Funding
This work was supported by the Spanish Ministry of Science and Universities PGC2018-094765-B-I00 project and the MDM-2017-0729-18-2 María de Maeztu Center of Excellence (MINECO-FEDER), the 2017SGR-974 Excellence Research Group of the Generalitat de Catalunya, and the ICREA Acadèmia Distinguished Professorship awarded to Carles Escera.
REFERENCEES
  1. Chauhan SP, Rice MM, Grobman WA, et al. Neonatal Morbidity of Small- and Large-for-Gestational-Age Neonates Born at Term in Uncomplicated Pregnancies. Obstet Gynecol. 2017;130(3):511-519. doi:10.1097/AOG.0000000000002199
  2. Chen HY, Chauhan SP, Ward TC, Mori N, Gass ET, Cisler RA. Aberrant fetal growth and early, late, and postneonatal mortality: an analysis of Milwaukee births, 1996-2007. Am J Obstet Gynecol. 2011;204(3):261.e1-261.e10. doi:10.1016/j.ajog.2010.11.040
  3. Gardosi J, Madurasinghe V, Williams M, Malik A, Francis A. Maternal and fetal risk factors for stillbirth: population based study. BMJ. 2013;346:f108. Published 2013 Jan 24. doi:10.1136/bmj.f108
  4. McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med. 1999;340(16):1234-1238. doi:10.1056/NEJM199904223401603
  5. Arcangeli T, Thilaganathan B, Hooper R, Khan KS, Bhide A. Neurodevelopmental delay in small babies at term: a systematic review. Ultrasound Obstet Gynecol. 2012;40(3):267-275. doi:10.1002/uog.11112
  6. Baschat AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther. 2014;36(2):136-142. doi:10.1159/000353631
  7. Dubois J, Benders M, Borradori-Tolsa C, et al. Primary cortical folding in the human newborn: an early marker of later functional development. Brain. 2008;131(Pt 8):2028-2041. doi:10.1093/brain/awn137
  8. Kirkegaard I, Obel C, Hedegaard M, Henriksen TB. Gestational age and birth weight in relation to school performance of 10-year-old children: a follow-up study of children born after 32 completed weeks. Pediatrics. 2006;118(4):1600-1606. doi:10.1542/peds.2005-2700
  9. Nilsson PM, Nyberg P, Ostergren PO. Increased susceptibility to stress at a psychological assessment of stress tolerance is associated with impaired fetal growth. Int J Epidemiol. 2001;30(1):75-80. doi:10.1093/ije/30.1.75
  10. Shenkin SD, Starr JM, Deary IJ. Birth weight and cognitive ability in childhood: a systematic review. Psychol Bull. 2004;130(6):989-1013. doi:10.1037/0033-2909.130.6.989
  11. Van Lieshout RJ, Boyle MH. Canadian youth born large or small for gestational age and externalizing and internalizing problems. Can J Psychiatry. 2011;56(4):227-234. doi:10.1177/070674371105600406
  12. Hadfield RM, Lain SJ, Simpson JM, et al. Are babies getting bigger? An analysis of birthweight trends in New South Wales, 1990-2005. Med J Aust. 2009;190(6):312-315.
  13. Koyanagi A, Zhang J, Dagvadorj A, et al. Macrosomia in 23 developing countries: an analysis of a multicountry, facility-based, cross-sectional survey. Lancet. 2013;381(9865):476-483. doi:10.1016/S0140-6736(12)61605-5
  14. Kramer MS, Morin I, Yang H, et al. Why are babies getting bigger? Temporal trends in fetal growth and its determinants. J Pediatr. 2002;141(4):538-542. doi:10.1067/mpd.2002.128029
  15. Lu Y, Zhang J, Lu X, Xi W, Li Z. Secular trends of macrosomia in southeast China, 1994-2005. BMC Public Health. 2011;11:818. Published 2011 Oct 20. doi:10.1186/1471-2458-11-818
  16. WHO. Obesity. World Health Organization. Updated 2020. Accessed November 2, 2020. http://www.who.int/health-topics/obesity
  17. WHO. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-253.
  18. Sack RA. The large infant. A study of maternal, obstetric, fetal, and newborn characteristics; including a long-term pediatric follow-up. Trans Pac Coast Obstet Gynecol Soc. 1968;36:41-50.
  19. Johnsson IW, Haglund B, Ahlsson F, Gustafsson J. A high birth weight is associated with increased risk of type 2 diabetes and obesity. Pediatr Obes. 2015;10(2):77-83. doi:10.1111/ijpo.230
  20. Yu ZB, Han SP, Zhu GZ, et al. Birth weight and subsequent risk of obesity: a systematic review and meta-analysis. Obes Rev. 2011;12(7):525-542. doi:10.1111/j.1467-789X.2011.00867.x
  21. Rich-Edwards JW, Stampfer MJ, Manson JE, et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ. 1997;315(7105):396-400. doi:10.1136/bmj.315.7105.396
  22. Boney CM, Verma A, Tucker R, Vohr BR. Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics. 2005;115(3):e290-e296. doi:10.1542/peds.2004-1808
  23. Richards M, Hardy R, Kuh D, Wadsworth ME. Birth weight and cognitive function in the British 1946 birth cohort: longitudinal population based study. BMJ. 2001;322(7280):199-203. doi:10.1136/bmj.322.7280.199
  24. Sørensen HT, Sabroe S, Olsen J, Rothman KJ, Gillman MW, Fischer P. Birth weight and cognitive function in young adult life: historical cohort study [published correction appears in BMJ 1998 Mar 7;316(7133):747]. BMJ. 1997;315(7105):401-403. doi:10.1136/bmj.315.7105.401
  25. Cesur R, Kelly IR. From Cradle to Classroom: High Birth Weight and Cognitive Outcomes. Forum for Health Economics & Policy, 2010;13(2). doi:https://doi.org/10.2202/1558-9544.1189
  26. Corbett SS, Drewett RF, Durham M, Tymms P, Wright CM. The relationship between birthweight, weight gain in infancy, and educational attainment in childhood. Paediatr Perinat Epidemiol. 2007;21(1):57-64. doi:10.1111/j.1365-3016.2007.00783.x
  27. Jarvis S, Glinianaia SV, Torrioli MG, et al. Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet. 2003;362(9390):1106-1111. doi:10.1016/S0140-6736(03)14466-2
  28. Moore GS, Kneitel AW, Walker CK, Gilbert WM, Xing G. Autism risk in small- and large-for-gestational-age infants. Am J Obstet Gynecol. 2012;206(4):314.e1-314.e3149. doi:10.1016/j.ajog.2012.01.044
  29. van Mil NH, Steegers-Theunissen RP, Motazedi E, et al. Low and high birth weight and the risk of child attention problems. J Pediatr. 2015;166(4):862-9.e93. doi:10.1016/j.jpeds.2014.12.075
  30. Alati R, Najman JM, O’Callaghan M, Bor W, Williams GM, Clavarino A. Fetal growth and behaviour problems in early adolescence: findings from the Mater University Study of Pregnancy. Int J Epidemiol. 2009;38(5):1390-1400. doi:10.1093/ije/dyp252
  31. Frank CE, Speechley KN, Macnab JJ, Campbell MK. Infants Born Large for Gestational Age and Developmental Attainment in Early Childhood. Int J Pediatr. 2018;2018:9181497. Published 2018 Jan 1. doi:10.1155/2018/9181497
  32. Paulson JF, Mehta SH, Sokol RJ, Chauhan SP. Large for gestational age and long-term cognitive function. Am J Obstet Gynecol. 2014;210(4):343.e1-343.e4. doi:10.1016/j.ajog.2013.11.003
  33. Khambalia AZ, Algert CS, Bowen JR, Collie RJ, Roberts CL. Long-term outcomes for large for gestational age infants born at term. J Paediatr Child Health. 2017;53(9):876-881. doi:10.1111/jpc.13593
  34. Zhang M, Gazimbi MM, Chen Z, et al. Association between birth weight and neurodevelopment at age 1-6 months: results from the Wuhan Healthy Baby Cohort. BMJ Open. 2020;10(1):e031916. Published 2020 Jan 2. doi:10.1136/bmjopen-2019-031916
  35. Weissmann-Brenner A, Simchen MJ, Zilberberg E, et al. Maternal and neonatal outcomes of macrosomic pregnancies. Med Sci Monit. 2012;18(9):PH77-PH81. doi:10.12659/msm.883340
  36. Calkins K, Devaskar SU. Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care. 2011;41(6):158-176. doi:10.1016/j.cppeds.2011.01.001
  37. Chiavaroli V, Derraik JG, Hofman PL, Cutfield WS. Born Large for Gestational Age: Bigger Is Not Always Better. J Pediatr. 2016;170:307-311. doi:10.1016/j.jpeds.2015.11.043
  38. Dwi Putra SE, Reichetzeder C, Hasan AA, et al. Being Born Large for Gestational Age is Associated with Increased Global Placental DNA Methylation. Sci Rep. 2020;10(1):927. Published 2020 Jan 22. doi:10.1038/s41598-020-57725-0
  39. Ribas-Prats T, Arenillas-Alcón S, Lip-Sosa DL et al. Deficient neural encoding of speech sounds in term neonates born after fetal growth restriction. Dev Sci. 2020. Submitted.
  40. Coffey EBJ, Nicol T, White-Schwoch T, et al. Evolving perspectives on the sources of the frequency-following response. Nat Commun. 2019;10(1):5036. Published 2019 Nov 6. doi:10.1038/s41467-019-13003-w
  41. Gorina-Careta N, Kurkela J, Hämälainen J, Astikainen P, Escera, C. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: a magnetoencephalographic (MEG) study. Neuroimage. 2020. Submitted.
  42. Kraus N, White-Schwoch T. Unraveling the Biology of Auditory Learning: A Cognitive-Sensorimotor-Reward Framework. Trends Cogn Sci. 2015;19(11):642-654. doi:10.1016/j.tics.2015.08.017
  43. Hornickel J, Kraus N. Unstable representation of sound: a biological marker of dyslexia. J Neurosci. 2013;33(8):3500-3504. doi:10.1523/JNEUROSCI.4205-12.2013
  44. Hornickel J, Chandrasekaran B, Zecker S, Kraus N. Auditory brainstem measures predict reading and speech-in-noise perception in school-aged children. Behav Brain Res. 2011;216(2):597-605. doi:10.1016/j.bbr.2010.08.051
  45. Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N. Reading and subcortical auditory function. Cereb Cortex. 2009;19(11):2699-2707. doi:10.1093/cercor/bhp024
  46. Font-Alaminos M, Cornella M, Costa-Faidella J, et al. Increased subcortical neural responses to repeating auditory stimulation in children with autism spectrum disorder. Biol Psychol. 2020;149:107807. doi:10.1016/j.biopsycho.2019.107807
  47. Otto-Meyer S, Krizman J, White-Schwoch T, Kraus N. Children with autism spectrum disorder have unstable neural responses to sound. Exp Brain Res. 2018;236(3):733-743. doi:10.1007/s00221-017-5164-4
  48. White-Schwoch T, Woodruff Carr K, Thompson EC, et al. Auditory Processing in Noise: A Preschool Biomarker for Literacy. PLoS Biol. 2015;13(7):e1002196. Published 2015 Jul 14. doi:10.1371/journal.pbio.1002196
  49. Arenillas-Alcón, S., Costa-Faidella, J., Ribas-Prats, T., Gómez-Roig, M.D., & Escera, C. (2021). Neural encoding of voice pitch and formant structure at birth as revealed by frequency-following responses.Scientific Reports, 116660. https://doi.org/10.1038/s41598-021-85799-x..
  50. Gardi J, Salamy A, Mendelson T. Scalp-recorded frequency-following responses in neonates. Audiology. 1979;18(6):494-506. doi:10.3109/00206097909072640
  51. Jeng FC, Hu J, Dickman B, et al. Cross-linguistic comparison of frequency-following responses to voice pitch in American and Chinese neonates and adults. Ear Hear. 2011;32(6):699-707. doi:10.1097/AUD.0b013e31821cc0df
  52. Jeng FC, Lin CD, Wang TC. Subcortical neural representation to Mandarin pitch contours in American and Chinese newborns. J Acoust Soc Am. 2016;139(6):EL190. doi:10.1121/1.4953998
  53. Ribas-Prats T, Almeida L, Costa-Faidella J, et al. The frequency-following response (FFR) to speech stimuli: A normative dataset in healthy newborns. Hear Res. 2019;371:28-39. doi:10.1016/j.heares.2018.11.001
  54. Musacchia G, Hu J, Bhutani VK, et al. Frequency-following response among neonates with progressive moderate hyperbilirubinemia. J Perinatol. 2020;40(2):203-211. doi:10.1038/s41372-019-0421-y
  55. Battaglia FC, Lubchenco LO. A practical classification of newborn infants by weight and gestational age. J Pediatr. 1967;71(2):159-163. doi:10.1016/s0022-3476(67)80066-0
  56. American Academy of Pediatrics, Joint Committee on Infant Hearing. Year 2019 position statement: Principles and guidelines for early hearing detection and intervention programs. JEHDI. 2019; 4(2):1-44. doi: 10.15142/fptk-b748
  57. Ornoy A, Becker M, Weinstein-Fudim L, Ergaz Z. Diabetes during Pregnancy: A Maternal Disease Complicating the Course of Pregnancy with Long-Term Deleterious Effects on the Offspring. A Clinical Review. Int J Mol Sci. 2021;22(6):2965. Published 2021 Mar 15. doi:10.3390/ijms22062965
  58. Li C, Zhou P, Cai Y, et al. Associations between gestational diabetes mellitus and the neurodevelopment of offspring from 1 month to 72 months: study protocol for a cohort study. BMJ Open. 2020;10(11):e040305. Published 2020 Nov 24. doi:10.1136/bmjopen-2020-040305
  59. Klem GH, Lüders HO, Jasper HH, Elger C. The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6.
  60. Klatt DH. Software for a cascade/parallel formant synthesizer.JASA, 1980; 67(3). doi:https://doi.org/10.1121/1.383940
  61. Boersma P, Weenink D. Praat: Doing phonetics by computer [computer program] Version 6.1.08. 2019. Amsterdam: University of Amsterdam. Retrieved from. http://www.fon.hum. uva.nl/praat/.
  62. Stuart A, Yang EY, Green WB. Neonatal auditory brainstem response thresholds to air- and bone-conducted clicks: 0 to 96 hours postpartum. J Am Acad Audiol. 1994;5(3):163-172.
  63. Oxenham AJ. Pitch perception. J Neurosci. 2012;32(39):13335-13338. doi:10.1523/JNEUROSCI.3815-12.2012
  64. He C, Hotson L, Trainor LJ. Mismatch responses to pitch changes in early infancy. J Cogn Neurosci. 2007;19(5):878-892. doi:10.1162/jocn.2007.19.5.878
  65. Lau BK, Lalonde K, Oster MM, Werner LA. Infant pitch perception: Missing fundamental melody discrimination. J Acoust Soc Am. 2017;141(1):65. doi:10.1121/1.4973412
  66. Sanchez CE, Barry C, Sabhlok A, et al. Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes Rev. 2018;19(4):464-484. doi:10.1111/obr.12643
  67. Pugh SJ, Richardson GA, Hutcheon JA, et al. Maternal Obesity and Excessive Gestational Weight Gain Are Associated with Components of Child Cognition. J Nutr. 2015;145(11):2562-2569. doi:10.3945/jn.115.215525
  68. Camprubi Robles M, Campoy C, Garcia Fernandez L, Lopez-Pedrosa JM, Rueda R, Martin MJ. Maternal Diabetes and Cognitive Performance in the Offspring: A Systematic Review and Meta-Analysis. PLoS One. 2015;10(11):e0142583. Published 2015 Nov 13. doi:10.1371/journal.pone.0142583
  69. Wahabi HA, Fayed AA, Alzeidan RA, Mandil AA. The independent effects of maternal obesity and gestational diabetes on the pregnancy outcomes. BMC Endocr Disord. 2014;14:47. Published 2014 Jun 13. doi:10.1186/1472-6823-14-47
  70. McCloskey K, Ponsonby AL, Collier F, et al. The association between higher maternal pre-pregnancy body mass index and increased birth weight, adiposity and inflammation in the newborn. Pediatr Obes. 2018;13(1):46-53. doi:10.1111/ijpo.12187
  71. Prats-Soteras X, Jurado MA, Ottino-González J, et al. Inflammatory agents partially explain associations between cortical thickness, surface area, and body mass in adolescents and young adulthood. Int J Obes (Lond). 2020;44(7):1487-1496. doi:10.1038/s41366-020-0582-y
  72. Carlini VP, Martini AC, Schiöth HB, Ruiz RD, Fiol de Cuneo M, de Barioglio SR. Decreased memory for novel object recognition in chronically food-restricted mice is reversed by acute ghrelin administration. Neuroscience. 2008;153(4):929-934. doi:10.1016/j.neuroscience.2008.03.015
  73. Li N, Yolton K, Lanphear BP, Chen A, Kalkwarf HJ, Braun JM. Impact of Early-Life Weight Status on Cognitive Abilities in Children. Obesity (Silver Spring). 2018;26(6):1088-1095. doi:10.1002/oby.22192
  74. Miller AL, Lee HJ, Lumeng JC. Obesity-associated biomarkers and executive function in children. Pediatr Res. 2015;77(1-2):143-147. doi:10.1038/pr.2014.158
  75. Pannacciulli N, Le DS, Salbe AD, et al. Postprandial glucagon-like peptide-1 (GLP-1) response is positively associated with changes in neuronal activity of brain areas implicated in satiety and food intake regulation in humans. Neuroimage. 2007;35(2):511-517. doi:10.1016/j.neuroimage.2006.12.035
  76. Volpe JJ. Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009;8(1):110-124. doi:10.1016/S1474-4422(08)70294-1
  77. Vinall J, Miller SP, Bjornson BH, et al. Invasive procedures in preterm children: brain and cognitive development at school age. Pediatrics. 2014;133(3):412-421. doi:10.1542/peds.2013-1863
  78. Kullmann S, Schweizer F, Veit R, Fritsche A, Preissl H. Compromised white matter integrity in obesity. Obes Rev. 2015;16(4):273-281. doi:10.1111/obr.12248
  79. Coffey EBJ, Musacchia G, Zatorre RJ. Cortical Correlates of the Auditory Frequency-Following and Onset Responses: EEG and fMRI Evidence. J Neurosci. 2017;37(4):830-838. doi:10.1523/JNEUROSCI.1265-16.2016
  80. Van der Burg JW, Sen S, Chomitz VR, Seidell JC, Leviton A, Dammann O. The role of systemic inflammation linking maternal BMI to neurodevelopment in children. Pediatr Res. 2016;79(1-1):3-12. doi:10.1038/pr.2015.179
  81. Hrolfsdottir L, Schalkwijk CG, Birgisdottir BE, et al. Maternal diet, gestational weight gain, and inflammatory markers during pregnancy. Obesity (Silver Spring). 2016;24(10):2133-2139. doi:10.1002/oby.21617
  82. Hernandez-Trejo M, Sámano R, Chico-Barba G, Pizano-Zarate ML, Herrera-González NE. Neonatal adiposity may increase plasmatic cytokines. PLoS One. 2020;15(9):e0238370. Published 2020 Sep 4. doi:10.1371/journal.pone.0238370
  83. Balasubramanian P, Kiss T, Tarantini S, et al. Obesity-induced Cognitive Impairment in Older Adults: a Microvascular Perspective [published online ahead of print, 2020 Dec 18]. Am J Physiol Heart Circ Physiol. 2020;10.1152/ajpheart.00736.2020. doi:10.1152/ajpheart.00736.2020
  84. Snow, C. E., Burns, S., & Griffin, P. (1998). Preventing reading difficulties in young children. National Research Council. Washington, DC: National Academy Press.
  85. Kemler Nelson DG, Hirsh-Pasek K, Jusczyk PW, Cassidy KW. How the prosodic cues in motherese might assist language learning. J Child Lang. 1989;16(1):55-68. doi:10.1017/s030500090001343x
  86. Ohala JJ. Cross-language use of pitch: an ethological view. Phonetica. 1983;40(1):1-18. doi:10.1159/000261678
  87. Trainor LJ, Austin CM, Desjardins RN. Is infant-directed speech prosody a result of the vocal expression of emotion?. Psychol Sci. 2000;11(3):188-195. doi:10.1111/1467-9280.00240
  88. Oxenham AJ. How We Hear: The Perception and Neural Coding of Sound. Annu Rev Psychol. 2018;69:27-50. doi:10.1146/annurev-psych-122216-011635
  89. Lau BK, Lalonde K, Oster MM, Werner LA. Infant pitch perception: Missing fundamental melody discrimination. J Acoust Soc Am. 2017;141(1):65. doi:10.1121/1.4973412
  90. Stefanics G, Háden GP, Sziller I, Balázs L, Beke A, Winkler I. Newborn infants process pitch intervals. Clin Neurophysiol. 2009;120(2):304-308. doi:10.1016/j.clinph.2008.11.020