References
1. Centers for Disease Control and Prevention. Disease burden of influenza [updated October 5, 2020. Available from: https://www.cdc.gov/flu/about/burden/index.html.
2. Jackson RJ, Cooper KL, Tappenden P, Rees A, Simpson EL, Read RC, et al. Oseltamivir, zanamivir and amantadine in the prevention of influenza: a systematic review. J Infect. 2011;62(1):14-25.
3. Uyeki TM, Bernstein HH, Bradley JS, Englund JA, File TM, Fry AM, et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin Infect Dis. 2019;68(6):895-902.
4. Ramirez J, Peyrani P, Wiemken T, Chaves SS, Fry AM. A Randomized Study Evaluating the Effectiveness of Oseltamivir Initiated at the Time of Hospital Admission in Adults Hospitalized With Influenza-Associated Lower Respiratory Tract Infections. Clin Infect Dis. 2018;67(5):736-42.
5. Wiemken TL, Kelley RR. Machine Learning in Epidemiology and Health Outcomes Research. Annu Rev Public Health. 2020;41:21-36.
6. Baum A, Scarpa J, Bruzelius E, Tamler R, Basu S, Faghmous J. Targeting weight loss interventions to reduce cardiovascular complications of type 2 diabetes: a machine learning-based post-hoc analysis of heterogeneous treatment effects in the Look AHEAD trial. The Lancet Diabetes & Endocrinology. 2017;5(10):808-15.
7. Athey S, Tibshirani J, Wager S. Generalized random forests. The Annals of Statistics. 2019;47(2):1148-78.
8. Wager S, Athey S. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. arXiv:151004342 [math, stat]. 2015.
9. Künzel SR, Sekhon JS, Bickel PJ, Yu B. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences. 2019:201804597.
10. Tibshirani J, Athey S, Wager S. Generalized Random Forests. 1.2.0 ed2020.
11. Scarpa J, Bruzelius E, Doupe P, Le M, Faghmous J, Baum A. Assessment of Risk of Harm Associated With Intensive Blood Pressure Management Among Patients With Hypertension Who Smoke: A Secondary Analysis of the Systolic Blood Pressure Intervention Trial. JAMA Netw Open. 2019;2(3):e190005.
12. Wang L, Cao F, Wang S, Sun M, Dong L. Using k-dependence causal forest to mine the most significant dependency relationships among clinical variables for thyroid disease diagnosis. PLoS One. 2017;12(8):e0182070.