References:
[1]. A. M. Larson, J.P.R.J., Acetaminophen-induced acute liver
failure: results of a United States multicenter, prospective study.
Hepatology, 2005. 42(6): p. 1364-72.
[2]. Ramachandran, A. and H. Jaeschke, Acetaminophen Hepatotoxicity.
Seminars in Liver Disease, 2019. 39(02): p. 221-234.
[3]. N. A. Buckley, I.M.W.D., Oral or intravenous N-acetylcysteine:
which is the treatment of choice for acetaminophe(paracetamol)
poisoning?, Journal of toxicology. Clinical toxicology, 1999. 17(6): p.
759-767.
[4]. Davis, R.J., Signal Transduction by the JNK Group of MAP
Kinases. Cell, 2000. 103(2): p. 239-252.
[5]. Ip, Y.T. and R.J. Davis, Signal transduction by the c-Jun
N-terminal kinase (JNK)–from inflammation to development. Curr Opin
Cell Biol., 1998. 10(2): p. 205-19.
[6]. Shimizu, D., et al., Protection afforded by pre- or
post-treatment with 4-phenylbutyrate against liver injury induced by
acetaminophen overdose in mice. Pharmacological Research, 2014. 87: p.
26-41.
[7]. Jaeschke, H.K.T.R., The role of oxidant stress and reactive
nitrogen species in acetaminophen hepatotoxicity. Toxicol. Lett, 2003.
144: p. 279–288.
[8]. James LP, M.P.H.J., Acetaminophen-induced hepatotoxicity. Drug
Metab Dispos, 2003. 31: p. 1499 –1506.
[9]. Amar, P.J.A.S., Acetaminophen safety and hepatotoxicity-where
do we go from here? Expert Opin. Expert Opin Drug Saf, 2007. 6: p.
341–355.
[10]. Myers, T.G.D.E. and S.D.A.N. Cohen, A comparative study of
mouse liver proteins arylated by reactive metabolites of acetaminophen
and its nonhepatotoxic regioisomer, 3 -hydroxyacetanilide. Chem. Res.
Toxicol., 1995. 8: p. 403–413.
[11]. Hanawa, N., et al., Role of JNK Translocation to Mitochondria
Leading to Inhibition of Mitochondria Bioenergetics in
Acetaminophen-induced Liver Injury. Journal of Biological Chemistry,
2008. 283(20): p. 13565-13577.
[12]. Han, D.C.R.R., Effect of glutathione depletion on sites and
topology of superoxide and hydrogen peroxide production in mitochondria.
Mol. Pharmacol., 2003. 64: p. 1136–1144.
[13]. Matsumaru, K., Mechanisms for sensitization to TNF-induced
apoptosis by acute glutathione depletion in murine hepatocytes.
Hepatology, 2003. 37(6): p. 1425-1434.
[14].
Nga T
Nguyen, K.D.J.Y., Mitochondrial protein adduct and superoxide generation
are prerequisites for early activation of c-jun N-terminal kinase within
the cytosol after an acetaminophen overdose in mice. Toxicol Lett, 2021.
338: p. 21-31.
[15]. Xie, Y., et al., Mitochondrial protein adducts formation and
mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced
hepatotoxicity in primary human hepatocytes. Toxicology and Applied
Pharmacology, 2015. 289(2): p. 213-222.
[16]. Cliff Rowe, M.S.E.L., Perfused human hepatocyte microtissues
identify reactive metabolite-forming and mitochondria-perturbing
hepatotoxins. Toxicology in Vitro, 2018. 46: p. 29-38.
[17]. Xu, J.J., B.S. Hendriks and J. Zhao, Multiple effects of
acetaminophen and p38 inhibitors: Towards pathway toxicology. FEBS
Letters, 2008. 582.
[18]. Reid, A.B., et al., Mechanisms of Acetaminophen-Induced
Hepatotoxicity: Role of Oxidative Stress and Mitochondrial Permeability
Transition in Freshly Isolated Mouse Hepatocytes. Journal of
Pharmacology and Experimental Therapeutics, 2005. 312(2): p. 509-516.
[19]. Zaher, H.B.J.T. and S.S.T.C. A. M., Protection against
acetaminophen toxicity in CYP1A2 and CYP2E1 double-null mice. Toxicol.
Appl. Pharmacol. Toxicol. Appl. Pharmacol., 1998. 152: p. 193–199.
[20]. Donnelly PJ, W.R.R.W., Inhibition of mitochondrial respiration
in vivo is an early event in acetaminophen-induced hepatotoxicity. Arch
Toxicol, 1994. 68(2): p. 110–118.
[21]. Zhou Q, L.P.H.D., c-Jun N-terminal kinase regulates
mitochondrial bioenergetics by modulating pyruvate dehydrogenase
activity in primary cortical neurons. J Neurochem, 2007. 104(2): p.
325–335.
[22]. Bruderer, R.B.O.M. and E. Al., Extending the limits of
quantitative proteome profiling with data_x0002_independent
acquisition and application to acetaminophen-treated three dimensional
liver microtissues. Molecular & Cellular Proteomics, 2015. 14(5): p.
1400-1410.
[23]. Han, D., et al., Signal Transduction Pathways Involved in
Drug-Induced Liver Injury. Handbook of Experimental pharmacology, 2009.
196(196): p. 267-310.
[24].
Nga T
Nguyen, J.Y.A.J., Impaired protein adduct removal following repeat
administration of subtoxic doses of acetaminophen enhances liver injury
in fed mice. Arch Toxicol, 2021. 95(4): p. 1463-1473.
[25]. Hu, J.R.V.K., Low dose acetaminophen induces reversible
mitochondrial dysfunction associated with transient c-Jun N-terminal
kinase activation in mouse liver. Toxicological Sciences, 2016. 150(1):
p. 204–215.
[26]. Nguyen, N.U. and B.D. Stamper, Polyphenols reported to shift
APAP-induced changes in MAPK signaling and toxicity outcomes.
Chemico-Biological Interactions, 2017. 277: p. 129-136.
[27]. Gunawan, B.K., et al., c-Jun N-Terminal Kinase Plays a Major
Role in Murine Acetaminophen Hepatotoxicity. Gastroenterology, 2006.
131(1): p. 165-178.
[28]. Sharma M, G.V.J.A., Critical role for mixed-lineage kinase 3
in acetaminophen-induced hepatotoxicity. Mol Pharmacol, 2012. 82: p.
1001-1007.
[29]. Chenxi Shi, B.H.Y.Y., JNK Signaling Pathway Mediates
Acetaminophen-Induced Hepatotoxicity Accompanied by Changes of
Glutathione S-Transferase A1 Content and Expression. Front Pharmacol,
2019. 10: p. 1092.
[30]. Ramachandran, A. and H. Jaeschke, Acetaminophen
hepatotoxicity: A mitochondrial perspective. Advances in pharmacology
(1990), 2019. 85: p. 195-219.
[31]. Fan, X., et al., Pterostilbene Reduces Acetaminophen-Induced
Liver Injury by Activating the Nrf2 Antioxidative Defense System via the
AMPK/Akt/GSK3β Pathway. Cellular Physiology and Biochemistry, 2018.
49(5): p. 1943-1958.
[32]. Du, K.F.A.J., Mitochondria-targeted antioxidant Mito-tempo
protects against acetaminophen hepatotoxicity. Archives of Toxicology,
2017. 91(2): p. 761-773.
[33]. Xie Y, R.A.B.D. and J.H. Farhood A, Inhibitor of apoptosis
signal-reg_x0002_ulating kinase 1 protects against
acetaminophen-induced liver injury. Toxicol Appl Pharmacol, 2015. 286:
p. 1-9.
[34]. Zhang J, M.R.L.K., The role of MAP2 kinases and p38 kinase in
acute murine liver injury models. Cell Death Dis, 2017. 8: p. e2903.
[35]. Shinohara, M.Y.M.D., Silencing glycogen synthase kinase-3beta
inhibits acetaminophen hepatotoxicity and attenuates JNK activation and
loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1.
The Journal of Biological Chemistry, 2010. 285(11): p. 8244–8255.
.
[36]. Longjun Li, H.W.J.Z., SPHK1 deficiency protects mice from
acetaminophen-induced ER stress and mitochondrial permeability
transition. Cell Death Differ, 2020. 27(6): p. 1924-1937.
[37]. Du K, X.Y.M.M., Pathophysiological signifcance of c-Jun
N-terminal kinase in acetaminophen hepatotoxicity. Expert Opin Drug
Metab Toxicol, 2015. 11: p. 1769–1779.
[38]. Rong Zhang, R.A.L.B., Thioredoxin-2 inhibits
mitochondria-located ASK1-mediated apoptosis in a JNK-independent
manner. Circ Res, 2004. 94(11): p. 1483–1491.
[39]. Nakagawa H, M.S.H.Y. and K.M.I.H. Noguchi T, Deletion of
apoptosis signal-regulating kinase1 attenuates acetaminophen-induced
liver injury by inhibiting c-Jun N-terminal kinase activation.
Gastroenterology, 2008. 135(4): p. 1311–1321.
[40]. Sun, Y., et al., Liver-specific deficiency of unc-51 like
kinase 1 and 2 protects mice from acetaminophen-induced liver injury.
Hepatology, 2018. 67(6): p. 2397-2413.
[41]. Ni, H., et al., Activation of autophagy protects against
acetaminophen-induced hepatotoxicity. Hepatology, 2012. 55(1): p.
222-232.
[42]. Lee, S.K., et al., A phospholipase D2 inhibitor, CAY10594,
ameliorates acetaminophen-induced acute liver injury by regulating the
phosphorylated-GSK-3β/JNK axis. Scientific Reports, 2019. 9(1).
[43]. Farkas Sarnyai, T.S.M.C., BGP-15 Protects Mitochondria in
Acute, Acetaminophen Overdose Induced Liver Injury. Pathol Oncol Res,
2020. 26(3): p. 1797-1803.
[44]. Win S, T.T.H.D., acetaminophen or tumor necrosis factor (TNF)
requires mitochondrial Sab protein expression in mice. J Biol Chem,
2011. 286: p. 35071–35078.
[45]. Sanda Win, T.A.T.R., c-Jun N_x0002_terminal kinase mediates
mouse liver injury through a novel Sab (SH3BP5)-dependent pathway
leading to inactivation of intra_x0002_mitochondrial Src. Hepatology,
2016. 63(06): p. 1987-2003.
[46]. Sandra Torres, A.B.N.I., Endoplasmic Reticulum Stress-Induced
Upregulation of STARD1 Promotes Acetaminophen-Induced Acute Liver
Failure. Gastroenterology, 2019. 157(2): p. 552-568.
[47]. Kon, K., et al., Mitochondrial permeability transition in
acetaminophen-induced necrosis and apoptosis of cultured mouse
hepatocytes. Hepatology, 2004. 40(5): p. 1170-1179.
[48]. Tsuruta F, S.J.M.Y. and M.N.G.Y. Yoshioka K, JNK promotes Bax
translocation to mitochondria through phosphorylation of 14-3-3
proteins. EMBO J, 2004. 23: p. 1889–1899.
[49]. Bong-Jo Kim, S.R., JNK- and p38 kinase-mediated
phosphorylation of Bax leads to its activation and mitochondrial
translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol.
Chem., 2006. 281(30): p. 21256–21265.
[50]. Boelsterli UA, L.P., Mitochondrial abnormalities – a link to
idiosyncratic drug hepato_x0002_toxicity? Toxicol Appl Pharmacol,
2007. 220(1): p. 92–107.
[51]. Bajt ML, F.A.L.J., Mitochondrial bax translocation accelerates
DNA fragmentation and cell necrosis in a murine model of acetaminophen
hepatotoxicity. J Pharmacol Exp Ther, 2008. 324: p. 8-14.
[52]. Bajt ML, F.A.L.J., Nuclear translocation of endonuclease G and
apoptosis-inducing factor during acetaminophen-induced liver cell
injury. Toxicol Sci, 2006. 94: p. 217–225.
[53]. He L, L.J., Regulated and unregulated mitochondrial
permeability transition pores: a new paradigm of pore structure and
function? FEBS Lett, 2002. 512: p. 1–7.
[54]. Nieminen AL, B.A.H.B., Mitochondrial permeability transition
in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species.
Am J Physiol, 1997. 272: p. C1286 –1294.
[55]. Bajt ML, L.J.J.H., Role of mitochondrial Bax translocation in
acetaminophen-induced hepatic necrosis. Toxicol Sci, 2005: p. 84(Suppl
1):215.
[56]. Schroeter, H.B.C.S., c-Jun N-terminal kinase (JNK)-mediated
modulation of brain mitochondria function: new target proteins for JNK
signaling in mitochondrion-dependent apoptosis. Biochem. J, 2003. 372:
p. 359–369.
[57]. Kaplowitz, N., Biochemical and cellular mechanisms of toxic
liver injury. Semin. Liver Dis., 2002. 22(2): p. 137–144.
[58]. Xie, Y.M.M.R., Mechanisms of acetaminophen-induced cell death
in primary human hepatocytes. Toxicology and Applied Pharmacology, 2014.
279(3): p. 266–274.
[59]. Tournier, C.H.P.Y., Requirement of JNK for stress-induced
activation of the cytochromec-mediated death pathway. Science, 2000.
288: p. 870–874.
[60]. Sies H, S.V.K.L., Glutathione peroxidase protects against
peroxynitrite-mediated oxidations: a new function for selenoproteins as
peroxynitrite reductase. J Biol Chem, 1997. 272: p. 27812–27817.
[61]. K. Du, E.A., Resveratrol prevents protein nitration and
release of endonu_x0002_cleases from mitochondria during acetaminophen
hepatotoxicity. Food Chem.Toxicol., 2015. 81: p. 62-70.
[62]. Han, D.A.F.C., Voltage-dependent anion channels control the
release of the superoxide anion from mitochondria to cytosol. The
Journal of Biological Chemistry, 2003. 278(8): p. 5557–5563.
[63]. Saberi, B., et al., Protein kinase C (PKC) participates in
acetaminophen hepatotoxicity through c-jun-N-terminal kinase
(JNK)-dependent and -independent signaling pathways. Hepatology, 2014.
59(4): p. 1543-1554.
[64]. Del Río, S., et al., On the use of MapReduce for imbalanced
big data using Random Forest. Information Sciences, 2014. 285(0): p.
112-137.
[65]. Hiroki Aoki, P.M.K.J., Direct activation of mitochondrial
apoptosis machinery by c-Jun N-terminal kinase in adult cardiac
myocytes. J. Biol. Chem., 2002. 12: p. 10244–10250.
[66]. Kunimaro Furuta, Y.Y.S.O., Gab1 adaptor protein acts as a
gatekeeper to balance hepatocyte death and proliferation during
acetaminophen-induced liver injury in mice. Hepatology, 2016. 63(4): p.
1340-55.
[67]. Anup Ramachandran, et al., Receptor Interacting Protein Kinase
3 Is a Critical Early Mediator of Acetaminophen-induced Hepatocyte
Necrosis in Mice. HEPATOLOGY, 2013. 58: p. 2099-2108.
[68]. Lily Dara, Heather Johnson and Jo Suda, Receptor Interacting
Protein Kinase 1 Mediates Murine Acetaminophen Toxicity Independent of
the Necrosome and Not Through Necroptosis. Hepatology, 2015. 62(6): p.
1847-1857.
[69]. Zhang DW, S.J.L.J., RIP3, an energy metabolism regulator that
switches TNF-induced cell death from apoptosis to necrosis. Science,
2009. 325: p. 332-336.
[70].
Andrea
Iorga, K.D.L.S., Interaction of RIPK1 and A20 modulates MAPK signaling
in murine acetaminophen toxicity. J Biol Chem, 2021. 296: p. 100300.
[71]. Randi J Parks, S.M.K.M., Cyclophilin D-mediated regulation of
the permeability transition pore is altered in mice lacking the
mitochondrial calcium uniporter. Cardiovasc Res, 2019. 115(2): p.
385-394.
[72]. K. Itoh, T.C.S.T., An Nrf2/small Maf heterodimer mediates the
induction of phase II detoxifying enzyme genes through antioxidant
response elements. Biochemical and biophysical research communications,
1997. 236(2): p. 313-22.
[73]. J. R. Noh, Y.H.K.J., Sulforaphane protects against
acetaminophen-induced hepatotoxicity. Food and chemical toxicology : an
international journal published for the British Industrial Biological
Research Association 80, 2015: p. 193-200.
[74]. Chen, Y., et al., Carbon monoxide ameliorates
acetaminophen-induced liver injury by increasing hepatic HO-1 and Parkin
expression. The FASEB Journal, 2019. 33(12): p. 13905-13919.
[75]. Y. Chen, K.L.J.Z., JNK Phosphorylates The Neh6 Domain Of Nrf2
And Downregulates Cytoprotective Genes In Acetaminophen-Induced Liver
Injury. Hepatology, 2020.
[76]. Wang, L., et al., Farrerol Ameliorates APAP-induced
Hepatotoxicity via Activation of Nrf2 and Autophagy. International
Journal of Biological Sciences, 2019. 15(4): p. 788-799.
[77]. Yiping Chen, K.L.J.Z., c-Jun NH 2 -Terminal Protein Kinase
Phosphorylates the Nrf2-ECH Homology 6 Domain of Nuclear Factor
Erythroid 2-Related Factor 2 and Downregulates Cytoprotective Genes in
Acetaminophen-Induced Liver Injury in Mice. Hepatology, 2020. 71(5): p.
1787-1801.
[78].
Zhou,
Z. and J. Qi, Exogenous activation of toll-like receptor 5 signaling
mitigates acetaminophen-induced hepatotoxicity in mice. Toxicol Lett,
2021. 324(15): p. 58-72.
[79]. Jaeschke, H.M.M.R., Current issues with acetaminophen
hepatotoxicity–a clinicallyrelevant model to test the efficacy of
natural products. Life Sci., 2011. 88: p. 737-745.
[80]. Hill, S.A.V.R., Mitochondrial stress signaling in longevity: a
new role formitochondrial functionin aging. Redox Biol., 2014. 2: p.
936–944.
[81]. Wang, H., et al., Double deletion of PINK1 and Parkin impairs
hepatic mitophagy and exacerbates acetaminophen-induced liver injury in
mice. Redox Biology, 2019. 22: p. 101148.
[82]. Dongshi Chen, H.N.L.W., p53 Up-regulated Modulator of
Apoptosis Induction Mediates Acetaminophen-Induced Necrosis and Liver
Injury in Mice. Hepatology, 2019. 65(2): p. 2164-2179.
[83]. De Smaela E, Z.F.P.S., Induction of gadd45_x0004_ by NF-kB
downregulates pro-apoptotic JNK signaling. Nature, 2001. 414: p.
308-312.
[84]. Eminel S, K.A.R.L., JNK2 translocates to the mitochondria and
mediates cytochrome c release in PC12 cells in response to
6-hydroxydopamine. J Biol Chem, 2004. 279: p. 55385–55392.
[85]. Meredith MJ, R.D., Status of the mitochondrial pool of
glutathione in the isolated hepatocyte. J Biol Chem, 1982. 257: p.
[86]. Gujral JS, K.T.F.A., Mode of cell death after acetaminophen
overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci, 2002. 67:
p. 322–328.
[87]. Nagai H, M.K.F.G., Reduced glutathione de_x0002_pletion
causes necrosis and sensitization to tumor necrosis factor -induced
apoptosis in cultured mouse hepatocytes. HEPATOLOGY, 2002. 36: p. 55-64.
[88]. Bae, G.H., et al., Lysophosphatidic acid protects against
acetaminophen-induced acute liver injury. Experimental & Molecular
Medicine, 2017. 49(12): p. e407-e407.
[89]. A. Chowdhury, J.L.R.Z., Mangiferin ameliorates
acetaminophen-induced hepatotoxicity through APAP-Cys and JNK
modulation. Biomedecine & pharmacotherapie, 2019. 117: p. 109097.
[90]. M Faris K M Latinis, S.J.K., Stress-induced Fas ligand
expression in T cells is mediated through a MEK kinase 1-regulated
response element in the Fas ligand promoter. Mol. Cell. Biol., 1998. 18:
p. 5414–5424.
[91]. Lawson JA, F.A.H.R., The hepatic inflammatory response after
acetaminophen overdose: role of neutrophils. Toxicol Sci, 2000. 54: p.
509 –516.
[92]. Jaeschke H, G.G.C.A., Mechanisms of hepatotoxicity. Toxicol
Sci, 2002. 65: p. 166 –176.
[93]. Liu H, L.C.C.M., NF-kB inhibition sensitizes hepatocytes to
TNF-induced apoptosis through a sustained activation of JNK and c-Jun.
HEPATOLOGY, 2002. 35: p. 772-778.
[94]. Williams CD, B.M.F.A., Acetaminophen_x0002_induced hepatic
neutrophil accumulation and inflammatory liver injury in CD18-deficient
mice. Liver Int, 2010. 30: p. 1280-1292.
[95]. Jingyao Zhang, S.Z.J.B., Astaxanthin pretreatment attenuates
acetaminophen-induced liver injury in mice. Int Immunopharmacol, 2017.
45: p. 26-33.
[96]. James, L.P.K.R., Tumour necrosis factor receptor 1 and
hepatocyte regeneration in acetaminophen toxicity: a kinetic study of
proliferating cell nuclear antigen and cytokine expression. Basic Clin
Pharmacol Toxicol, 2005. 97: p. 8-14.
[97]. Spinnenhirn, V., J. Demgenski and T. Brunner, Death Receptor
Interactions With the Mitochondrial Cell Death Pathway During Immune
Cell-, Drug- and Toxin-Induced Liver Damage. Frontiers in Cell and
Developmental Biology, 2019. 7.
[98]. Kaufmann, T.J.P.J., Fatal hepatitis mediated by tumor necrosis
factor TNFα requires caspase-8 and involves the BH3-only proteins bid
and bim. Immunity, 2009. 35: p. 56-66.
[99]. Schmich, K.S.R.C., Tumor necrosis factor α sensitizes primary
murine hepatocytes to Fas/CD95-induced apoptosis in a Bim- and
Bid-dependent manner. Hepatology, 2010. 53: p. 282–292.
[100]. Badmann, A.K.A.K., Role of TRAIL and the pro-apoptotic Bcl-2
homolog Bim in acetaminophen-induced liver damage. Cell Death Dis, 2011.
2: p. e171.
[101]. Makoto Ishii, Y.S.K.T., Inhibition of c-Jun NH2-Terminal
Kinase Activity Improves Ischemia/Reperfusion Inhibition of c-Jun NH2
-Terminal Kinase. The Journal of Immunology, 2015.
[102]. Dharminder Chauhan, G.L.T.H., JNK-dependent release of
mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM)
cells. J. Biol. Chem, 2003. 278(20): p. 17593–17596.
[103]. Yoshida, H.K.Y.Y., Apaf1 is required for mitochondrial
pathways of apoptosis and brain development. Cell, 1998. 94: p.
739–750.
[104]. Rajat Singh, M.J.C., Regulation of hepatocyte apoptosis by
oxidative stress. J. Gastroenterol. Hepatol., 2007. 22: p. Suppl.
1:S45–S48.
[105]. Yamamoto, K.I.H.A., BCL-2 is phosphorylated and inactivated
by an ASK1/Jun N-terminal protein kinase pathway normally activated at
G(2)/M. Mol. Cell. Biol, 1999. 19: p. 8469–8478.
[106]. Gross, A.M.J.M., BCL-2 family members and the mitochondria in
apoptosis. Genes Dev, 1999. 13: p. 1899-1911.
[107]. GANIATSAS, S., L. KWEE and Y. FUJIWARA, SEK1 deficiency
reveals mitogen-activated protein kinase cascade crossregulation and
leads to abnormal hepatogenesis. Proc Natl Acad Sci U S A, 1998. 95(12):
p. 6881–6886.
[108]. Liu, Z.G.H.H., Dissectionof TNF receptor 1 effector
functions: JNK activation is not linked to apoptosis while NF-kB
activation prevents cell death. Cell, 1996. 87: p. 565–576.
[109]. Francisco Javier Cubero, M.E.Z.J., Combined activities of
JNK1 and JNK2 in hepatocytes protect against toxic liver injury.
Gastroenterology, 2016.
[110]. McGill, M.R., et al., The mechanism underlying
acetaminophen-induced hepatotoxicity in humans and mice involves
mitochondrial damage and nuclear DNA fragmentation. The Journal of
clinical investigation, 2012. 122(4): p. 1574-1583.
[111]. Jaeschke H, C.C.B.M., Role of caspases in
acetaminophen_x0002_induced liver injury. Life Sci, 2006. 78(15): p.
1670–1676.
[112]. Yang, C., et al., Gasdermin D protects against noninfectious
liver injury by regulating apoptosis and necroptosis. Cell Death &
Disease, 2019. 10(7).
[113]. Ming-Shiun Tsai, Y.W.Y.L. and G.L.J.K. Hsi-Kai Tsou,
Kaempferol protects against propacetamol-induced acute liver injury
through CYP2E1 inactivation, UGT1A1 activation, and attenuation of
oxidative stress, inflammation and apoptosis in mice. Toxicology
Letters, 2018.
[114]. Xiaoyong Li, J.L.Y.L., Hydrogen sulfide protects against
acetaminophen-induced acute liver injury by inhibiting apoptosis via the
JNK/MAPK signaling pathway. J Cell Biochem, 2018. 120(3): p. 4385-4397.
[115]. Zhou YD, H.J.L.W., 20(R)-ginsenoside Rg3, a rare saponin from
red ginseng, ameliorates acetaminophen-induced hepatotoxicity by
suppressing PI3K/AKT pathway-mediated inflammation and apoptosis. Int
Immunopharmacol, 2018. 59: p. 21–30.
[116]. Cao P, S.J.S.M., Angelica sinensis polysaccharide protects
against acetaminophen-induced acute liver injury and
cell death by suppressing oxidative stress and hepatic apoptosis in vivo
and in vitro. Int J Biol Macromol, 2018. 111: p. 1133–1139.
[117]. Uzi D, B.L.S.V., CHOP is a critical regulator of
acetaminophen-induced hepatotoxicity. J Hepatol, 2013. 59(03): p.
495–503.
[118]. Bajt ML, R.A.Y.H., Apoptosis-inducing factor modulates
mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol
Sci, 2011. 122(02): p. 598–605.
[119]. Kim JS, H.L.A.L., Mitochondrial permeability transition: a
common pathway to necrosis and apoptosis. Biochem Biophys Res Commun,
2003. 304: p. 463– 470.
[120]. Crompton M, V.S.D.V., The mitochondrial permeability
transition pore. Biochem Soc Symp, 1999. 66: p. 167–179.
[121]. Badmann, A.L.S.K., TRAIL enhances paracetamol-induced liver
sinusoidal endothelial cell death in a Bim- and Bid-dependent manner.
Cell Death Dis, 2012. 3: p. e447.
[122]. G-Y Cheng, Q.J.A.D., CD31 induces inflammatory response by
promoting hepatic inflammatory response and cell apoptosis. Eur Rev Med
Pharmacol Sci, 2018. 22(21): p. 7543-7550.
[123]. Yan, T.W.H.Z., Glycyrrhizin Protects against
Acetaminophen-Induced Acute Liver Injury via Alleviating Tumor Necrosis
Factor alpha-Mediated Apoptosis. Drug Metab Dispos, 2016. 44: p.
720-731.
[124]. Possamai, L.A.M.M., Character and temporal evolution of
apoptosis in acetaminophen-induced acute liver failure. Crit Care Med,
2013. 41: p. 2543-2550.
[125]. Henderson CJ, W.C.K.N., Increased resistance to acetaminophen
hepatotoxicity in mice lacking glutathione S-transferase Pi. PNAS, 2000.
97: p. 12741-12745.
[126]. Jaeschke, H., A. Ramachandran and X. Chao, Emerging and
established modes of cell death during acetaminophen ‑ induced liver
injury. Archives of Toxicology, 2019. 93: p. 3491-3502.
[127]. Junfeng An, F.M.C.H., ARC is a novel therapeutic approach
against acetaminophen_x0002_induced hepatocellular necrosis. J
Hepatol, 2013. 58: p. 297-305.
[128]. Liao, Y., et al., Oroxyloside ameliorates
acetaminophen-induced hepatotoxicity by inhibiting JNK related apoptosis
and necroptosis. Journal of Ethnopharmacology, 2020. 258: p. 112917.
[129]. Li, W.C.R.K., Isolation and culture of adult mouse
hepatocytes. Methods Mol. Biol., 2010. 633: p. 185–196.
[130]. Huo Y, Y.S.Y.M., Protective role of p53 in acetaminophen
hepatotoxicity. Free Radic Biol Med, 2017. 106: p. 111–117.
[131]. J. Y. Akakpo, A.R.L.D., Delayed Treatment With
4-Methylpyrazole Protects Against Acetaminophen Hepatotoxicity in Mice
by Inhibition of c-Jun n-Terminal Kinase. Toxicological sciences : an
official journal of the Society of Toxicology, 2019. 170(1): p. 57-68.
[132]. J Y Akakpo, A.R.S.E., 4-Methylpyrazole protects against
acetaminophen hepatotoxicity in mice and in primary human hepatocytes.
Hum Exp Toxicol, 2018. 37(12): p. 1310-1322.
[133]. Yong-Hoon Kim, J.N.J.H., Hepatocyte SHP deficiency protects
mice from acetaminophen-evoked liver injury in a JNK-signaling
regulation and GADD45β-dependent manner. Arch Toxicol, 2018. 92(8): p.
2563-2572.
[134]. Y. H. Kim, J.H.H.K., Metformin ameliorates acetaminophen
hepatotoxicity via Gadd45beta_x0002_dependent regulation of JNK
signaling in mice. J Hepatol, 2015. 63(1): p. 75-82.
[135]. S. Papa, F.Z.Y.X., Gadd45β promotes hepatocyte survival
during liver regeneration in mice by modulating JNK signaling. The
Journal of Biomedical Research, 2008. 118(5): p. 1911-1923.
[136]. V. L. Truong, E.A., Quercitrin from toona sinensis (juss.)
M.Roem. Attenuates acetaminophen-induced acute liver toxicity in HepG2
cells and mice through induction of antioxidant machinery and inhibition
of inflammation. Nutrients, 2016. 8(7).
[137]. Wenyan Xie, M.W.C.C., Hepatoprotective effect of
isoquercitrin against acetaminophen-induced liver injury. Life Sci,
2016. 152: p. 180-189.
[138]. Yuanyuan Li, J.X.D.L., Guavinoside B from Psidium guajava
alleviates acetaminophen-induced liver injury via regulating the Nrf2
and JNK signaling pathways. Food Funct, 2020. 11(9): p. 8297-8308.
[139]. Fu-Chao Liu, H.Y.A.C., Corilagin reduces
acetaminophen-induced hepatotoxicity through MAPK and NF- κ B signaling
pathway in a mouse model. Am J Transl Res, 2020. 12(9): p. 5597-5607.
[140]. W Li, G.Y.Q.Z., TLR4 promotes liver inflammation by
activating the JNK pathway. Eur Rev Med Pharmacol Sci, 2019. 23(17): p.
7655-7662.
[141].
Yandong
Zhang, Y.B.X.C., Protective effect of Chushizi (Fructus Broussonetiae)
on acetaminophen-induced rat hepatitis by inhibiting the Toll-like
receptor 3/c-Jun N-terminal kinase/c-jun/c-fos/janus protein tyrosine
kinase/activators of transcription 3 pathway. J Tradit Chin Med, 2021.
40(6): p. 965-973.
[142]. Lung-Che Chen, L.H.M.Y., Alleviative effects from boswellic
acid on acetaminophen-induced hepatic injury - Corrected and republished
from: Biomedicine (Taipei). 2016 Jun; 6 (2): 9. doi:
10.7603/s40681-016-0009-1PMCID: PMC4864770. Biomedicine (Taipei), 2017.
7(2): p. 13.
[143]. Woolbright BL, J.H., Role of the inflammasome in
acet_x0002_aminophen-induced liver injury and acute liver failure. J
Hepatol, 2017. 66(04): p. 836–848.
[144]. Zuzana Papackova, M.H.H.D., Silymarin prevents
acetaminophen-induced hepatotoxicity in mice. PLoS One, 2018. 13(1): p.
e0191353.
[145]. Huifang Li, Y.L.J.L., Mannan-binding lectin attenuates
acetaminophen-induced hepatotoxicity by regulating CYP2E1 expression via
ROS-dependent JNK/SP1 pathway. Eur J Immunol, 2019. 49(4): p. 564-575.
[146]. Dietrich Conze, et al., c-Jun NH 2 -Terminal Kinase (JNK)1
and JNK2 Have Distinct Roles in CD8 T Cell Activation. journal of
experimental medicine, 2002. 195(7): p. 811–823.
[147]. Liu, Z.X.G.S., Innate immune system plays a critical role in
determining the progression and severity of acetaminophen
hepatotoxicity. Gastroenterology, 2004. 127: p. 1760–1774.
[148]. Antoniades, C.G.Q.A., Source and characterization of hepatic
macrophages in acetaminophen-induced acute liver failure in humans.
Hepatology, 2012. 56: p. 735–746.
[149]. Kiso, K.U.S.F., The role of Kupffer cells in carbon
tetrachloride intoxication in mice. Biol. Pharm. Bull., 2012. 35: p.
980–983.
[150]. Kaplowitz, N., Idiosyncratic drug hepatotoxicity. Nat.
Rev.Drug Discov, 2005. 4: p. 489–499.
[151]. Das, M., et al., The role of JNK in the development of
hepatocellular carcinoma. Genes & development, 2011. 25(6): p. 634-645.
[152]. Haolu Wang, L.J.B.J., Imaging-based vascular-related
biomarkers for early detection of acetaminophen-induced liver injury.
Theranostics, 2020. 10(15): p. 6715-6727.
[153]. Bharat Bhushan, H.C.P.B., Dual Role of Epidermal Growth
Factor Receptor in Liver Injury and Regeneration after Acetaminophen
Overdose in Mice. Toxicol Sci, 2017. 155(2): p. 363-378.
[154]. Kluwe, J., et al., Modulation of Hepatic Fibrosis by
c-Jun-N-Terminal Kinase Inhibition. Gastroenterology, 2010. 138(1): p.
347-359.
[155]. Chowdhury Apu, et al., Current etiological comprehension and
therapeutic targets of
acetaminophen-induced hepatotoxicity. Pharmocological research, 2020.