution of the Phenazine Biosynthesis Pathways. Applied and Environmental Microbiology , 76 (3), 866–879. https://doi.org/10.1128/AEM.02009-09
McErlean, C. S. P., & Moody, C. J. (2007). First synthesis of N-(3-carboxylpropyl)-5-amino-2-hydroxy-3-tridecyl-1,4- benzoquinone, an unusual quinone isolated from Embelia ribes. Journal of Organic Chemistry , 72 (26), 10298–10301. https://doi.org/10.1021/jo702101w
Nawaz, A., Chaudhary, R., Shah, Z., Dufossé, L., Fouillaud, M., Mukhtar, H., & Haq, I. U. (2021). An overview on industrial and medical applications of bio‐pigments synthesized by marine bacteria. InMicroorganisms (Vol. 9, Issue 1, pp. 1–24). MDPI AG. https://doi.org/10.3390/microorganisms9010011
Pierson, L. S., & Pierson, E. A. (2010). Metabolism and function of phenazines in bacteria: Impacts on the behavior of bacteria in the environment and biotechnological processes. In Applied Microbiology and Biotechnology (Vol. 86, Issue 6, pp. 1659–1670). https://doi.org/10.1007/s00253-010-2509-3
Poddar, K., Padhan, B., Sarkar, D., & Sarkar, A. (2021). Purification and optimization of pink pigment produced by newly isolated bacterial strain Enterobacter sp. PWN1. SN Applied Sciences , 3 (1). https://doi.org/10.1007/s42452-021-04146-x
Ramesh, C. H., Mohanraju, R., Murthy, K. N., & Karthick, & P. (2017). Molecular characterization of marine pigmented bacteria showing antibacterial activity. In Indian Journal of Geo Marine Sciences(Vol. 46, Issue 10).
Ramesh, C., Vinithkumar, N. V., & Kirubagaran, R. (2019). Marine pigmented bacteria: A prospective source of antibacterial compounds. InJournal of Natural Science, Biology and Medicine (Vol. 10, Issue 2, pp. 104–113). Wolters Kluwer Medknow Publications. https://doi.org/10.4103/jnsbm.JNSBM_201_18
Ramesh, C., Vinithkumar, N. V., Kirubagaran, R., Venil, C. K., & Dufossé, L. (2020). Applications of prodigiosin extracted from marine red pigmented bacteria Zooshikella sp. and actinomycete streptomyces sp.Microorganisms , 8 (4). https://doi.org/10.3390/microorganisms8040556
Sakai-Kawada, F. E., Ip, C. G., Hagiwara, K. A., & Awaya, J. D. (2019). Biosynthesis and bioactivity of prodiginine analogs in marine bacteria, Pseudoalteromonas: A mini review. Frontiers in Microbiology ,10 (JULY), 1–9. https://doi.org/10.3389/fmicb.2019.01715
Salta, M., Wharton, J. A., Blache, Y., Stokes, K. R., & Briand, J. F. (2013). Marine biofilms on artificial surfaces: Structure and dynamics. In Environmental Microbiology (Vol. 15, Issue 11, pp. 2879–2893). https://doi.org/10.1111/1462-2920.12186
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: An emerging battleground in microbial communities. InAntimicrobial Resistance and Infection Control (Vol. 8, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s13756-019-0533-3
Silva, T. R. e., Silva, L. C. F., de Queiroz, A. C., Alexandre Moreira, M. S., de Carvalho Fraga, C. A., de Menezes, G. C. A., Rosa, L. H., Bicas, J., de Oliveira, V. M., & Duarte, A. W. F. (2021). Pigments from Antarctic bacteria and their biotechnological applications. InCritical Reviews in Biotechnology (Vol. 41, Issue 6, pp. 809–826). Taylor and Francis Ltd. https://doi.org/10.1080/07388551.2021.1888068
Soliev, A. B., Hosokawa, K., & Enomoto, K. (2011). Bioactive pigments from marine bacteria: Applications and physiological roles. InEvidence-based Complementary and Alternative Medicine (Vol. 2011). https://doi.org/10.1155/2011/670349
Susmita Mishra, M. (2014). Studies on Pigment Production by Microorganisms Using Raw Materials of Agro-industrial Origin .
Tarangini, K., & Mishra, S. (2013). Production, Characterization and Analysis of Melanin from Isolated Marine Pseudomonas sp. using Vegetable waste. Research Journal of Engineering Sciences ___________________________________________ ISSN Res. J. Engineering Sci , 2 (5), 2278–9472. https://www.researchgate.net/publication/273694696
Velmurugan, P., Venil, C. K., Veera Ravi, A., & Dufossé, L. (2020). Marine Bacteria Is the Cell Factory to Produce Bioactive Pigments: A Prospective Pigment Source in the Ocean. In Frontiers in Sustainable Food Systems (Vol. 4). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2020.589655
Venil, C. K., Zakaria, Z. A., & Ahmad, W. A. (2013). Bacterial pigments and their applications. In Process Biochemistry (Vol. 48, Issue 7, pp. 1065–1079). https://doi.org/10.1016/j.procbio.2013.06.006
Wang, Z., Tschirhart, T., Schultzhaus, Z., Kelly, E. E., Chen, A., Oh, E., Nag, O., Glaser, E. R., Kim, E., Lloyd, P. F., Charles, P. T., Li, W., Leary, D., Compton, J., Phillips, D. A., Dhinojwala, A., Payne, G. F., Vora, G. J., Wang, C. Z., & Karyn Johnson, E. N. (2020).Melanin Produced by the Fast-Growing Marine Bacterium Vibrio natriegens through Heterologous Biosynthesis: Characterization and Application . https://doi.org/10.1128/AEM
Yada, S., Wang, Y., Zou, Y., Nagasaki, K., Hosokawa, K., Osaka, I., Arakawa, R., & Enomoto, K. (2008). Isolation and characterization of two groups of novel marine bacteria producing violacein. Marine Biotechnology , 10 (2), 128–132. https://doi.org/10.1007/s10126-007-9046-9
Zhao, J., Li, X., Hou, X., Quan, C., & Chen, M. (2019). Widespread existence of quorum sensing inhibitors in marine bacteria: Potential drugs to combat pathogens with novel strategies. Marine Drugs ,17 (5). https://doi.org/10.3390/md17050275
Zhao, Y., Cheng, Q., Shen, Z., Fan, B., Xu, Y., Cao, Y., Peng, F., Zhao, J., & Xue, B. (2020). Structure of prodigiosin from serratia marcescens njzt-1 and its cytotoxicity on tsc2-null cells. Food Science and Technology (Brazil) , 41 , 189–196. https://doi.org/10.1590/fst.35719