REFERENCES
  1. Jung, E., Osswald, M., Ratliff, M. et al.  (2021). Tumor cell plasticity, heterogeneity, and resistance in crucial microenvironmental niches in glioma. Nat Commun , 12 1014.doi:10.1038/s41467-021-21117-3
  2. Inda, M. M., Bonavia, R., & Seoane, J. (2014). Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers6 (1), 226–239. doi:10.3390/cancers6010226
  3. Holland, E.C. (2000). Glioblastoma multiforme: the terminator.Proc Natl Acad Sci U S A, 97, 6242-6244.doi: 10.1073/pnas.97.12.6242.
  4. Dirkse, A., Golebiewska, A., Buder, T. et al.  (2019). Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun,  10 178.doi:10.1038/s41467-019-09853-z
  5. Minniti, G., Muni, R., Lanzetta, G., Marchetti, P., Maurizi Enrici, R. (2009). Chemotherapy for Glioblastoma: Current Treatment and Future Perspectives for Cytotoxic and Targeted Agents. Anticancer Research, 29, 5171-5184.
  6. Mann, J. Ramakrishna, R., Magge, R., Wernicke, A. G. (2018). Advances in Radiotherapy for Glioblastoma. Front Neurol., 8, 748.doi:10.3389/fneur.2017.00748
  7. Le Rhun, E., Preusser, M., Roth, P., et al. (2019). Molecular targeted therapy of glioblastoma. Cancer Treat Rev , 80, 101896.doi: 10.1016/j.ctrv.2019.101896
  8. Paw, I., Carpenter, R. C., Watabe, K., Debinski, W., Lo, H. W. (2015). Mechanisms regulating glioma invasion. Cancer Lett., 362, 1-7.doi: 10.1016/j.canlet.2015.03.015
  9. Alieva, M., Leidgens, V., Riemenschneider, M. J., Klein, C. A., Hau, P., van Rheenen, J. (2019). Intravital imaging of glioma border morphology reveals distinctive cellular dynamics and contribution to tumor cell invasion. Sci Rep. 14, 9, 2054.doi: 10.1038/s41598-019-38625-4
  10. Jamous, S., Comba, A., Lowenstein, P. R., Motsch, S. (2020). Self-organization in brain tumors: How cell morphology and cell density influence glioma pattern formation. PLoS Comput Biol,16, 5, e1007611.doi:10.1371/journal.pcbi.1007611
  11. Chen, Z., Ross, J. L., Hambardzumyan, D. (2019). Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. Proc Natl Acad Sci U S A , 12254-14259. doi: 10.1073/pnas.1902366116
  12. Boruah, D., Deb, P. (2013). Utility of Nuclear Morphometry in Predicting Grades of Diffusely Infiltrating Gliomas,International Scholarly Research Notices , 760653.doi: 10.1155/2-13/760653
  13. Watkins, S., Sontheimer, H. (2011). Hydrodynamic Cellular Volume Changes Enable Glioma Cell Invasion. The Journal of Neuroscience , 31,17250-17259, doi: 10.1523/JNEUROSCI.3938-11.2011
  14. Kiss, A., Horvath, P., Rothballer, A., Kutay, U., Csucs, G. (2014). Nuclear Motility in Glioma Cells Reveals a Cell-Line Dependent Role of Various Cytoskeletal Components. PLoS ONE , 9, e93431.doi: 10.1371/journal.pone.0093431
  15. Gritsenko, P. G., Friedl P. (2018). Adaptive adhesion systems mediate glioma cell invasion in complex environments. J Cell Sci. , 131, jcs216382. doi: 10.1242/jcs.216382
  16. Andolfi, L., Bourkoula, E., Migliorini, E., Palma, A., Pucer, A., Skrap, M., et al. (2014) Investigation of Adhesion and Mechanical Properties of Human Glioma Cells by Single Cell Force Spectroscopy and Atomic Force Microscopy. PLoS ONE 9, e112582.doi:10.1371/journal.pone.0112582
  17. Gao, X., Zhang, Z., Mashimo, T., et al. (2020). Gliomas Interact with Non-glioma Brain Cells via Extracellular Vesicles. Cell Reports, 30, 2489-2500.doi:10.1016/j.celrep.2020.01.089
  18. Chen, P., Zhao, D., Li, J., Liang, X., Li, J., et al. (2019). Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic Lethality in PTEN-Null Glioma. Cancer Cell , 35, 868-884.e6.doi: 10.1016/j.ccell.2019.05.003.
  19. Memmel, S., Sisario, D., Zöller, C., Fiedler, V., Katzer, et al. (2017). Migration pattern, actin cytoskeleton organization and response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells with different invasive capacities. Oncotarget8 , 45298–45310. doi: 10.18632/oncotarget.16847
  20. Chen, HY., Lin, LT., Wang, ML. et al.  (2017). Musashi-1 Enhances Glioblastoma Cell Migration and Cytoskeletal Dynamics through Translational Inhibition of Tensin3. Sci Rep , 7,  8710.doi: 10.1038/s41598-017-09504-7
  21. Hohmann, T., Feese, K., Ghadban, C., Dehghani, F., & Grabiec, U. (2019). On the influence of cannabinoids on cell morphology and motility of glioblastoma cells. PloS one14 , e0212037.doi:10.1371/journal.pone.0212037
  22. Wu, B., Zhu. J., Dai, X., et al. (2021). Raddeanin A inhibited epithelial-mesenchymal transition (EMT) and angiogenesis in glioblastoma by downregulating β-catenin expression, Int. J. Med. Sci. , 19, 1609-1617. doi: 10.7150/ijms.52206. eCollection 2021
  23. Hernández-Vega, A. M., Camacho-Arroyo, I. (2021). Crosstalk between 17β-Estradiol and TGF-β Signaling Modulates Glioblastoma Progression,Brain Sci ., 11, 564.doi:10.3390/brainsci11050564
  24. Bhuvanalakshmi, G., Arfuso, F., Milward, M., Dharmarajan, A., Warrier, S. (2015). Secreted Frizzled-Related Protein 4 Inhibits Glioma Stem-Like Cells by Reversing Epithelial to Mesenchymal Transition, Inducing Apoptosis and Decreasing Cancer Stem Cell Properties,PLoS ONE , 10, e0127517.doi :10.1371/journal.pone.0127517
  25. Li, D., Tian, Y., Hu, Y. et al.  (2019). Glioma-associated human endothelial cell-derived extracellular vesicles specifically promote the tumourigenicity of glioma stem cells via CD9. Oncogene,  38,  6898–6912.doi:10.1038/s41388-019-0903-6
  26. Velpula, K., Dasari, V., Tsung, A. J., Dinh, D. H., Rao, J. S. (2011). Cord blood stem cells revert glioma stem cell EMT by down regulating transcriptional activation of Sox2 and Twist1. Oncotarget ., 2, 1028-1042. doi:10.18632/oncotarget.367
  27. Marhuenda, E., Fabre, C., Zhang, C. et al.  (2021). Glioma stem cells invasive phenotype at optimal stiffness is driven by MGAT5 dependent mechanosensing. J Exp Clin Cancer Res,  40,  139. doi: 10.1186/s13046-021-01925-7
  28. Montgomery, M. K., Kim, S. H., Dovas, A., Zhao, H. T., Goldberg, A. R., et al. (2020). Glioma-Induced Alterations in Neuronal Activity and Neurovascular Coupling during Disease Progression. Cell reports , 31, 107500.doi:10.1016/j.celrep.2020.03.06
  29. Runel, G., Lopez-Ramirez, N., Chlasta, J., Masse, I. (2021). Biomechanical Properties of Cancer Cells. Cells , 10, 887.doi:10.3390/cells10040887
  30. Hohmann, T., Hohmann, U., Kolbe, M. R. et al.  (2020). MACC1 driven alterations in cellular biomechanics facilitate cell motility in glioblastoma. Cell Commun Signal , 18,  85.doi:10.1186/s12964-020-00566-1
  31. Sengul, E., Elitas, M. (2020). Single-Cell Mechanophenotyping in Microfluidics to Evaluate Behavior of U87 Glioma Cells.Micromachines , 11, 845.doi:10.3390/mi11090845
  32. Sengul, E., Elitas, M. (2021). Long-term migratory velocity measurements of single glioma cells using microfluidics.Analyst , 146, 5143-5149.doi :10.1039/D1AN00817J
  33. Lamanna, J., Scott, E. Y., Edwards, H. S. et al.  (2020). Digital microfluidic isolation of single cells for -Omics. Nat Commun,  11 5632. doi: 10.1038/s41467-020-19394-5
  34. Han, J., Jun, Y., Kim, S. H., Hoang, H. H., Jung, Y., et al. (2016). Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology. Proceedings of the National Academy of Sciences of the United States of America113 , 14283–14288.doi:10.1073/pnas.1614898113
  35. Wong, B. S., Shah, S. R., Yankaskas, C. L., Bajpai. V. K., Wu, P. H., et al. (2021). A microfluidic cell-migration assay for the prediction of progression-free survival and recurrence time of patients with glioblastoma. Nat Biomed Eng. , 5, 26-40.doi: 10.1038/s41551-020-00621-9. Epub 2020 Sep 28.
  36. Dou, J., Mao, S., Li, H., Lin, J.-M. (2020). Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip. Anal. Chem ., 92, 892-898. doi:10.1021/acs.analchem.9b03681
  37. Neufeld, L., Yeini, E., Reisman, N., et al. (2021). Microengineered perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of tumor microenvironment. Sci. Adv ., 7, eabi9119. doi:
  38. Namba, N., Chonan, Y., Nunokawa, T., Sampetrean, O., Saya, H., Sudo, R. (2021). Heterogeneous Glioma Cell Invasion Under Interstitial Flow Depending on Their Differentiation Status. Tissue Engineering Part A, 467-478.doi:10.1089/ten.tea.2020.0280
  39. Thakur, A., Sidu, R. K., Zou, H., Alam, M. K., Yang, M., Lee, Y. (2020). Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics. Int J Nanomedicine, 15, 8331-8343.doi:10.2147/IJN.S263956
  40. Black, P. M., Kornblith, P. L., Davison, P. F., et al., (1982). Immunological, biochemical, ultrastructural, and electrophysiological characteristics of a human glioblastoma-derived cell culture line.J Neurosurg , 56, 62–72. doi:10.3171/jns.1982.56.1.0062
  41. Pohl, H.A. (1978). Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields. Cambridge University Press , Cambridge.
  42. Pohl, H.A. (1982). Conference on Electrical Insulation & Dielectric Phenomena-Annual Report , 71-78.
  43. Pohl, H. A., & Crane, J. S. (1971). Dielectrophoresis of cells. Biophysical journal , 11, 711–727.doi:10.1016/S0006-3495(71)86249-5
  44. Elitas, M., Yildizhan, Y., Islam, et al . (2018). Dielectrophoretic characterization and separation of monocytes and macrophages using 3D carbon-electrodes. ELECTROPHORESIS , 40, 315-321.
  45. Yildizhan, Y., Erdem, N., Islam, M., Martinez-Duarte, R., Elitas, M. (2017). Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon-Electrodes. Sensors , 17, 2691.doi: 10.3390/s17112691
  46. O. Sahin, M. Elitas and M. K. Yapici. (2020). Simulation of Dielectrophoresis based Separation of Red Blood Cells (RBC) from Bacteria Cells, 2020 21st International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE) , 2020, 1-4.doi: 10.1109/EuroSimE48426.2020.9152677.
  47. Moon, H. S., Kwon, K., Kim S. I., Han, H., Sohn J., et al.(2011). Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip, 11, 1118-1125.doi: 10.1039/c0lc00345j
  48. Çağlayan, Z., Demircan, Y. Y., Külah. H. (2020). A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. Micromachines , 11, 990.doi: 10.3390/mi11110990
  49. Lewis, J., Alattar, A.A., Akers, J. et al.  (2019). A Pilot Proof-Of-Principle Analysis Demonstrating Dielectrophoresis (DEP) as a Glioblastoma Biomarker Platform. Sci Rep  9 10279.doi: 10.1038/s41598-019-46311-8
  50. Memmelm S., Sukhorukov, V. L., Höring, M., Westerling, K., Fiedler, V., et al. (2014). Cell Surface Area and Membrane Folding in Glioblastoma Cell Lines Differing in PTEN  and p53  Status. PLoS ONE, 9, e87052.doi :10.1371/journal.pone.0087052Figure Legends
Figure 1. Fabrication of the interdigitated gold electrode arrays and microfluidic chip . a) Schematic of the process flow for the fabrication of gold electrodes, which includes photolithography of a positive photoresist followed by evaporation of gold and lift-off of the positive photoresist. b) Different layers of the microfluidic chip, which includes a SiO2/Si substrate, interdigitated gold electrodes, a PSA-based microchannel, and a PMMA cover with inlet and outlet holes.