References
Abazari M, Ghaffari A, Rashidzadeh H, Momeni Badeleh S, & Maleki Y (2020). Current status and future outlook of nano-based systems for burn wound management. J Biomed Mater Res B Appl Biomater 108:1934-1952.
Ahn S, Ardona HAM, Campbell PH, Gonzalez GM, & Parker KK (2019). Alfalfa Nanofibers for Dermal Wound Healing. ACS Appl Mater Interfaces 11: 33535-33547.
Alhowyan AA, Altamimi MA, Kalam MA, Khan AA, Badran M, Binkhathlan Z, et al. (2019). Antifungal efficacy of Itraconazole loaded PLGA-nanoparticles stabilized by vitamin-E TPGS: In vitro and ex vivo studies. J Microbiol Methods 161: 87-95.
Ali A, Suhail M, Mathew S, Shah MA, Harakeh SM, Ahmad S, et al.(2016). Nanomaterial Induced Immune Responses and Cytotoxicity. J Nanosci Nanotechnol 16: 40-57.
Aman N, Rauf K, Khan SA, Tokhi A, Rehman NU, & Yameen MA (2019). Effect of commercial and green synthesized ZnO NPs in murine model of chloroquine-induced pruritus. Int J Nanomedicine 14: 3103-3110.
Andreu V, & Arruebo M (2018). Current progress and challenges of nanoparticle-based therapeutics in pain management. J Control Release 269: 189-213.
Asif MH, Danielsson B, & Willander M (2015). ZnO Nanostructure-Based Intracellular Sensor. Sensors (Basel) 15: 11787-11804.
Bainomugisa A, Duarte T, Lavu E, Pandey S, Coulter C, Marais BJ, et al. (2018). A complete high-quality MinION nanopore assembly of an extensively drug-resistant Mycobacterium tuberculosis Beijing lineage strain identifies novel variation in repetitive PE/PPE gene regions. Microb Genom 4.
Bakshi MS (2017). Nanotoxicity in Systemic Circulation and Wound Healing. Chem Res Toxicol 30: 1253-1274.
Berthet M, Gauthier Y, Lacroix C, Verrier B, & Monge C (2017). Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol 35: 770-784.
Bhattacharya D, Tiwari R, Bhatia T, Purohit MP, Pal A, Jagdale P, et al. (2019). Accelerated and scarless wound repair by a multicomponent hydrogel through simultaneous activation of multiple pathways. Drug Deliv Transl Res 9: 1143-1158.
Bikkad ML, Nathani AH, Mandlik SK, Shrotriya SN, & Ranpise NS (2014). Halobetasol propionate-loaded solid lipid nanoparticles (SLN) for skin targeting by topical delivery. J Liposome Res 24: 113-123.
Boraschi D, Italiani P, Palomba R, Decuzzi P, Duschl A, Fadeel B, et al. (2017). Nanoparticles and innate immunity: new perspectives on host defence. Semin Immunol 34: 33-51.
Chen CY, Yin H, Chen X, Chen TH, Liu HM, Rao SS, et al. (2020). Angstrom-scale silver particle-embedded carbomer gel promotes wound healing by inhibiting bacterial colonization and inflammation. Sci Adv 6.
Chen Q, Wu J, Liu Y, Li Y, Zhang C, Qi W, et al. (2019). Electrospun chitosan/PVA/bioglass Nanofibrous membrane with spatially designed structure for accelerating chronic wound healing. Mater Sci Eng C Mater Biol Appl 105: 110083.
Chen T, Guo ZP, Wang WJ, Qin S, Cao N, & Li MM (2014). Increased serum HMGB1 levels in patients with Henoch-Schonlein purpura. Exp Dermatol 23: 419-423.
Dabrowska AK, Spano F, Derler S, Adlhart C, Spencer ND, & Rossi RM (2018). The relationship between skin function, barrier properties, and body-dependent factors. Skin Res Technol 24: 165-174.
de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, & Pillay V (2019). The Hemocompatibility of Nanoparticles: A Review of Cell-Nanoparticle Interactions and Hemostasis. Cells 8.
Diniz FR, Maia R, Rannier L, Andrade LN, M VC, da Silva CF, et al. (2020). Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing In Vivo. Nanomaterials (Basel) 10.
do Amaral R, Zayed NMA, Pascu EI, Cavanagh B, Hobbs C, Santarella F, et al. (2019). Functionalising Collagen-Based Scaffolds With Platelet-Rich Plasma for Enhanced Skin Wound Healing Potential. Front Bioeng Biotechnol 7: 371.
Dukhinova MS, Prilepskii AY, Shtil AA, & Vinogradov VV (2019). Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. Nanomaterials (Basel) 9.
Ema M, Matsuda A, Kobayashi N, Naya M, & Nakanishi J (2013). Dermal and ocular irritation and skin sensitization studies of fullerene C60 nanoparticles. Cutan Ocul Toxicol 32: 128-134.
Frankova J, Pivodova V, Vagnerova H, Juranova J, & Ulrichova J (2016). Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater 14: e137-142.
Fu X, Xu M, Liu J, Qi Y, Li S, & Wang H (2014). Regulation of migratory activity of human keratinocytes by topography of multiscale collagen-containing nanofibrous matrices. Biomaterials 35:1496-1506.
Ghiasi Z, Esmaeli F, Aghajani M, Ghazi-Khansari M, Faramarzi MA, & Amani A (2019). Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: An in vivo study. Int J Pharm 559: 341-347.
Gryshchuk V, & Galagan N (2016). Silica Nanoparticles Effects on Blood Coagulation Proteins and Platelets. Biochem Res Int 2016:2959414.
Gugerell A, Kober J, Laube T, Walter T, Nurnberger S, Gronniger E, et al. (2014). Electrospun poly(ester-Urethane)- and poly(ester-Urethane-Urea) fleeces as promising tissue engineering scaffolds for adipose-derived stem cells. PLoS One 9: e90676.
Guo S, Kang G, Phan DT, Hsu MN, Por YC, & Chen CH (2018). Polymerization-Induced Phase Separation Formation of Structured Hydrogel Particles via Microfluidics for Scar Therapeutics. Sci Rep 8:2245.
Hadrup N, Sharma AK, & Loeschner K (2018). Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regul Toxicol Pharmacol 98: 257-267.
Han G, & Ceilley R (2017). Chronic Wound Healing: A Review of Current Management and Treatments. Adv Ther 34: 599-610.
Hashempour S, Ghanbarzadeh S, Maibach HI, Ghorbani M, & Hamishehkar H (2019). Skin toxicity of topically applied nanoparticles. Ther Deliv 10: 383-396.
Hejazian LB, Esmaeilzade B, Moghanni Ghoroghi F, Moradi F, Hejazian MB, Aslani A, et al. (2012). The role of biodegradable engineered nanofiber scaffolds seeded with hair follicle stem cells for tissue engineering. Iran Biomed J 16: 193-201.
Hesketh M, Sahin KB, West ZE, & Murray RZ (2017). Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int J Mol Sci 18.
Hoeppli RE, & Pesenacker AM (2019). Targeting Tregs in Juvenile Idiopathic Arthritis and Juvenile Dermatomyositis-Insights From Other Diseases. Front Immunol 10: 46.
Homaeigohar S, & Boccaccini AR (2020). Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 107: 25-49.
Hoversten KP, Kiemele LJ, Stolp AM, Takahashi PY, & Verdoorn BP (2020). Prevention, Diagnosis, and Management of Chronic Wounds in Older Adults. Mayo Clin Proc 95: 2021-2034.
In’t Veld RH, Da Silva CG, Kaijzel EL, Chan AB, & Cruz LJ (2017). The Potential of Nano-Vehicle Mediated Therapy in Vasculitis and Multiple Sclerosis. Curr Pharm Des 23: 1985-1992.
Janjic JM, & Gorantla VS (2017). Peripheral Nerve Nanoimaging: Monitoring Treatment and Regeneration. AAPS J 19: 1304-1316.
Kaymakcalan OE, Karinja S, Abadeer A, Dong X, Jin JL, Galili U, et al. (2018). Antigen-Mediated, Macrophage-Stimulated, Accelerated Wound Healing Using alpha-Gal Nanoparticles. Ann Plast Surg 80:S196-S203.
Khadjavi A, Magnetto C, Panariti A, Argenziano M, Gulino GR, Rivolta I, et al. (2015). Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing. Toxicol Appl Pharmacol 286: 198-206.
Kinaret PAS, Scala G, Federico A, Sund J, & Greco D (2020). Carbon Nanomaterials Promote M1/M2 Macrophage Activation. Small 16:e1907609.
Kozono K, Nakahara T, Kikuchi S, Itoh E, Kido-Nakahara M, & Furue M (2015). Pyoderma gangrenosum with increased levels of serum cytokines. J Dermatol 42: 1186-1188.
Lebonvallet N, Laverdet B, Misery L, Desmouliere A, & Girard D (2018). New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation. Exp Dermatol 27: 950-958.
Leccese P, & Alpsoy E (2019). Behcet’s Disease: An Overview of Etiopathogenesis. Front Immunol 10: 1067.
Lee HJ, & Jang YJ (2018). Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol Sci 19.
Lee HJ, Kwon HK, Kim HS, Kim MI, & Park HJ (2019). Hair Growth Promoting Effect of 4HGF Encapsulated with PGA Nanoparticles (PGA-4HGF) by beta-Catenin Activation and Its Related Cell Cycle Molecules. Int J Mol Sci 20.
Lee J, Kim J, Go J, Lee JH, Han DW, Hwang D, et al. (2015). Transdermal treatment of the surgical and burned wound skin via phytochemical-capped gold nanoparticles. Colloids Surf B Biointerfaces 135: 166-174.
Li J, Zhong W, Zhang K, Wang D, Hu J, & Chan-Park MB (2020). Biguanide-Derived Polymeric Nanoparticles Kill MRSA Biofilm and Suppress Infection In Vivo. ACS Appl Mater Interfaces 12: 21231-21241.
Li M, Gao L, Chen J, Zhang Y, Wang J, Lu X, et al. (2018). Controllable release of interleukin-4 in double-layer sol-gel coatings on TiO2 nanotubes for modulating macrophage polarization. Biomed Mater 13: 045008.
Liao C, Li Y, & Tjong SC (2019). Antibacterial Activities of Aliphatic Polyester Nanocomposites with Silver Nanoparticles and/or Graphene Oxide Sheets. Nanomaterials 9.
Lin S, Zhang Q, Zhang T, Shao X, Li Y, Shi S, et al. (2018a). Tetrahedral DNA Nanomaterial Regulates the Biological Behaviors of Adipose-Derived Stem Cells via DNA Methylation on Dlg3. ACS Appl Mater Interfaces 10: 32017-32025.
Lin T, Liu S, Chen S, Qiu S, Rao Z, Liu J, et al. (2018b). Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Acta Biomater 73: 326-338.
Lindholm C, & Searle R (2016). Wound management for the 21st century: combining effectiveness and efficiency. Int Wound J 13 Suppl 2:5-15.
Liu Y, Sun Y, Li S, Liu M, Qin X, Chen X, et al. (2020). Tetrahedral Framework Nucleic Acids Deliver Antimicrobial Peptides with Improved Effects and Less Susceptibility to Bacterial Degradation. Nano Lett 20: 3602-3610.
Ma Z, Li S, Wang H, Cheng W, Li Y, Pan L, et al. (2019). Advanced electronic skin devices for healthcare applications. J Mater Chem B 7: 173-197.
Maghimaa M, & Alharbi SA (2020). Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J Photochem Photobiol B 204: 111806.
Manuja A, Raguvaran R, Kumar B, Kalia A, & Tripathi BN (2020). Accelerated healing of full thickness excised skin wound in rabbits using single application of alginate/acacia based nanocomposites of ZnO nanoparticles. Int J Biol Macromol 155: 823-833.
Mihai MM, Dima MB, Dima B, & Holban AM (2019). Nanomaterials for Wound Healing and Infection Control. Materials (Basel) 12.
Mirzahosseinipour M, Khorsandi K, Hosseinzadeh R, Ghazaeian M, & Shahidi FK (2020). Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagnosis Photodyn Ther 29: 101639.
Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, Sahandi Zangabad K, Ghamarypour A, Aref AR, et al. (2018). Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 123: 33-64.
Mohamed DS, Abd El-Baky RM, Sandle T, Mandour SA, & Ahmed EF (2020). Antimicrobial Activity of Silver-Treated Bacteria against other Multi-Drug Resistant Pathogens in Their Environment. Antibiotics (Basel) 9.
Mohammadi Z, Sharif Zak M, Majdi H, Mostafavi E, Barati M, Lotfimehr H, et al. (2019). The effect of chrysin-curcumin-loaded nanofibres on the wound-healing process in male rats. Artif Cells Nanomed Biotechnol 47: 1642-1652.
Nafisi S, Samadi N, Houshiar M, & Maibach HI (2018). Mesoporous silica nanoparticles for enhanced lidocaine skin delivery. Int J Pharm 550: 325-332.
Navarro-Requena C, Perez-Amodio S, Castano O, & Engel E (2018). Wound healing-promoting effects stimulated by extracellular calcium and calcium-releasing nanoparticles on dermal fibroblasts. Nanotechnology 29: 395102.
Nethi SK, Das S, Patra CR, & Mukherjee S (2019). Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 7: 2652-2674.
Nischwitz SP, Bernardelli de Mattos I, Hofmann E, Groeber-Becker F, Funk M, Mohr GJ, et al. (2019). Continuous pH monitoring in wounds using a composite indicator dressing - A feasibility study. Burns 45: 1336-1341.
Ong TH, Chitra E, Ramamurthy S, Ling CCS, Ambu SP, & Davamani F (2019). Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS One 14: e0213079.
Onwukwe C, Maisha N, Holland M, Varley M, Groynom R, Hickman D, et al. (2018). Engineering Intravenously Administered Nanoparticles to Reduce Infusion Reaction and Stop Bleeding in a Large Animal Model of Trauma. Bioconjug Chem 29: 2436-2447.
Palmer BC, Phelan-Dickenson SJ, & DeLouise LA (2019). Multi-walled carbon nanotube oxidation dependent keratinocyte cytotoxicity and skin inflammation. Part Fibre Toxicol 16: 3.
Pan A, Zhong M, Wu H, Peng Y, Xia H, Tang Q, et al. (2018). Topical Application of Keratinocyte Growth Factor Conjugated Gold Nanoparticles Accelerate Wound Healing. Nanomedicine 14:1619-1628.
Pena-Gonzalez CE, Pedziwiatr-Werbicka E, Martin-Perez T, Szewczyk EM, Copa-Patino JL, Soliveri J, et al. (2017). Antibacterial and antifungal properties of dendronized silver and gold nanoparticles with cationic carbosilane dendrons. Int J Pharm 528: 55-61.
Piper CJM, Wilkinson MGL, Deakin CT, Otto GW, Dowle S, Duurland CL, et al. (2018). CD19(+)CD24(hi)CD38(hi) B Cells Are Expanded in Juvenile Dermatomyositis and Exhibit a Pro-Inflammatory Phenotype After Activation Through Toll-Like Receptor 7 and Interferon-alpha. Front Immunol 9: 1372.
Poormasjedi-Meibod MS, Pakyari M, Jackson JK, Salimi Elizei S, & Ghahary A (2016). Development of a nanofibrous wound dressing with an antifibrogenic properties in vitro and in vivo model. J Biomed Mater Res A 104: 2334-2344.
Pramanik N, Bhattacharya S, Rath T, De J, Adhikary A, Basu RK, et al. (2019). Polyhydroxybutyrate-co-hydroxyvalerate copolymer modified graphite oxide based 3D scaffold for tissue engineering application. Mater Sci Eng C Mater Biol Appl 94: 534-546.
Qais FA, Shafiq A, Ahmad I, Husain FM, Khan RA, & Hassan I (2020). Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb Pathog 144: 104172.
Qiao Y, Wang Y, Tian H, Li M, Jian J, Wei Y, et al. (2018). Multilayer Graphene Epidermal Electronic Skin. ACS Nano 12:8839-8846.
Quaglino P, Fava P, Caproni M, Antiga E, De Simone C, Papini M, et al. (2016). Phenotypical characterization of circulating cell subsets in pyoderma gangrenosum patients: the experience of the Italian immuno-pathology group. J Eur Acad Dermatol Venereol 30:655-658.
Ramanathan G, Muthukumar T, & Tirichurapalli Sivagnanam U (2017). In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing. Eur J Pharmacol 814: 45-55.
Saitoh Y, Mizuno H, Xiao L, Hyoudou S, Kokubo K, & Miwa N (2012). Polyhydroxylated fullerene C(6)(0)(OH)(4)(4) suppresses intracellular lipid accumulation together with repression of intracellular superoxide anion radicals and subsequent PPARgamma2 expression during spontaneous differentiation of OP9 preadipocytes into adipocytes. Mol Cell Biochem 366: 191-200.
Simak J, & De Paoli S (2017). The effects of nanomaterials on blood coagulation in hemostasis and thrombosis. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9.
Singh R, Cheng S, & Singh S (2020). Oxidative stress-mediated genotoxic effect of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech 10: 66.
Sooklert K, Nilyai S, Rojanathanes R, Jindatip D, Sae-Liang N, Kitkumthorn N, et al. (2019). N-acetylcysteine reverses the decrease of DNA methylation status caused by engineered gold, silicon, and chitosan nanoparticles. Int J Nanomedicine 14: 4573-4587.
Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, & Merlo S (2020). The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel) 13.
Sun G, Yang S, Cai H, Shu Y, Han Q, Wang B, et al. (2019). Molybdenum disulfide nanoflowers mediated anti-inflammation macrophage modulation for spinal cord injury treatment. J Colloid Interface Sci 549: 50-62.
Sun L, Gao W, Fu X, Shi M, Xie W, Zhang W, et al. (2018). Enhanced wound healing in diabetic rats by nanofibrous scaffolds mimicking the basketweave pattern of collagen fibrils in native skin. Biomater Sci 6: 340-349.
Sundaram MN, Amirthalingam S, Mony U, Varma PK, & Jayakumar R (2019). Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int J Biol Macromol 129: 936-943.
Talaat RM, Sibaii H, Bassyouni IH, & El-Wakkad A (2019). IL-17, IL-10, IL-6, and IFN-gamma in Egyptian Behcet’s disease: correlation with clinical manifestations. Eur Cytokine Netw 30: 15-22.
Teixeira MA, Paiva MC, Amorim MTP, & Felgueiras AHP (2020). Electrospun Nanocomposites Containing Cellulose and Its Derivatives Modified with Specialized Biomolecules for an Enhanced Wound Healing. Nanomaterials (Basel) 10.
Vazquez-Munoz R, Meza-Villezcas A, Fournier PGJ, Soria-Castro E, Juarez-Moreno K, Gallego-Hernandez AL, et al. (2019). Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One 14: e0224904.
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, & Ferrari F (2019). Hyaluronic acid and chitosan-based nanosystems: a new dressing generation for wound care. Expert Opin Drug Deliv 16: 715-740.
Wallach D, & Vignon-Pennamen MD (2018). Pyoderma gangrenosum and Sweet syndrome: the prototypic neutrophilic dermatoses. Br J Dermatol 178: 595-602.
Wang M, Lai X, Shao L, & Li L (2018). Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 13: 4445-4459.
Wasef LG, Shaheen HM, El-Sayed YS, Shalaby TIA, Samak DH, Abd El-Hack ME, et al. (2020). Effects of Silver Nanoparticles on Burn Wound Healing in a Mouse Model. Biol Trace Elem Res 193: 456-465.
Weng W, He S, Song H, Li X, Cao L, Hu Y, et al. (2018). Aligned Carbon Nanotubes Reduce Hypertrophic Scar via Regulating Cell Behavior. ACS Nano 12: 7601-7612.
Xiao Y, Xu D, Song H, Shu F, Wei P, Yang X, et al. (2019). Cuprous oxide nanoparticles reduces hypertrophic scarring by inducing fibroblast apoptosis. Int J Nanomedicine 14: 5989-6000.
Yang X, Liu X, Li Y, Huang Q, He W, Zhang R, et al. (2017). The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 81: 341-348.
Yu D, Shang Y, Yuan J, Ding S, Luo S, & Hao L (2016). Wnt/beta-Catenin Signaling Exacerbates Keloid Cell Proliferation by Regulating Telomerase. Cell Physiol Biochem 39: 2001-2013.
Zhang J, Qiao Q, Liu M, He T, Shi J, Bai X, et al. (2018). IL-17 Promotes Scar Formation by Inducing Macrophage Infiltration. Am J Pathol 188: 1693-1702.
Zhang K, Lui VCH, Chen Y, Lok CN, & Wong KKY (2020). Delayed application of silver nanoparticles reveals the role of early inflammation in burn wound healing. Sci Rep 10: 6338.
Zhang Y, Chang M, Bao F, Xing M, Wang E, Xu Q, et al. (2019). Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. Nanoscale 11:6315-6333.
Zhang Z, Chen Y, Ding J, Zhang C, Zhang A, He D, et al. (2017). Biocompatible 5-Aminolevulinic Acid/Au Nanoparticle-Loaded Ethosomal Vesicles for In Vitro Transdermal Synergistic Photodynamic/Photothermal Therapy of Hypertrophic Scars. Nanoscale Res Lett 12: 622.
Zhao D, Liu M, Li Q, Zhang X, Xue C, Lin Y, et al. (2018a). Tetrahedral DNA Nanostructure Promotes Endothelial Cell Proliferation, Migration, and Angiogenesis via Notch Signaling Pathway. ACS Appl Mater Interfaces 10: 37911-37918.
Zhao T, Fu Y, He H, Dong C, Zhang L, Zeng H, et al. (2018b). Self-powered gustation electronic skin for mimicking taste buds based on piezoelectric-enzymatic reaction coupling process. Nanotechnology 29: 075501.
Zhou T, Wang N, Xue Y, Ding T, Liu X, Mo X, et al. (2016). Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation. Colloids Surf B Biointerfaces 143: 415-422.
Zi-Wei L, Li CW, Wang Q, Shi SJ, Hu M, Zhang Q, et al. (2017). The Cellular and Molecular Mechanisms Underlying Silver Nanoparticle/Chitosan Oligosaccharide/Poly(vinyl alcohol) Nanofiber-Mediated Wound Healing. J Biomed Nanotechnol 13:17-34.
Table 1. Application of nanomaterials in wound healing.