References
Abazari M, Ghaffari A, Rashidzadeh H, Momeni Badeleh S, & Maleki Y
(2020). Current status and future outlook of nano-based systems for burn
wound management. J Biomed Mater Res B Appl Biomater 108:1934-1952.
Ahn S, Ardona HAM, Campbell PH, Gonzalez GM, & Parker KK (2019).
Alfalfa Nanofibers for Dermal Wound Healing. ACS Appl Mater Interfaces
11: 33535-33547.
Alhowyan AA, Altamimi MA, Kalam MA, Khan AA, Badran M, Binkhathlan
Z, et al. (2019). Antifungal efficacy of Itraconazole loaded
PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo
studies. J Microbiol Methods 161: 87-95.
Ali A, Suhail M, Mathew S, Shah MA, Harakeh SM, Ahmad S, et al.(2016). Nanomaterial Induced Immune Responses and Cytotoxicity. J
Nanosci Nanotechnol 16: 40-57.
Aman N, Rauf K, Khan SA, Tokhi A, Rehman NU, & Yameen MA (2019). Effect
of commercial and green synthesized ZnO NPs in murine model of
chloroquine-induced pruritus. Int J Nanomedicine 14: 3103-3110.
Andreu V, & Arruebo M (2018). Current progress and challenges of
nanoparticle-based therapeutics in pain management. J Control Release
269: 189-213.
Asif MH, Danielsson B, & Willander M (2015). ZnO Nanostructure-Based
Intracellular Sensor. Sensors (Basel) 15: 11787-11804.
Bainomugisa A, Duarte T, Lavu E, Pandey S, Coulter C, Marais BJ,
et al. (2018). A complete high-quality MinION nanopore assembly of an
extensively drug-resistant Mycobacterium tuberculosis Beijing lineage
strain identifies novel variation in repetitive PE/PPE gene regions.
Microb Genom 4.
Bakshi MS (2017). Nanotoxicity in Systemic Circulation and Wound
Healing. Chem Res Toxicol 30: 1253-1274.
Berthet M, Gauthier Y, Lacroix C, Verrier B, & Monge C (2017).
Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends
Biotechnol 35: 770-784.
Bhattacharya D, Tiwari R, Bhatia T, Purohit MP, Pal A, Jagdale P,
et al. (2019). Accelerated and scarless wound repair by a
multicomponent hydrogel through simultaneous activation of multiple
pathways. Drug Deliv Transl Res 9: 1143-1158.
Bikkad ML, Nathani AH, Mandlik SK, Shrotriya SN, & Ranpise NS (2014).
Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin
targeting by topical delivery. J Liposome Res 24: 113-123.
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B,
et al. (2017). Nanoparticles and innate immunity: new perspectives on
host defence. Semin Immunol 34: 33-51.
Chen CY, Yin H, Chen X, Chen TH, Liu HM, Rao SS, et al. (2020).
Angstrom-scale silver particle-embedded carbomer gel promotes wound
healing by inhibiting bacterial colonization and inflammation. Sci Adv
6.
Chen Q, Wu J, Liu Y, Li Y, Zhang C, Qi W, et al. (2019).
Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially
designed structure for accelerating chronic wound healing. Mater Sci Eng
C Mater Biol Appl 105: 110083.
Chen T, Guo ZP, Wang WJ, Qin S, Cao N, & Li MM (2014). Increased serum
HMGB1 levels in patients with Henoch-Schonlein purpura. Exp Dermatol
23: 419-423.
Dabrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, & Rossi RM
(2018). The relationship between skin function, barrier properties, and
body-dependent factors. Skin Res Technol 24: 165-174.
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, &
Pillay V (2019). The Hemocompatibility of Nanoparticles: A Review of
Cell-Nanoparticle Interactions and Hemostasis. Cells 8.
Diniz FR, Maia R, Rannier L, Andrade LN, M VC, da Silva CF, et
al. (2020). Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel
Improves Wound Healing In Vivo. Nanomaterials (Basel) 10.
do Amaral R, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella
F, et al. (2019). Functionalising Collagen-Based Scaffolds With
Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front
Bioeng Biotechnol 7: 371.
Dukhinova MS, Prilepskii AY, Shtil AA, & Vinogradov VV (2019). Metal
Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions.
Nanomaterials (Basel) 9.
Ema M, Matsuda A, Kobayashi N, Naya M, & Nakanishi J (2013). Dermal and
ocular irritation and skin sensitization studies of fullerene C60
nanoparticles. Cutan Ocul Toxicol 32: 128-134.
Frankova J, Pivodova V, Vagnerova H, Juranova J, & Ulrichova J (2016).
Effects of silver nanoparticles on primary cell cultures of fibroblasts
and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater
14: e137-142.
Fu X, Xu M, Liu J, Qi Y, Li S, & Wang H (2014). Regulation of migratory
activity of human keratinocytes by topography of multiscale
collagen-containing nanofibrous matrices. Biomaterials 35:1496-1506.
Ghiasi Z, Esmaeli F, Aghajani M, Ghazi-Khansari M, Faramarzi MA, &
Amani A (2019). Enhancing analgesic and anti-inflammatory effects of
capsaicin when loaded into olive oil nanoemulsion: An in vivo study. Int
J Pharm 559: 341-347.
Gryshchuk V, & Galagan N (2016). Silica Nanoparticles Effects on Blood
Coagulation Proteins and Platelets. Biochem Res Int 2016:2959414.
Gugerell A, Kober J, Laube T, Walter T, Nurnberger S, Gronniger E,
et al. (2014). Electrospun poly(ester-Urethane)- and
poly(ester-Urethane-Urea) fleeces as promising tissue engineering
scaffolds for adipose-derived stem cells. PLoS One 9: e90676.
Guo S, Kang G, Phan DT, Hsu MN, Por YC, & Chen CH (2018).
Polymerization-Induced Phase Separation Formation of Structured Hydrogel
Particles via Microfluidics for Scar Therapeutics. Sci Rep 8:2245.
Hadrup N, Sharma AK, & Loeschner K (2018). Toxicity of silver ions,
metallic silver, and silver nanoparticle materials after in vivo dermal
and mucosal surface exposure: A review. Regul Toxicol Pharmacol
98: 257-267.
Han G, & Ceilley R (2017). Chronic Wound Healing: A Review of Current
Management and Treatments. Adv Ther 34: 599-610.
Hashempour S, Ghanbarzadeh S, Maibach HI, Ghorbani M, & Hamishehkar H
(2019). Skin toxicity of topically applied nanoparticles. Ther Deliv
10: 383-396.
Hejazian LB, Esmaeilzade B, Moghanni Ghoroghi F, Moradi F, Hejazian MB,
Aslani A, et al. (2012). The role of biodegradable engineered
nanofiber scaffolds seeded with hair follicle stem cells for tissue
engineering. Iran Biomed J 16: 193-201.
Hesketh M, Sahin KB, West ZE, & Murray RZ (2017). Macrophage Phenotypes
Regulate Scar Formation and Chronic Wound Healing. Int J Mol Sci 18.
Hoeppli RE, & Pesenacker AM (2019). Targeting Tregs in Juvenile
Idiopathic Arthritis and Juvenile Dermatomyositis-Insights From Other
Diseases. Front Immunol 10: 46.
Homaeigohar S, & Boccaccini AR (2020). Antibacterial biohybrid
nanofibers for wound dressings. Acta Biomater 107: 25-49.
Hoversten KP, Kiemele LJ, Stolp AM, Takahashi PY, & Verdoorn BP (2020).
Prevention, Diagnosis, and Management of Chronic Wounds in Older Adults.
Mayo Clin Proc 95: 2021-2034.
In’t Veld RH, Da Silva CG, Kaijzel EL, Chan AB, & Cruz LJ (2017). The
Potential of Nano-Vehicle Mediated Therapy in Vasculitis and Multiple
Sclerosis. Curr Pharm Des 23: 1985-1992.
Janjic JM, & Gorantla VS (2017). Peripheral Nerve Nanoimaging:
Monitoring Treatment and Regeneration. AAPS J 19: 1304-1316.
Kaymakcalan OE, Karinja S, Abadeer A, Dong X, Jin JL, Galili U, et
al. (2018). Antigen-Mediated, Macrophage-Stimulated, Accelerated Wound
Healing Using alpha-Gal Nanoparticles. Ann Plast Surg 80:S196-S203.
Khadjavi A, Magnetto C, Panariti A, Argenziano M, Gulino GR, Rivolta
I, et al. (2015). Chitosan-shelled oxygen-loaded nanodroplets
abrogate hypoxia dysregulation of human keratinocyte gelatinases and
inhibitors: New insights for chronic wound healing. Toxicol Appl
Pharmacol 286: 198-206.
Kinaret PAS, Scala G, Federico A, Sund J, & Greco D (2020). Carbon
Nanomaterials Promote M1/M2 Macrophage Activation. Small 16:e1907609.
Kozono K, Nakahara T, Kikuchi S, Itoh E, Kido-Nakahara M, & Furue M
(2015). Pyoderma gangrenosum with increased levels of serum cytokines. J
Dermatol 42: 1186-1188.
Lebonvallet N, Laverdet B, Misery L, Desmouliere A, & Girard D (2018).
New insights into the roles of myofibroblasts and innervation during
skin healing and innovative therapies to improve scar innervation. Exp
Dermatol 27: 950-958.
Leccese P, & Alpsoy E (2019). Behcet’s Disease: An Overview of
Etiopathogenesis. Front Immunol 10: 1067.
Lee HJ, & Jang YJ (2018). Recent Understandings of Biology, Prophylaxis
and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol
Sci 19.
Lee HJ, Kwon HK, Kim HS, Kim MI, & Park HJ (2019). Hair Growth
Promoting Effect of 4HGF Encapsulated with PGA Nanoparticles (PGA-4HGF)
by beta-Catenin Activation and Its Related Cell Cycle Molecules. Int J
Mol Sci 20.
Lee J, Kim J, Go J, Lee JH, Han DW, Hwang D, et al. (2015).
Transdermal treatment of the surgical and burned wound skin via
phytochemical-capped gold nanoparticles. Colloids Surf B Biointerfaces
135: 166-174.
Li J, Zhong W, Zhang K, Wang D, Hu J, & Chan-Park MB (2020).
Biguanide-Derived Polymeric Nanoparticles Kill MRSA Biofilm and Suppress
Infection In Vivo. ACS Appl Mater Interfaces 12: 21231-21241.
Li M, Gao L, Chen J, Zhang Y, Wang J, Lu X, et al. (2018).
Controllable release of interleukin-4 in double-layer sol-gel coatings
on TiO2 nanotubes for modulating macrophage polarization. Biomed Mater
13: 045008.
Liao C, Li Y, & Tjong SC (2019). Antibacterial Activities of Aliphatic
Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide
Sheets. Nanomaterials 9.
Lin S, Zhang Q, Zhang T, Shao X, Li Y, Shi S, et al. (2018a).
Tetrahedral DNA Nanomaterial Regulates the Biological Behaviors of
Adipose-Derived Stem Cells via DNA Methylation on Dlg3. ACS Appl Mater
Interfaces 10: 32017-32025.
Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, et al. (2018b).
Hydrogel derived from porcine decellularized nerve tissue as a promising
biomaterial for repairing peripheral nerve defects. Acta Biomater
73: 326-338.
Lindholm C, & Searle R (2016). Wound management for the 21st century:
combining effectiveness and efficiency. Int Wound J 13 Suppl 2:5-15.
Liu Y, Sun Y, Li S, Liu M, Qin X, Chen X, et al. (2020).
Tetrahedral Framework Nucleic Acids Deliver Antimicrobial Peptides with
Improved Effects and Less Susceptibility to Bacterial Degradation. Nano
Lett 20: 3602-3610.
Ma Z, Li S, Wang H, Cheng W, Li Y, Pan L, et al. (2019). Advanced
electronic skin devices for healthcare applications. J Mater Chem B
7: 173-197.
Maghimaa M, & Alharbi SA (2020). Green synthesis of silver
nanoparticles from Curcuma longa L. and coating on the cotton fabrics
for antimicrobial applications and wound healing activity. J Photochem
Photobiol B 204: 111806.
Manuja A, Raguvaran R, Kumar B, Kalia A, & Tripathi BN (2020).
Accelerated healing of full thickness excised skin wound in rabbits
using single application of alginate/acacia based nanocomposites of ZnO
nanoparticles. Int J Biol Macromol 155: 823-833.
Mihai MM, Dima MB, Dima B, & Holban AM (2019). Nanomaterials for Wound
Healing and Infection Control. Materials (Basel) 12.
Mirzahosseinipour M, Khorsandi K, Hosseinzadeh R, Ghazaeian M, &
Shahidi FK (2020). Antimicrobial photodynamic and wound healing activity
of curcumin encapsulated in silica nanoparticles. Photodiagnosis
Photodyn Ther 29: 101639.
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi
Zangabad K, Ghamarypour A, Aref AR, et al. (2018). Nanomedicine
and advanced technologies for burns: Preventing infection and
facilitating wound healing. Adv Drug Deliv Rev 123: 33-64.
Mohamed DS, Abd El-Baky RM, Sandle T, Mandour SA, & Ahmed EF (2020).
Antimicrobial Activity of Silver-Treated Bacteria against other
Multi-Drug Resistant Pathogens in Their Environment. Antibiotics (Basel)
9.
Mohammadi Z, Sharif Zak M, Majdi H, Mostafavi E, Barati M, Lotfimehr
H, et al. (2019). The effect of chrysin-curcumin-loaded
nanofibres on the wound-healing process in male rats. Artif Cells
Nanomed Biotechnol 47: 1642-1652.
Nafisi S, Samadi N, Houshiar M, & Maibach HI (2018). Mesoporous silica
nanoparticles for enhanced lidocaine skin delivery. Int J Pharm
550: 325-332.
Navarro-Requena C, Perez-Amodio S, Castano O, & Engel E (2018). Wound
healing-promoting effects stimulated by extracellular calcium and
calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology
29: 395102.
Nethi SK, Das S, Patra CR, & Mukherjee S (2019). Recent advances in
inorganic nanomaterials for wound-healing applications. Biomater Sci
7: 2652-2674.
Nischwitz SP, Bernardelli de Mattos I, Hofmann E, Groeber-Becker F, Funk
M, Mohr GJ, et al. (2019). Continuous pH monitoring in wounds
using a composite indicator dressing - A feasibility study. Burns
45: 1336-1341.
Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, & Davamani F (2019).
Cationic chitosan-propolis nanoparticles alter the zeta potential of S.
epidermidis, inhibit biofilm formation by modulating gene expression and
exhibit synergism with antibiotics. PLoS One 14: e0213079.
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, et
al. (2018). Engineering Intravenously Administered Nanoparticles to
Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of
Trauma. Bioconjug Chem 29: 2436-2447.
Palmer BC, Phelan-Dickenson SJ, & DeLouise LA (2019). Multi-walled
carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin
inflammation. Part Fibre Toxicol 16: 3.
Pan A, Zhong M, Wu H, Peng Y, Xia H, Tang Q, et al. (2018).
Topical Application of Keratinocyte Growth Factor Conjugated Gold
Nanoparticles Accelerate Wound Healing. Nanomedicine 14:1619-1628.
Pena-Gonzalez CE, Pedziwiatr-Werbicka E, Martin-Perez T, Szewczyk EM,
Copa-Patino JL, Soliveri J, et al. (2017). Antibacterial and
antifungal properties of dendronized silver and gold nanoparticles with
cationic carbosilane dendrons. Int J Pharm 528: 55-61.
Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland
CL, et al. (2018). CD19(+)CD24(hi)CD38(hi) B Cells Are Expanded
in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype
After Activation Through Toll-Like Receptor 7 and Interferon-alpha.
Front Immunol 9: 1372.
Poormasjedi-Meibod MS, Pakyari M, Jackson JK, Salimi Elizei S, &
Ghahary A (2016). Development of a nanofibrous wound dressing with an
antifibrogenic properties in vitro and in vivo model. J Biomed Mater Res
A 104: 2334-2344.
Pramanik N, Bhattacharya S, Rath T, De J, Adhikary A, Basu RK, et
al. (2019). Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified
graphite oxide based 3D scaffold for tissue engineering application.
Mater Sci Eng C Mater Biol Appl 94: 534-546.
Qais FA, Shafiq A, Ahmad I, Husain FM, Khan RA, & Hassan I (2020).
Green synthesis of silver nanoparticles using Carum copticum: Assessment
of its quorum sensing and biofilm inhibitory potential against gram
negative bacterial pathogens. Microb Pathog 144: 104172.
Qiao Y, Wang Y, Tian H, Li M, Jian J, Wei Y, et al. (2018).
Multilayer Graphene Epidermal Electronic Skin. ACS Nano 12:8839-8846.
Quaglino P, Fava P, Caproni M, Antiga E, De Simone C, Papini M, et
al. (2016). Phenotypical characterization of circulating cell subsets
in pyoderma gangrenosum patients: the experience of the Italian
immuno-pathology group. J Eur Acad Dermatol Venereol 30:655-658.
Ramanathan G, Muthukumar T, & Tirichurapalli Sivagnanam U (2017). In
vivo efficiency of the collagen coated nanofibrous scaffold and their
effect on growth factors and pro-inflammatory cytokines in wound
healing. Eur J Pharmacol 814: 45-55.
Saitoh Y, Mizuno H, Xiao L, Hyoudou S, Kokubo K, & Miwa N (2012).
Polyhydroxylated fullerene C(6)(0)(OH)(4)(4) suppresses intracellular
lipid accumulation together with repression of intracellular superoxide
anion radicals and subsequent PPARgamma2 expression during spontaneous
differentiation of OP9 preadipocytes into adipocytes. Mol Cell Biochem
366: 191-200.
Simak J, & De Paoli S (2017). The effects of nanomaterials on blood
coagulation in hemostasis and thrombosis. Wiley Interdiscip Rev Nanomed
Nanobiotechnol 9.
Singh R, Cheng S, & Singh S (2020). Oxidative stress-mediated genotoxic
effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech
10: 66.
Sooklert K, Nilyai S, Rojanathanes R, Jindatip D, Sae-Liang N,
Kitkumthorn N, et al. (2019). N-acetylcysteine reverses the
decrease of DNA methylation status caused by engineered gold, silicon,
and chitosan nanoparticles. Int J Nanomedicine 14: 4573-4587.
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, & Merlo S (2020).
The Treatment of Impaired Wound Healing in Diabetes: Looking among Old
Drugs. Pharmaceuticals (Basel) 13.
Sun G, Yang S, Cai H, Shu Y, Han Q, Wang B, et al. (2019).
Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage
modulation for spinal cord injury treatment. J Colloid Interface Sci
549: 50-62.
Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, et al. (2018).
Enhanced wound healing in diabetic rats by nanofibrous scaffolds
mimicking the basketweave pattern of collagen fibrils in native skin.
Biomater Sci 6: 340-349.
Sundaram MN, Amirthalingam S, Mony U, Varma PK, & Jayakumar R (2019).
Injectable chitosan-nano bioglass composite hemostatic hydrogel for
effective bleeding control. Int J Biol Macromol 129: 936-943.
Talaat RM, Sibaii H, Bassyouni IH, & El-Wakkad A (2019). IL-17, IL-10,
IL-6, and IFN-gamma in Egyptian Behcet’s disease: correlation with
clinical manifestations. Eur Cytokine Netw 30: 15-22.
Teixeira MA, Paiva MC, Amorim MTP, & Felgueiras AHP (2020). Electrospun
Nanocomposites Containing Cellulose and Its Derivatives Modified with
Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials
(Basel) 10.
Vazquez-Munoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E,
Juarez-Moreno K, Gallego-Hernandez AL, et al. (2019). Enhancement
of antibiotics antimicrobial activity due to the silver nanoparticles
impact on the cell membrane. PLoS One 14: e0224904.
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, & Ferrari F
(2019). Hyaluronic acid and chitosan-based nanosystems: a new dressing
generation for wound care. Expert Opin Drug Deliv 16: 715-740.
Wallach D, & Vignon-Pennamen MD (2018). Pyoderma gangrenosum and Sweet
syndrome: the prototypic neutrophilic dermatoses. Br J Dermatol
178: 595-602.
Wang M, Lai X, Shao L, & Li L (2018). Evaluation of immunoresponses and
cytotoxicity from skin exposure to metallic nanoparticles. Int J
Nanomedicine 13: 4445-4459.
Wasef LG, Shaheen HM, El-Sayed YS, Shalaby TIA, Samak DH, Abd El-Hack
ME, et al. (2020). Effects of Silver Nanoparticles on Burn Wound
Healing in a Mouse Model. Biol Trace Elem Res 193: 456-465.
Weng W, He S, Song H, Li X, Cao L, Hu Y, et al. (2018). Aligned
Carbon Nanotubes Reduce Hypertrophic Scar via Regulating Cell Behavior.
ACS Nano 12: 7601-7612.
Xiao Y, Xu D, Song H, Shu F, Wei P, Yang X, et al. (2019).
Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing
fibroblast apoptosis. Int J Nanomedicine 14: 5989-6000.
Yang X, Liu X, Li Y, Huang Q, He W, Zhang R, et al. (2017). The
negative effect of silica nanoparticles on adipogenic differentiation of
human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl
81: 341-348.
Yu D, Shang Y, Yuan J, Ding S, Luo S, & Hao L (2016). Wnt/beta-Catenin
Signaling Exacerbates Keloid Cell Proliferation by Regulating
Telomerase. Cell Physiol Biochem 39: 2001-2013.
Zhang J, Qiao Q, Liu M, He T, Shi J, Bai X, et al. (2018). IL-17
Promotes Scar Formation by Inducing Macrophage Infiltration. Am J Pathol
188: 1693-1702.
Zhang K, Lui VCH, Chen Y, Lok CN, & Wong KKY (2020). Delayed
application of silver nanoparticles reveals the role of early
inflammation in burn wound healing. Sci Rep 10: 6338.
Zhang Y, Chang M, Bao F, Xing M, Wang E, Xu Q, et al. (2019).
Multifunctional Zn doped hollow mesoporous silica/polycaprolactone
electrospun membranes with enhanced hair follicle regeneration and
antibacterial activity for wound healing. Nanoscale 11:6315-6333.
Zhang Z, Chen Y, Ding J, Zhang C, Zhang A, He D, et al. (2017).
Biocompatible 5-Aminolevulinic Acid/Au Nanoparticle-Loaded Ethosomal
Vesicles for In Vitro Transdermal Synergistic Photodynamic/Photothermal
Therapy of Hypertrophic Scars. Nanoscale Res Lett 12: 622.
Zhao D, Liu M, Li Q, Zhang X, Xue C, Lin Y, et al. (2018a).
Tetrahedral DNA Nanostructure Promotes Endothelial Cell Proliferation,
Migration, and Angiogenesis via Notch Signaling Pathway. ACS Appl Mater
Interfaces 10: 37911-37918.
Zhao T, Fu Y, He H, Dong C, Zhang L, Zeng H, et al. (2018b).
Self-powered gustation electronic skin for mimicking taste buds based on
piezoelectric-enzymatic reaction coupling process. Nanotechnology
29: 075501.
Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, et al. (2016).
Electrospun tilapia collagen nanofibers accelerating wound healing via
inducing keratinocytes proliferation and differentiation. Colloids Surf
B Biointerfaces 143: 415-422.
Zi-Wei L, Li CW, Wang Q, Shi SJ, Hu M, Zhang Q, et al. (2017).
The Cellular and Molecular Mechanisms Underlying Silver
Nanoparticle/Chitosan Oligosaccharide/Poly(vinyl alcohol)
Nanofiber-Mediated Wound Healing. J Biomed Nanotechnol 13:17-34.
Table 1. Application of nanomaterials in wound healing.