References
1. Centers for Disease Control and Prevention. Disease burden of
influenza [updated October 5, 2020. Available from:
https://www.cdc.gov/flu/about/burden/index.html.
2. Jackson RJ, Cooper KL, Tappenden P, Rees A, Simpson EL, Read RC, et
al. Oseltamivir, zanamivir and amantadine in the prevention of
influenza: a systematic review. J Infect. 2011;62(1):14-25.
3. Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, et
al. Clinical Practice Guidelines by the Infectious Diseases Society of
America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and
Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect
Dis. 2019;68(6):895-902.
4. Ramirez J, Peyrani P, Wiemken T, Chaves SS, Fry AM. A Randomized
Study Evaluating the Effectiveness of Oseltamivir Initiated at the Time
of Hospital Admission in Adults Hospitalized With Influenza-Associated
Lower Respiratory Tract Infections. Clin Infect Dis. 2018;67(5):736-42.
5. Wiemken TL, Kelley RR. Machine Learning in Epidemiology and Health
Outcomes Research. Annu Rev Public Health. 2020;41:21-36.
6. Baum A, Scarpa J, Bruzelius E, Tamler R, Basu S, Faghmous J.
Targeting weight loss interventions to reduce cardiovascular
complications of type 2 diabetes: a machine learning-based post-hoc
analysis of heterogeneous treatment effects in the Look AHEAD trial. The
Lancet Diabetes & Endocrinology. 2017;5(10):808-15.
7. Athey S, Tibshirani J, Wager S. Generalized random forests. The
Annals of Statistics. 2019;47(2):1148-78.
8. Wager S, Athey S. Estimation and Inference of Heterogeneous Treatment
Effects using Random Forests. arXiv:151004342 [math, stat]. 2015.
9. Künzel SR, Sekhon JS, Bickel PJ, Yu B. Metalearners for estimating
heterogeneous treatment effects using machine learning. Proceedings of
the National Academy of Sciences. 2019:201804597.
10. Tibshirani J, Athey S, Wager S. Generalized Random Forests. 1.2.0
ed2020.
11. Scarpa J, Bruzelius E, Doupe P, Le M, Faghmous J, Baum A. Assessment
of Risk of Harm Associated With Intensive Blood Pressure Management
Among Patients With Hypertension Who Smoke: A Secondary Analysis of the
Systolic Blood Pressure Intervention Trial. JAMA Netw Open.
2019;2(3):e190005.
12. Wang L, Cao F, Wang S, Sun M, Dong L. Using k-dependence causal
forest to mine the most significant dependency relationships among
clinical variables for thyroid disease diagnosis. PLoS One.
2017;12(8):e0182070.