References
  1. Li X, Lu L, Hou W, et al. Epigenetics in the pathogenesis of diabetic nephropathy. Acta Biochim Biophys Sin (Shanghai) 2022;54:163-72.
  2. Tu X, Luo N, Lv Y, et al. Prognostic evaluation model of diabetic nephropathy patients. Ann Palliat Med 2021;10(6):6867-6872.
  3. Samsu N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. Biomed Res Int 2021;2021:1497449.
  4. Barutta F, Bellini S, Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond) 2022;136:493-520.
  5. Ma X, Hao C, Yu M, et al. Investigating the Molecular Mechanism of Quercetin Protecting against Podocyte Injury to Attenuate Diabetic Nephropathy through Network Pharmacology, MicroarrayData Analysis, and Molecular Docking. Evid Based Complement Alternat Med 2022;2022:7291434.
  6. Erekat NS. Programmed Cell Death in Diabetic Nephropathy: A Review of Apoptosis, Autophagy, and Necroptosis. Med Sci Monit 2022;28:e937766.
  7. Barutta F, Bellini S, Kimura S, et al. Protective effect of the tunneling nanotube-TNFAIP2/M-sec system on podocyte autophagy in diabetic nephropathy. Autophagy 2022. [Epub ahead of print]. doi: 10.1080/15548627.2022.2080382.
  8. Morimoto K, Matsui M, Samejima K, et al. Renal arteriolar hyalinosis, not intimal thickening in large arteries, is associated with cardiovascular events in people with biopsy-proven diabetic nephropathy. Diabet Med 2020;37:2143-52.
  9. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149:1060-72.
  10. Basit F, van Oppen LM, Schöckel L, et al. Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 2017;8:e2716.
  11. Zheng D, Liu J, Piao H, et al. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol 2022;13:1039241.
  12. Perez MA, Clostio AJ, Houston IR, et al. Ether lipid deficiency disrupts lipid homeostasis leading to ferroptosis sensitivity. PLoS Genet 2022;18:e1010436.
  13. Qiao L, Liu Y, Li C, et al. Regulation of iRhom-2/Tumor Necrosis Factor-α Converting Enzyme Pathway and Oxidative Stress Protects the Renal Injury with Anemonin in Streptozotocin-Induced Diabetic Nephropathy Neonatal Rat Model. Pharmacology 2019;104:258-66.
  14. Zhang Y, Sun C, Zhao C, et al. Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res 2019;1706:48-57.
  15. Ashraf A, Jeandriens J, Parkes HG, et al. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis. Redox Biol 2020;32:101494.
  16. Sugezawa K, Morimoto M, Yamamoto M, et al. GPX4 Regulates Tumor Cell Proliferation via Suppressing Ferroptosis and Exhibits Prognostic Significance in Gastric Cancer. Anticancer Res 2022;42:5719-29.
  17. Zhang J, Xie H, Yao J, et al. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination. Hum Cell 2023;36:209-22.
  18. Ma T, Du J, Zhang Y, et al. GPX4-independent ferroptosis-a new strategy in disease’s therapy. Cell Death Discov 2022;8:434.
  19. Xu W, Sun T, Wang J, et al. GPX4 Alleviates Diabetes Mellitus-Induced Erectile Dysfunction by Inhibiting Ferroptosis. Antioxidants (Basel) 2022;11:1896.
  20. Dixon SJ, Patel DN, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 2014;3:e02523.
  21. Xie Z, Xu M, Xie J, et al. Inhibition of Ferroptosis Attenuates Glutamate Excitotoxicity and Nuclear Autophagy in a CLP Septic Mouse Model. Shock 2022;57:694-702.
  22. Fan BY, Pang YL, Li WX, et al. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen Res 2021;16:561-6.
  23. Shi Q, Liu R, Chen L. Ferroptosis inhibitor ferrostatin‑1 alleviates homocysteine‑induced ovarian granulosa cell injury by regulating TET activity and DNA methylation. Mol Med Rep 2022;25:130.
  24. Astudillo AM, Balboa MA, Balsinde J. Compartmentalized regulation of lipid signaling in oxidative stress and inflammation: Plasmalogens, oxidized lipids and ferroptosis as new paradigms of bioactive lipid research. Prog Lipid Res 2022. [Epub ahead of print]. doi: 10.1016/j.plipres.2022.101207.
  25. Zhao Y, Zhao Y, Tian Y, et al. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox‑LDL‑induced THP‑1 monocytes. Exp Ther Med 2022;24:636.
  26. Zhu G, Sui S, Shi F, et al. Inhibition of USP14 suppresses ferroptosis and inflammation in LPS-induced goat mammary epithelial cells through ubiquitylating the IL-6 protein. Hereditas 2022;159:21.
  27. Tao WH, Shan XS, Zhang JX, et al. Dexmedetomidine Attenuates Ferroptosis-Mediated Renal Ischemia/Reperfusion Injury and Inflammation by Inhibiting ACSL4 via α2-AR. Front Pharmacol 2022;13:782466.