References:
[1]. Thompson BJ. YAP/TAZ: Drivers of Tumor Growth, Metastasis, and
Resistance to Therapy. Bioessays 2020;42:e1900162.
[2]. Pocaterra A, Romani P, Dupont S. YAP/TAZ functions and their
regulation at a glance. J Cell Sci 2020;133.
[3]. Totaro A, Castellan M, Di Biagio D, Piccolo S. Crosstalk
between YAP/TAZ and Notch Signaling. Trends Cell Biol 2018;28:560-73.
[4]. Piccolo S, Dupont S, Cordenonsi M. The biology of YAP/TAZ:
hippo signaling and beyond. Physiol Rev 2014;94:1287-312.
[5]. Piccolo S, Cordenonsi M, Dupont S. Molecular pathways: YAP and
TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res
2013;19:4925-30.
[6]. Das A, S R, Fischer, Pan D, Waterman CM. YAP nuclear
localization in the absence of cell-cell contact is mediated by a
filamentous actindependent, myosin II- and phospho-YAP independent
pathway during ECM mechanosensing. J Biol Chem 2016;291:6096-110.
[7]. Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz
M. YAP/TAZ as mechanosensors and mechanotransducers in regulating organ
size and tumor growth. FEBS Lett 2014;588:2663-70.
[8]. Kim J, Jo H, Hong H, et al. Actin remodelling factors control
ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat
Commun 2015;6:6781.
[9]. Matsui Y, Lai ZC. Mutual regulation between Hippo signaling and
actin cytoskeleton. Protein Cell 2013;4:904-10.
[10]. Koo JH, Guan KL. Interplay between YAP/TAZ and Metabolism.
Cell Metab 2018;28:196-206.
[11]. Crawford JJ, Bronner SM, Zbieg JR. Hippo pathway inhibition by
blocking the YAP/TAZ-TEAD interface: a patent review. Expert Opin Ther
Pat 2018;28:867-73.
[12]. Li L, Wang J, Zhang Y, et al. MEK1 promotes YAP and their
interaction is critical for tumorigenesis in liver cancer. FEBS Lett
2013;587:3921-7.
[13]. You B, Yang Y-L, Tetsu O, et al. Inhibition of ERK1/2
down-regulates the Hippo/YAP signaling pathway in human NSCLC cells.
Oncotarget 2015;6:4357-68.
[14]. Kim W, Khan SK, Gvozdenovic-Jeremic J, et al. Hippo signaling
interactions with Wnt/beta-catenin and Notch signaling repress liver
tumorigenesis. J Clin Invest 2017;127:137-52.
[15]. Pobbati AV, Hong W. A combat with the YAP/TAZ-TEAD
oncoproteins for cancer therapy. Theranostics 2020;10:3622-35.
[16]. Vassilev A, Kaneko KJ, Shu H, Zhao Y, DePamphilis ML. TEAD/TEF
transcription factors utilize the activation domain of YAP65, a
Src/Yes-associated protein localized in the cytoplasm. Genes Dev
2001;15:1229-41.
[17]. Eferl R, Wagner EF. AP-1: a double-edged sword in
tumorigenesis. Nat Rev Cancer 2003;3:859-68.
[18]. Koo JH, Plouffe SW, Meng Z, et al. Induction of AP-1 by
YAP/TAZ contributes to cell proliferation and organ growth. Genes Dev
2020;34:72-86.
[19]. Zanconato F, Forcato M, Battilana G, et al. Genome-wide
association between YAP/TAZ/TEAD and AP-1 at enhancers drives oncogenic
growth. Nat Cell Biol 2015;17:1218-27.
[20]. Chang L, Azzolin L, Di Biagio D, et al. The SWI/SNF complex is
a mechanoregulated inhibitor of YAP and TAZ. Nature 2018;563:265-9.
[21]. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and
downstream responses. Nat Cell Biol 2018;20:888-99.
[22]. Preisser F, Giehl K, Rehm M, Goppelt-Struebe M. Inhibitors of
oxygen sensing prolyl hydroxylases regulate nuclear localization of the
transcription factors Smad2 and YAP/TAZ involved in CTGF synthesis.
Biochim Biophys Acta 2016;1863:2027-36.
[23]. Szeto SG, Narimatsu M, Lu M, et al. YAP/TAZ Are
Mechanoregulators of TGF-beta-Smad Signaling and Renal Fibrogenesis. J
Am Soc Nephrol 2016;27:3117-28.
[24]. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic
response. FASEB J 2004;18:816-27.
[25]. Varelas X, Sakuma R, Samavarchi-Tehrani P, et al. TAZ controls
Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell
self-renewal. Nat Cell Biol 2008;10:837-48.
[26]. Grannas K, Arngarden L, Lonn P, et al. Crosstalk between Hippo
and TGFbeta: Subcellular Localization of YAP/TAZ/Smad Complexes. J Mol
Biol 2015;427:3407-15.
[27]. Strano S, Monti O, Pediconi N, et al. The transcriptional
coactivator Yes-associated protein drives p73 gene-target specificity in
response to DNA Damage. Mol Cell 2005;18:447-59.
[28]. Sun B, Wen Y, Wu X, Zhang Y, Qiao X, Xu X.
Expression pattern of YAP and TAZ
during orthodontic tooth movement in rats. J Mol Histol 2018;49:123-31.
[29]. Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. BMB
reports 2018;51:126-33.
[30]. Guo L, Teng L. YAP/TAZ for cancer therapy: opportunities and
challenges (review). International journal of oncology 2015;46:1444-52.
[31]. Zhao B, Ye X, Yu J, et al. TEAD mediates YAP-dependent gene
induction and growth control. Genes Dev 2008;22:1962-71.
[32]. Zinatizadeh MR, Miri SR, Zarandi PK, et al. The Hippo Tumor
Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in
cancer metastasis. Genes & diseases 2021;8:48-60.
[33]. Rosenbluh J, Nijhawan D, Cox AG, et al. beta-Catenin-driven
cancers require a YAP1 transcriptional complex for survival and
tumorigenesis. Cell 2012;151:1457-73.
[34]. Imajo M, Ebisuya M, Nishida E. Dual role of YAP and TAZ in
renewal of the intestinal epithelium. Nature cell biology 2015;17:7-19.
[35]. Yagi R, Chen L-F, Shigesada K, Murakami Y, Ito
Y.
A WW domain-containing Yes-associated
protein (YAP) is a novel transcriptional co-activator. The EMBO Journal
1999;18:2551–62.
[36]. Little DR, Lynch AM, Yan Y, Akiyama H, Kimura S, Chen J.
Differential chromatin binding of
the lung lineage transcription factor NKX2-1 resolves opposing murine
alveolar cell fates in vivo. Nature communications 2021;12:2509.
[37]. Koppens MAJ, Davis H, Valbuena GN, et al. Bone Morphogenetic
Protein Pathway Antagonism by Grem1 Regulates Epithelial Cell Fate in
Intestinal Regeneration. Gastroenterology 2021;161:239-54 e9.
[38]. Uemura M, Nagasawa A, Terai K. Yap/Taz transcriptional
activity in endothelial cells promotes intramembranous ossification via
the BMP pathway. Scientific Reports 2016;6.
[39]. Hillmer RE, Link BA. The Roles of Hippo Signaling Transducers
Yap and Taz in Chromatin Remodeling. Cells 2019;8.
[40]. Misra JR, Irvine KD. The Hippo Signaling Network and Its
Biological Functions. Annu Rev Genet 2018;52:65-87.
[41]. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ
size control and tumorigenesis: an updated version. Genes Dev
2010;24:862-74.
[42]. Zhao B, Tumaneng K, Guan KL. The Hippo pathway in organ size
control, tissue regeneration and stem cell self-renewal. Nat Cell Biol
2011;13:877-83.
[43]. Li S, Zhang X, Zhang R, et al. Hippo pathway contributes to
cisplatin resistant-induced EMT in nasopharyngeal carcinoma cells. Cell
Cycle 2017;16:1601-10.
[44]. Yu FX, Zhao B, Guan KL. Hippo Pathway in Organ Size Control,
Tissue Homeostasis, and Cancer. Cell 2015;163:811-28.
[45]. Hu F, Zheng Y, Zhao Y, Wu A, Mao Y, Chang N. Lovastatin
inhibits human lung cancer cell proliferation by TAZ. J Shanxi Med Univ
2021;52:391-7.
[46]. Pan D. The hippo signaling pathway in development and cancer.
Dev Cell 2010;19:491-505.
[47]. Zhang Q, Han X, Chen J, et al. Yes-associated protein (YAP)
and transcriptional coactivator with PDZ-binding motif (TAZ) mediate
cell density-dependent proinflammatory responses. J Biol Chem
2018;293:18071-85.
[48]. Badouel C, McNeill H. SnapShot: The hippo signaling pathway.
Cell 2011;145:484- e1.
[49]. Genevet A, Tapon N. The Hippo pathway and apico-basal cell
polarity. Biochem J 2011;436:213-24.
[50]. RR F, XB C. Expression and significance of YAP/TAZ in chronic
nasosinusitis with nasal polyp and its related disease asthma. CHIN J
OPHTHALMOL AND OTORHINOLARYNGOL 2021;21:148-51.
[51]. Siebel C, Lendahl U. Notch Signaling in Development, Tissue
Homeostasis, and Disease. Physiol Rev 2017;97:1235-94.
[52]. Bray SJ. Notch signalling in context. Nat Rev Mol Cell Biol
2016;17:722-35.
[53]. Engel-Pizcueta C, Pujades C. Interplay Between Notch and
YAP/TAZ Pathways in the Regulation of Cell Fate During Embryo
Development. Front Cell Dev Biol 2021;9:711531.
[54]. Menchero S, Rollan I, Lopez-Izquierdo A, et al. Transitions in
cell potency during early mouse development are driven by Notch. Elife
2019;8.
[55]. Yasuda D, Kobayashi D, Akahoshi N, et al. Lysophosphatidic
acid-induced YAP/TAZ activation promotes developmental angiogenesis by
repressing Notch ligand Dll4. J Clin Invest 2019;129:4332-49.
[56]. Nowell CS, Odermatt PD, Azzolin L, et al. Chronic inflammation
imposes aberrant cell fate in regenerating epithelia through
mechanotransduction. Nat Cell Biol 2016;18:168-80.
[57]. Demehri S, Turkoz A, Manivasagam S, Yockey LJ, Turkoz M, Kopan
R. Elevated epidermal thymic stromal lymphopoietin levels establish an
antitumor environment in the skin. Cancer Cell 2012;22:494-505.
[58]. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology
of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol
2017;18:758-70.
[59]. Totaro A, Castellan M, Battilana G, et al. YAP/TAZ link cell
mechanics to Notch signalling to control epidermal stem cell fate. Nat
Commun 2017;8:15206.
[60]. Azzolin L, Panciera T, Soligo S, et al. YAP/TAZ incorporation
in the beta-catenin destruction complex orchestrates the Wnt response.
Cell 2014;158:157-70.
[61]. Park HW, Kim YC, Yu B, et al. Alternative Wnt Signaling
Activates YAP/TAZ. Cell 2015;162:780-94.
[62]. Matsumoto S, Fujii S, Sato A, et al. A combination of Wnt and
growth factor signaling induces Arl4c expression to form epithelial
tubular structures. EMBO J 2014;33:702-18.
[63]. Guillermin O, Angelis N, Sidor CM, et al. Wnt and Src signals
converge on YAP-TEAD to drive intestinal regeneration. EMBO J
2021;40:e105770.
[64]. Estaras C, Benner C, Jones KA. SMADs and YAP compete to
control elongation of beta-catenin:LEF-1-recruited RNAPII during hESC
differentiation. Mol Cell 2015;58:780-93.
[65]. Ou W, Xu W, Liu F, et al. Increased expression of
yes-associated protein/YAP and transcriptional coactivator with
PDZ-binding motif/TAZ activates intestinal fibroblasts to promote
intestinal obstruction in Crohn’s disease. eBioMedicine 2021;69:103452.
[66]. Ou W, Xu W, Liu F, et al. Increased expression of
yes-associated protein/YAP and transcriptional coactivator with
PDZ-binding motif/TAZ activates intestinal fibroblasts to promote
intestinal obstruction in Crohn’s disease. EBioMedicine 2021;69:103452.
[67]. Meindl-Beinker NM, Dooley S. Transforming growth factor-beta
and hepatocyte transdifferentiation in liver fibrogenesis. J
Gastroenterol Hepatol 2008;23 Suppl 1:S122-7.
[68]. Qin Z, Xia W, Fisher GJ, Voorhees JJ, Quan T. YAP/TAZ
regulates TGF-β/Smad3 signaling by induction of Smad7 via AP-1 in human
skin dermal fibroblasts. Cell communication and signaling : CCS
2018;16:18.
[69]. Wang C, Gu C, Jeong KJ, et al. YAP/TAZ-Mediated Upregulation
of GAB2 Leads to Increased Sensitivity to Growth Factor-Induced
Activation of the PI3K Pathway. Cancer Research 2017;77:1637-48.
[70]. Luo JQ, Yu FX. GPCR-Hippo Signaling in Cancer. Cells 2019;8.
[71]. Zhang WY, Nandakumar N, Shi YH, et al. Downstream of Mutant
KRAS, the Transcription Regulator YAP Is Essential for Neoplastic
Progression to Pancreatic Ductal Adenocarcinoma. Science Signaling
2014;7.
[72]. Ghiso E, Migliore C, Ciciriello V, et al. YAP-Dependent AXL
Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC.
Neoplasia 2017;19:1012-21.
[73]. Zhang J, Ji JY, Yu M, et al. YAP-dependent induction of
amphiregulin identifies a non-cell-autonomous component of the Hippo
pathway. Nat Cell Biol 2009;11:1444-50.
[74]. Gui Y, Hou Q, Lu Q, Dai C, Li J. Loss of Rictor in tubular
cells exaggerates lipopolysaccharide induced renal inflammation and
acute kidney injury via Yap/Taz-NF-kappaB axis. Cell Death Discov
2020;6:40.
[75]. Liu B, Zheng Y, Yin F, Yu J, Silverman N, Pan D. Toll
Receptor-Mediated Hippo Signaling Controls Innate Immunity in
Drosophila. Cell 2016;164:406-19.
[76]. LaCanna R, Liccardo D, Zhang P, et al. Yap/Taz regulate
alveolar regeneration and resolution of lung inflammation. J Clin Invest
2019;129:2107-22.
[77]. Mooring M, Fowl BH, Lum SZC, et al. Hepatocyte Stress
Increases Expression of Yes-Associated Protein and Transcriptional
Coactivator With PDZ-Binding Motif in Hepatocytes to Promote Parenchymal
Inflammation and Fibrosis. Hepatology 2020;71:1813-30.
[78]. Deng Y, Lu J, Li W, et al. Reciprocal inhibition of YAP/TAZ
and NF-kappaB regulates osteoarthritic cartilage degradation. Nat Commun
2018;9:4564.
[79]. Zhou Y, Huang T, Zhang J, et al. Emerging roles of Hippo
signaling in inflammation and YAP-driven tumor immunity. Cancer Lett
2018;426:73-9.
[80]. Noguchi S, Saito A, Nagase T. YAP/TAZ Signaling as a Molecular
Link between Fibrosis and Cancer. Int J Mol Sci 2018;19.
[81]. Lee MJ, Byun MR, Furutani-Seiki M, Hong JH, Jung HS. YAP and
TAZ regulate skin wound healing. J Invest Dermatol 2014;134:518-25.
[82]. Wang D, Lin L, Lei K, et al. Vitamin D3 analogue facilitates
epithelial wound healing through promoting epithelial-mesenchymal
transition via the Hippo pathway. J Dermatol Sci 2020;100:120-8.
[83]. Qi YJ, Jiao YL, Chen P, et al. Porphyromonas gingivalis
promotes progression of esophageal squamous cell cancer via
TGFbeta-dependent Smad/YAP/TAZ signaling. PLoS Biol 2020;18:e3000825.
[84]. Moya IM, Halder G. Hippo-YAP/TAZ signalling in organ
regeneration and regenerative medicine. Nat Rev Mol Cell Biol
2019;20:211-26.
[85]. Loforese G, Malinka T, Keogh A, et al. Impaired liver
regeneration in aged mice can be rescued by silencing Hippo core kinases
MST1 and MST2. EMBO Mol Med 2017;9:46-60.
[86]. Lu L, Finegold MJ, Johnson RL. Hippo pathway coactivators Yap
and Taz are required to coordinate mammalian liver regeneration. Exp Mol
Med 2018;50:e423.
[87]. Burke JP, Mulsow JJ, O’Keane C, Docherty NG, Watson RW,
O’Connell PR. Fibrogenesis in Crohn’s disease. Am J Gastroenterol
2007;102:439-48.
[88]. Ramos A, Camargo FD. The Hippo signaling pathway and stem cell
biology. Trends Cell Biol 2012;22:339-46.
[89]. Diamantopoulou Z, White G, Fadlullah MZH, et al. TIAM1
Antagonizes TAZ/YAP Both in the Destruction Complex in the Cytoplasm and
in the Nucleus to Inhibit Invasion of Intestinal Epithelial Cells.
Cancer Cell 2017;31:621-34 e6.
[90]. Bae SJ, Luo X. Activation mechanisms of the Hippo kinase
signaling cascade. Biosci Rep 2018;38.
[91]. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated
phosphorylation by Lats and CK1 regulates YAP stability through
SCF(beta-TRCP). Genes Dev 2010;24:72-85.
[92]. Liang W, Zuo J, Liu M, et al. VASN promotes colorectal cancer
progression by activating the YAP/TAZ and AKT signaling pathways via
YAP. FASEB J 2023;37(1):e22688.
[93]. Della Chiara G, Gervasoni F, Fakiola M, et al. Epigenomic
landscape of human colorectal cancer unveils an aberrant core of
pan-cancer enhancers orchestrated by YAP/TAZ. Nat Commun
2021;12(1):2340.