References
Anderson, D.R., Link, W.A., Johnson, D.H. & Burnham, K.P. (2001).
Suggestions for presenting the results of data analyses. The
Journal of Wildlife Management , 65, 373–378.
Archibald, A.T., Neu, J.L., Elshorbany, Y.F., Cooper, O.R., Young, P.J.,
Akiyoshi, H., et al. (2020). Tropospheric Ozone Assessment
Report: A critical review of changes in the tropospheric ozone burden
and budget from 1850 to 2100. Elementa: Science of the
Anthropocene , 8.
Avnery, S., Mauzerall, D.L., Liu, J. & Horowitz, L.W. (2011a). Global
crop yield reductions due to surface ozone exposure: 1. Year 2000 crop
production losses and economic damage. Atmospheric Environment ,
45, 2284–2296.
Avnery, S., Mauzerall, D.L., Liu, J. & Horowitz, L.W. (2011b). Global
crop yield reductions due to surface ozone exposure: 2. Year 2030
potential crop production losses and economic damage under two scenarios
of O3 pollution. Atmospheric Environment , 45, 2297–2309.
Bartomeus, I., Ascher, J.S., Gibbs, J., Danforth, B.N., Wagner, D.L.,
Hedtke, S.M., et al. (2013). Historical changes in northeastern
US bee pollinators related to shared ecological traits. PNAS ,
110, 4656–4660.
Bartoń, K. (2011). MuMIn: Multi-model inference .
Biesmeijer, J.C., Roberts, S.P.M., Reemer, M., Ohlemuller, R., Edwards,
M., Peeters, T., et al. (2006). Parallel declines in pollinators
and insect-pollinated plants in Britain and the Netherlands.Science , 313, 351–354.
Black, V.J., Stewart, C.A., Roberts, J.A. & Black, C.R. (2007). Ozone
affects gas exchange, growth and reproductive development in Brassica
campestris (Wisconsin Fast Plants). New Phytologist , 176,
150–163.
Büchler, R., Costa, C., Hatjina, F., Andonov, S., Meixner, M.D., Conte,
Y.L., et al. (2014). The influence of genetic origin and its
interaction with environmental effects on the survival of Apis mellifera
L. colonies in Europe. Journal of Apicultural Research , 53,
205–214.
Carvalheiro, L.G., Biesmeijer, J.C., Franzén, M., Aguirre-Gutiérrez, J.,
Garibaldi, L.A., Helm, A., et al. (2020). Soil eutrophication
shaped the composition of pollinator assemblages during the past
century. Ecography , 43, 209–221.
Connop, S., Hill, T., Steer, J. & Shaw, P. (2010). The role of dietary
breadth in national bumblebee (Bombus) declines: Simple correlation?Biological Conservation , 143, 2739–2746.
Dainese, M., Martin, E.A., Aizen, M.A., Albrecht, M., Bartomeus, I.,
Bommarco, R., et al. (2019). A global synthesis reveals
biodiversity-mediated benefits for crop production. Science
Advances , 5, eaax0121.
Damalas, C.A. (2009). Understanding benefits and risks of pesticide use.Scientific Research and Essays , 4, 945–949.
David, T.I., Storkey, J. & Stevens, C.J. (2019). Understanding how
changing soil nitrogen affects plant–pollinator interactions.Arthropod-Plant Interactions , 13, 671–684.
Dötterl, S., Vater, M., Rupp, T. & Held, A. (2016). Ozone
Differentially Affects Perception of Plant Volatiles in Western Honey
Bees. J Chem Ecol , 42, 486–489.
Dudley, N. & Stolton, S. (2021). Air pollution and biodiversity: a
review.
Duque, L., Poelman, E.H. & Steffan-Dewenter, I. (2020). Effects of
ozone stress on flowering phenology, plant-pollinator interactions and
plant reproductive success. Environmental Pollution , 115953.
Ekroos, J., Kleijn, D., Batáry, P., Albrecht, M., Báldi, A., Blüthgen,
N., et al. (2020). High land-use intensity in grasslands
constrains wild bee species richness in Europe. Biological
Conservation , 241, 108255.
Emberson, L. (2020). Effects of ozone on agriculture, forests and
grasslands. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences , 378, 20190327.
EPPO. (2010). Environmental risk assessment scheme for plant protection
products. EPPO Bulletin , 40, 323–331.
European Environment Agency (EEA). (2020). Nitrogen surplus and
exceedances of critical nitrogen inputs to agricultural land in view of
adverse impacts on water quality . European Environment Agency .
Available at:
https://www.eea.europa.eu/data-and-maps/figures/nitrogen-surplus-and-exceedances-of.
Last accessed 16 June 2020.
Farré‐Armengol, G., Peñuelas, J., Li, T., Yli‐Pirilä, P., Filella, I.,
Llusia, J., et al. (2016). Ozone degrades floral scent and
reduces pollinator attraction to flowers. New Phytologist , 209,
152–160.
Feder, W.A. & Sullivan, F. (1969). Ozone: Depression of Frond
Multiplication and Floral Production in Duckweed. Science , 165,
1373–1374.
Flores-Moreno, H., Reich, P.B., Lind, E.M., Sullivan, L.L., Seabloom,
E.W., Yahdjian, L., et al. (2016). Climate modifies response of
non-native and native species richness to nutrient enrichment.Philosophical Transactions of the Royal Society B: Biological
Sciences , 371, 20150273.
Fowler, D., Coyle, M., Skiba, U., Sutton, M.A., Cape, J.N., Reis, S.,et al. (2013). The global nitrogen cycle in the twenty-first
century. Philosophical Transactions of the Royal Society B:
Biological Sciences , 368, 20130164.
Fuentes, J.D., Chamecki, M., Roulston, T., Chen, B. & Pratt, K.R.
(2016). Air pollutants degrade floral scents and increase insect
foraging times. Atmospheric Environment , 141, 361–374.
Fuhrer, J., Martin, M.V., Mills, G., Heald, C.L., Harmens, H., Hayes,
F., et al. (2016). Current and future ozone risks to global
terrestrial biodiversity and ecosystem processes. Ecology and
Evolution , 6, 8785–8799.
Garibaldi, L.A., Bartomeus, I., Bommarco, R., Klein, A.M., Cunningham,
S.A., Aizen, M.A., et al. (2015). Trait matching of flower
visitors and crops predicts fruit set better than trait diversity.J Appl Ecol , 52, 1436–1444.
Garibaldi, L.A., Requier, F., Rollin, O. & Andersson, G.K.S. (2017).
Towards an integrated species and habitat management of crop
pollination. Current Opinion in Insect Science .
Garibaldi, L.A., Steffan-Dewenter, I., Kremen, C., Morales, J.M.,
Bommarco, R., Cunningham, S.A., et al. (2011). Stability of
pollination services decreases with isolation from natural areas despite
honey bee visits. Ecology Letters , 14, 1062–1072.
Garratt, M.P.D., Bishop, J., Degani, E., Potts, S.G., Shaw, R.F., Shi,
A., et al. (2018). Insect pollination as an agronomic input:
Strategies for oilseed rape production. Journal of Applied
Ecology , 55, 2834–2842.
Garratt, M.P.D., Breeze, T.D., Boreux, V., Fountain, M.T., McKerchar,
M., Webber, S.M., et al. (2016). Apple Pollination: Demand
Depends on Variety and Supply Depends on Pollinator Identity. PLOS
ONE , 11, e0153889.
Garratt, M.P.D., Breeze, T.D., Jenner, N., Polce, C., Biesmeijer, J.C.
& Potts, S.G. (2014a). Avoiding a bad apple: Insect pollination
enhances fruit quality and economic value. Agriculture, Ecosystems
& Environment , 184, 34–40.
Garratt, M.P.D., Coston, D.J., Truslove, C.L., Lappage, M.G., Polce, C.,
Dean, R., et al. (2014b). The identity of crop pollinators helps
target conservation for improved ecosystem services. Biological
Conservation , 169, 128–135.
Garratt, M.P.D., Truslove, C.L., Coston, D.J., Evans, R.L., Moss, E.D.,
Dodson, C., et al. (2014c). Pollination deficits in UK apple
orchards. Journal of Pollination Ecology , 12, 9–14.
Geslin, B., Gauzens, B., Baude, M., Dajoz, I., Fontaine, C., Henry, M.,et al. (2017). Massively Introduced Managed Species and Their
Consequences for Plant–Pollinator Interactions, 56.
Gillespie, C., Stabler, D., Tallentire, E., Goumenaki, E. & Barnes, J.
(2015). Exposure to environmentally-relevant levels of ozone negatively
influence pollen and fruit development. Environmental Pollution ,
206, 494–501.
González-Varo, J.P., Biesmeijer, J.C., Bommarco, R., Potts, S.G.,
Schweiger, O., Smith, H.G., et al. (2013). Combined effects of
global change pressures on animal-mediated pollination. Trends in
Ecology & Evolution , 28, 524–530.
Goulson, D., Lye, G.C. & Darvill, B. (2008). Decline and conservation
of bumble bees. Annual Review of Entomology , 53, 191–208.
Guerreiro, C.B.B., Foltescu, V. & de Leeuw, F. (2014). Air quality
status and trends in Europe. Atmospheric Environment , 98,
376–384.
Hayes, F., Williamson, J. & Mills, G. (2012). Ozone pollution affects
flower numbers and timing in a simulated BAP priority calcareous
grassland community. Environmental Pollution , 163, 40–47.
Heiden, A.C., Hoffmann, T., Kahl, J., Kley, D., Klockow, D.,
Langebartels, C., et al. (1999). Emission of Volatile Organic
Compounds from Ozone-Exposed Plants. Ecological Applications , 9,
1160–1167.
Ilić, P. & Maksimović, T. (2021). Air Pollution and
Biodiversity .
IPCC. (2014). Climate Change 2013: The Physical Science Basis:
Working Group I Contribution to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change . Cambridge University Press.
Jarvis, S.G., Henrys, P.A., Redheard, J.W., Osório, B.M. & Pywell, R.F.
(2019). CEH Land Cover plus: Pesticides 2012-2016 (England and Wales).NERC Environmental Information Data Centre .
Johnson, B., Standish, R. & Hobbs, R. (2020). Non-native plants and
nitrogen addition have little effect on pollination and seed set in
3-year-old restored woodland. Austral Ecology , 45, 1156–1168.
Jürgens, A. & Bischoff, M. (2017). Changing odour landscapes: the
effect of anthropogenic volatile pollutants on plant–pollinator
olfactory communication. Functional Ecology , 31, 56–64.
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H.,
Winfree, R., et al. (2013). A global quantitative synthesis of
local and landscape effects on wild bee pollinators in agroecosystems.Ecol Lett , 16, 584–599.
Kleijn, D. & Raemakers, I. (2008). A Retrospective Analysis of Pollen
Host Plant Use by Stable and Declining Bumble Bee Species.Ecology , 89, 1811–1823.
Kleijn, D., Winfree, R., Bartomeus, I., Carvalheiro, L.G., Henry, M.,
Isaacs, R., et al. (2015). Delivery of crop pollination services
is an insufficient argument for wild pollinator conservation. Nat
Commun , 6.
Kremen, C. & M’Gonigle, L.K. (2015). EDITOR’S CHOICE: Small-scale
restoration in intensive agricultural landscapes supports more
specialized and less mobile pollinator species. J Appl Ecol , 52,
602–610.
Lefohn, A.S., Malley, C.S., Smith, L., Wells, B., Hazucha, M., Simon,
H., et al. (2018). Tropospheric ozone assessment report: Global
ozone metrics for climate change, human health, and crop/ecosystem
research. Elementa (Wash D C) , 1, 1.
Leisner, C.P. & Ainsworth, E.A. (2012). Quantifying the effects of
ozone on plant reproductive growth and development. Global Change
Biology , 18, 606–616.
Lewis, K.A. & Tzilivakis, J. (2019). Wild Bee Toxicity Data for
Pesticide Risk Assessments. Data , 4, 98.
Lewis, K.A., Tzilivakis, J., Warner, D.J. & Green, A. (2016). An
international database for pesticide risk assessments and management.Human and Ecological Risk Assessment: An International Journal ,
22, 1050–1064.
Lindström, S.A.M., Herbertsson, L., Rundlöf, M., Bommarco, R. & Smith,
H.G. (2016). Experimental evidence that honeybees depress wild insect
densities in a flowering crop. Proceedings of the Royal Society B:
Biological Sciences , 283, 20161641.
Lovett, G., Tear, T., Evers, D., Findlay, S., Cosby Jr, B., Dunscomb,
J., et al. (2009). Effects of Air Pollution on Ecosystems and
Biological Diversity in the Eastern United States. Annals of the
New York Academy of Sciences , 1162, 99–135.
Mallinger, R.E., Gaines-Day, H.R. & Gratton, C. (2017). Do managed bees
have negative effects on wild bees?: A systematic review of the
literature. PLOS ONE , 12, e0189268.
Mancini, F., Woodcock, B.A. & Isaac, N.J.B. (2019). Agrochemicals in
the wild: Identifying links between pesticide use and declines of
nontarget organisms. Current Opinion in Environmental Science &
Health , Environmental Pollution: Wildlife, 11, 53–58.
Marini, L., Tamburini, G., Petrucco-Toffolo, E., Lindström, S.A.M.,
Zanetti, F., Mosca, G., et al. (2015). Crop management modifies
the benefits of insect pollination in oilseed rape. Agriculture,
Ecosystems & Environment , 207, 61–66.
Martay, B., Pearce-Higgins, J.W., Harris, S.J. & Gillings, S. (2018).
Monitoring landscape-scale environmental changes with citizen
scientists: Twenty years of land use change in Great Britain.Journal for Nature Conservation , 44, 33–42.
Mazor, T., Doropoulos, C., Schwarzmueller, F., Gladish, D.W., Kumaran,
N., Merkel, K., et al. (2018). Global mismatch of policy and
research on drivers of biodiversity loss. Nature Ecology &
Evolution , 2, 1071–1074.
McFrederick, Q.S., Kathilankal, J.C. & Fuentes, J.D. (2008). Air
pollution modifies floral scent trails. Atmospheric Environment ,
42, 2336–2348.
Mills, G., Wagg, S. & Harmens, H. (2013). Ozone Pollution:
Impacts on ecosystem services and biodiversity . Centre for Ecology and
Hydrology, Gwynedd, UK.
NASA. (2020). Panoply v. 4.11.1 . NASA Goddard Institute for Space
Studies, USA.
Osório, B.M., Redheard, J.W., Javis, S.G., May, L. & Pywell, R.F.
(2019). CEH Land Cover plus: Fertilisers 2010-2015 (England). NERC
Environmental Information Data Centre .
Paoletti, E., De Marco, A., Beddows, D.C.S., Harrison, R.M. & Manning,
W.J. (2014). Ozone levels in European and USA cities are increasing more
than at rural sites, while peak values are decreasing.Environmental Pollution , 192, 295–299.
Paradis, E., Blomberg, S., Bolker [aut, B., cph, Brown, J., Claude,
J., et al. (2019). ape: Analyses of Phylogenetics and
Evolution .
Park, M.G., Blitzer, E.J., Gibbs, J., Losey, J.E. & Danforth, B.N.
(2015). Negative effects of pesticides on wild bee communities can be
buffered by landscape context. Proceedings of the Royal Society B:
Biological Sciences , 282, 20150299.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S. &
Bert, V.W. (2020). nlme: Linear and Nonlinear Mixed Effects
Models .
Pöyry, J., Carvalheiro, L.G., Heikkinen, R.K., Kühn, I., Kuussaari, M.,
Schweiger, O., et al. (2017). The effects of soil eutrophication
propagate to higher trophic levels. Global Ecology and
Biogeography , 26, 18–30.
Prado, A., Pioz, M., Vidau, C., Requier, F., Jury, M., Crauser, D.,et al. (2019). Exposure to pollen-bound pesticide mixtures
induces longer-lived but less efficient honey bees. Science of The
Total Environment , 650, 1250–1260.
QGIS Development Team. (2020). QGIS Geographic Information
System . Open Source Geospatial Foundation.
R Development Core Team. (2018). R: A language and environment for
statistical computing . R Foundation for Statistical Computing, Vienna,
Austria. ISBN 3-900051-07-0, URL.
Ramos, D. de L., Bustamante, M.M.C., Silva, F.D. da S. e & Carvalheiro,
L.G. (2018). Crop fertilization affects pollination service provision –
Common bean as a case study. PLoS One , 13.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S.,
Lambin, E.F., et al. (2009). A safe operating space for humanity.Nature , 461, 472–475.
Rollin, O. & Garibaldi, L.A. (2019). Impacts of honeybee density on
crop yield: A meta-analysis. Journal of Applied Ecology , 0.
Roth, T., Kohli, L., Bühler, C., Rihm, B., Meuli, R.G., Meier, R.,et al. (2019). Species turnover reveals hidden effects of
decreasing nitrogen deposition in mountain hay meadows. PeerJ , 7,
e6347.
Roth, T., Kohli, L., Rihm, B. & Achermann, B. (2013). Nitrogen
deposition is negatively related to species richness and species
composition of vascular plants and bryophytes in Swiss mountain
grassland. Agriculture, Ecosystems & Environment , 178, 121–126.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J.,
Dirzo, R., et al. (2000). Global biodiversity scenarios for the
year 2100. Science , 287, 1770–1774.
Saunier, A. & Blande, J.D. (2019). The effect of elevated ozone on
floral chemistry of Brassicaceae species. Environmental
Pollution , 255, 113257.
Smil, V. (2000). PHOSPHORUS IN THE ENVIRONMENT: Natural Flows and Human
Interferences. Annual Review of Energy and the Environment , 25,
53–88.
Stevens, C.J., David, T.I. & Storkey, J. (2018). Atmospheric nitrogen
deposition in terrestrial ecosystems: Its impact on plant communities
and consequences across trophic levels. Functional Ecology , 32,
1757–1769.
Tai, A.P.K., Martin, M.V. & Heald, C.L. (2014). Threat to future global
food security from climate change and ozone air pollution. Nature
Climate Change , 4, 817–821.
Taia, W., Basahi, J. & Hassan, I. (2013). Impact of ambient air on
physiology, pollen tube growth, pollen germination and yield in pepper
(Capsicum annuum L.). Pakistan Journal of Botany , 45, 921–926.
Tamburini, G., Berti, A., Morari, F. & Marini, L. (2016). Degradation
of soil fertility can cancel pollination benefits in sunflower.Oecologia , 180, 581–587.
Tamburini, G., Lami, F. & Marini, L. (2017). Pollination benefits are
maximized at intermediate nutrient levels. Proceedings of the
Royal Society B: Biological Sciences , 284, 20170729.
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. & Polasky, S.
(2002). Agricultural sustainability and intensive production practices.Nature , 418, 671–677.
Tjoelker, M.G. & Luxmoore, R.J. (1991). Soil nitrogen and chronic ozone
stress influence physiology, growth and nutrient status of Pinus taeda
L. and Liriodendron tulipifera L. seedlings. New Phytologist ,
119, 69–81.
Tosi, S., Burgio, G. & Nieh, J.C. (2017). A common neonicotinoid
pesticide, thiamethoxam, impairs honey bee flight ability.Scientific Reports , 7, 1201.
Van de Pol, M. & Wright, J. (2009). A simple method for distinguishing
within- versus between-subject effects using mixed models. Animal
Behaviour , 77, 753–758.
Van Dingenen, R., Dentener, F.J., Raes, F., Krol, M.C., Emberson, L. &
Cofala, J. (2009). The global impact of ozone on agricultural crop
yields under current and future air quality legislation.Atmospheric Environment , 43, 604–618.
Vanderplanck, M., Lapeyre, B., Brondani, M., Opsommer, M., Dufay, M.,
Hossaert-McKey, M., et al. (2021). Ozone Pollution Alters
Olfaction and Behavior of Pollinators. Antioxidants , 10, 636.
Walker, L. & Wu, S. (2017). Pollinators and Pesticides. In:International Farm Animal, Wildlife and Food Safety Law (eds.
Steier, G. & Patel, K.K.). Springer International Publishing, Cham, pp.
495–513.
Wang, C. & Tang, Y. (2019). Responses of plant phenology to nitrogen
addition: a meta-analysis. Oikos , 128, 1243–1253.
Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L.
& Potts, S.G. (2010). Ecological and life-history traits predict bee
species responses to environmental disturbances. Biological
Conservation , 143, 2280–2291.
Wood, T.J., Michez, D., Paxton, R.J., Drossart, M., Neumann, P., Gérard,
M., et al. (2020). Managed honey bees as a radar for wild bee
decline? Apidologie .
Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G.,
Redhead, J., et al. (2017). Country-specific effects of
neonicotinoid pesticides on honey bees and wild bees. Science ,
356, 1393–1395.
Yasrebi-de-Kom, I.A.R., Biesmeijer, J.C. & Aguirre‐Gutiérrez, J.
(2019). Risk of potential pesticide use to honeybee and bumblebee
survival and distribution: A country-wide analysis for The Netherlands.Diversity and Distributions , 25, 1709–1720.
Table 1. Sources of data for crop production and pollinator
abundance included in the analyses. UK: United Kingdom; NL: Netherlands.