REFERENCES
- Jung, E., Osswald, M., Ratliff, M. et al. (2021). Tumor cell
plasticity, heterogeneity, and resistance in crucial
microenvironmental niches in glioma. Nat Commun ,
12, 1014.doi:10.1038/s41467-021-21117-3
- Inda, M. M., Bonavia, R., & Seoane, J. (2014). Glioblastoma
multiforme: a look inside its heterogeneous
nature. Cancers , 6 (1), 226–239.
doi:10.3390/cancers6010226
- Holland, E.C. (2000). Glioblastoma multiforme: the terminator.Proc Natl Acad Sci U S A, 97, 6242-6244.doi: 10.1073/pnas.97.12.6242.
- Dirkse, A., Golebiewska, A., Buder, T. et al. (2019). Stem
cell-associated heterogeneity in Glioblastoma results from intrinsic
tumor plasticity shaped by the microenvironment. Nat
Commun, 10, 178.doi:10.1038/s41467-019-09853-z
- Minniti, G., Muni, R., Lanzetta, G., Marchetti, P., Maurizi Enrici, R.
(2009). Chemotherapy for Glioblastoma: Current Treatment and Future
Perspectives for Cytotoxic and Targeted Agents. Anticancer
Research, 29, 5171-5184.
- Mann, J. Ramakrishna, R., Magge, R., Wernicke, A. G. (2018). Advances
in Radiotherapy for Glioblastoma. Front Neurol., 8, 748.doi:10.3389/fneur.2017.00748
- Le Rhun, E., Preusser, M., Roth, P., et al. (2019). Molecular
targeted therapy of glioblastoma. Cancer Treat Rev , 80, 101896.doi: 10.1016/j.ctrv.2019.101896
- Paw, I., Carpenter, R. C., Watabe, K., Debinski, W., Lo, H. W. (2015).
Mechanisms regulating glioma invasion. Cancer Lett., 362, 1-7.doi: 10.1016/j.canlet.2015.03.015
- Alieva, M., Leidgens, V., Riemenschneider, M. J., Klein, C. A., Hau,
P., van Rheenen, J. (2019). Intravital imaging of glioma border
morphology reveals distinctive cellular dynamics and contribution to
tumor cell invasion. Sci Rep. 14, 9, 2054.doi: 10.1038/s41598-019-38625-4
- Jamous, S., Comba, A., Lowenstein, P. R., Motsch, S. (2020).
Self-organization in brain tumors: How cell morphology and cell
density influence glioma pattern formation. PLoS Comput Biol,16, 5, e1007611.doi:10.1371/journal.pcbi.1007611
- Chen, Z., Ross, J. L., Hambardzumyan, D. (2019). Intravital 2-photon
imaging reveals distinct morphology and infiltrative properties of
glioblastoma-associated macrophages. Proc Natl Acad Sci U S A ,
12254-14259. doi: 10.1073/pnas.1902366116
- Boruah, D., Deb, P. (2013). Utility of Nuclear Morphometry in
Predicting Grades of Diffusely Infiltrating Gliomas,International Scholarly Research Notices , 760653.doi: 10.1155/2-13/760653
- Watkins, S., Sontheimer, H. (2011). Hydrodynamic Cellular Volume
Changes Enable Glioma Cell Invasion. The Journal of
Neuroscience , 31,17250-17259,
doi: 10.1523/JNEUROSCI.3938-11.2011
- Kiss, A., Horvath, P., Rothballer, A., Kutay, U., Csucs, G. (2014).
Nuclear Motility in Glioma Cells Reveals a Cell-Line Dependent Role of
Various Cytoskeletal Components. PLoS ONE , 9, e93431.doi: 10.1371/journal.pone.0093431
- Gritsenko, P. G., Friedl P. (2018). Adaptive adhesion systems mediate
glioma cell invasion in complex environments. J Cell Sci. , 131,
jcs216382. doi: 10.1242/jcs.216382
- Andolfi, L., Bourkoula, E., Migliorini, E., Palma, A., Pucer, A.,
Skrap, M., et al. (2014) Investigation of Adhesion and Mechanical
Properties of Human Glioma Cells by Single Cell Force Spectroscopy and
Atomic Force Microscopy. PLoS ONE 9, e112582.doi:10.1371/journal.pone.0112582
- Gao, X., Zhang, Z., Mashimo, T., et al. (2020). Gliomas Interact with
Non-glioma Brain Cells via Extracellular Vesicles. Cell
Reports, 30, 2489-2500.doi:10.1016/j.celrep.2020.01.089
- Chen, P., Zhao, D., Li, J., Liang, X., Li, J., et al. (2019).
Symbiotic Macrophage-Glioma Cell Interactions Reveal Synthetic
Lethality in PTEN-Null Glioma. Cancer Cell , 35, 868-884.e6.doi: 10.1016/j.ccell.2019.05.003.
- Memmel, S., Sisario, D., Zöller, C., Fiedler, V., Katzer, et al.
(2017). Migration pattern, actin cytoskeleton organization and
response to PI3K-, mTOR-, and Hsp90-inhibition of glioblastoma cells
with different invasive capacities. Oncotarget , 8 ,
45298–45310. doi: 10.18632/oncotarget.16847
- Chen, HY., Lin, LT., Wang, ML. et al. (2017). Musashi-1
Enhances Glioblastoma Cell Migration and Cytoskeletal Dynamics through
Translational Inhibition of Tensin3. Sci Rep , 7, 8710.doi: 10.1038/s41598-017-09504-7
- Hohmann, T., Feese, K., Ghadban, C., Dehghani, F., & Grabiec, U.
(2019). On the influence of cannabinoids on cell morphology and
motility of glioblastoma cells. PloS one , 14 , e0212037.doi:10.1371/journal.pone.0212037
- Wu, B., Zhu. J., Dai, X., et al. (2021). Raddeanin A inhibited
epithelial-mesenchymal transition (EMT) and angiogenesis in
glioblastoma by downregulating β-catenin expression, Int. J.
Med. Sci. , 19, 1609-1617. doi: 10.7150/ijms.52206. eCollection
2021
- Hernández-Vega, A. M., Camacho-Arroyo, I. (2021). Crosstalk between
17β-Estradiol and TGF-β Signaling Modulates Glioblastoma Progression,Brain Sci ., 11, 564.doi:10.3390/brainsci11050564
- Bhuvanalakshmi, G., Arfuso, F., Milward, M., Dharmarajan, A., Warrier,
S. (2015). Secreted Frizzled-Related Protein 4 Inhibits Glioma
Stem-Like Cells by Reversing Epithelial to Mesenchymal Transition,
Inducing Apoptosis and Decreasing Cancer Stem Cell Properties,PLoS ONE , 10, e0127517.doi :10.1371/journal.pone.0127517
- Li, D., Tian, Y., Hu, Y. et al. (2019). Glioma-associated human
endothelial cell-derived extracellular vesicles specifically promote
the tumourigenicity of glioma stem cells via
CD9. Oncogene, 38, 6898–6912.doi:10.1038/s41388-019-0903-6
- Velpula, K., Dasari, V., Tsung, A. J., Dinh, D. H., Rao, J. S. (2011).
Cord blood stem cells revert glioma stem cell EMT by down regulating
transcriptional activation of Sox2 and Twist1. Oncotarget ., 2,
1028-1042. doi:10.18632/oncotarget.367
- Marhuenda, E., Fabre, C., Zhang, C. et al. (2021). Glioma stem
cells invasive phenotype at optimal stiffness is driven by MGAT5
dependent mechanosensing. J Exp Clin Cancer
Res, 40, 139. doi: 10.1186/s13046-021-01925-7
- Montgomery, M. K., Kim, S. H., Dovas, A., Zhao, H. T., Goldberg, A.
R., et al. (2020). Glioma-Induced Alterations in Neuronal Activity and
Neurovascular Coupling during Disease Progression. Cell
reports , 31, 107500.doi:10.1016/j.celrep.2020.03.06
- Runel, G., Lopez-Ramirez, N., Chlasta, J., Masse, I. (2021).
Biomechanical Properties of Cancer Cells. Cells , 10, 887.doi:10.3390/cells10040887
- Hohmann, T., Hohmann, U., Kolbe, M. R. et al. (2020). MACC1
driven alterations in cellular biomechanics facilitate cell motility
in glioblastoma. Cell Commun Signal , 18, 85.doi:10.1186/s12964-020-00566-1
- Sengul, E., Elitas, M. (2020). Single-Cell Mechanophenotyping in
Microfluidics to Evaluate Behavior of U87 Glioma Cells.Micromachines , 11, 845.doi:10.3390/mi11090845
- Sengul, E., Elitas, M. (2021). Long-term migratory velocity
measurements of single glioma cells using microfluidics.Analyst , 146, 5143-5149.doi :10.1039/D1AN00817J
- Lamanna, J., Scott, E. Y., Edwards, H. S. et al. (2020).
Digital microfluidic isolation of single cells for -Omics. Nat
Commun, 11, 5632. doi: 10.1038/s41467-020-19394-5
- Han, J., Jun, Y., Kim, S. H., Hoang, H. H., Jung, Y., et al. (2016).
Rapid emergence and mechanisms of resistance by U87 glioblastoma cells
to doxorubicin in an in vitro tumor microfluidic
ecology. Proceedings of the National Academy of Sciences of the
United States of America , 113 , 14283–14288.doi:10.1073/pnas.1614898113
- Wong, B. S., Shah, S. R., Yankaskas, C. L., Bajpai. V. K., Wu, P. H.,
et al. (2021). A microfluidic cell-migration assay for the prediction
of progression-free survival and recurrence time of patients with
glioblastoma. Nat Biomed Eng. , 5, 26-40.doi: 10.1038/s41551-020-00621-9. Epub 2020 Sep 28.
- Dou, J., Mao, S., Li, H., Lin, J.-M. (2020). Combination stiffness
gradient with chemical stimulation directs glioma cell migration on a
microfluidic chip. Anal. Chem ., 92, 892-898.
doi:10.1021/acs.analchem.9b03681
- Neufeld, L., Yeini, E., Reisman, N., et al. (2021). Microengineered
perfusable 3D-bioprinted glioblastoma model for in vivo mimicry of
tumor microenvironment. Sci. Adv ., 7, eabi9119. doi:
- Namba, N., Chonan, Y., Nunokawa, T., Sampetrean, O., Saya, H., Sudo,
R. (2021). Heterogeneous Glioma Cell Invasion Under Interstitial Flow
Depending on Their Differentiation Status. Tissue Engineering
Part A, 467-478.doi:10.1089/ten.tea.2020.0280
- Thakur, A., Sidu, R. K., Zou, H., Alam, M. K., Yang, M., Lee, Y.
(2020). Inhibition of Glioma Cells’ Proliferation by
Doxorubicin-Loaded Exosomes via Microfluidics. Int J
Nanomedicine, 15, 8331-8343.doi:10.2147/IJN.S263956
- Black, P. M., Kornblith, P. L., Davison, P. F., et al., (1982).
Immunological, biochemical, ultrastructural, and electrophysiological
characteristics of a human glioblastoma-derived cell culture line.J Neurosurg , 56,
62–72. doi:10.3171/jns.1982.56.1.0062
- Pohl, H.A. (1978). Dielectrophoresis: The Behavior of Neutral Matter
in Nonuniform Electric Fields. Cambridge University Press ,
Cambridge.
- Pohl, H.A. (1982). Conference on Electrical Insulation &
Dielectric Phenomena-Annual Report , 71-78.
- Pohl, H. A., & Crane, J. S. (1971). Dielectrophoresis of
cells. Biophysical journal , 11, 711–727.doi:10.1016/S0006-3495(71)86249-5
- Elitas, M., Yildizhan, Y., Islam, et al . (2018).
Dielectrophoretic characterization and separation of monocytes and
macrophages using 3D carbon-electrodes. ELECTROPHORESIS , 40,
315-321.
- Yildizhan, Y., Erdem, N., Islam, M., Martinez-Duarte, R., Elitas, M.
(2017). Dielectrophoretic Separation of Live and Dead Monocytes Using
3D Carbon-Electrodes. Sensors , 17, 2691.doi: 10.3390/s17112691
- O. Sahin, M. Elitas and M. K. Yapici. (2020). Simulation of
Dielectrophoresis based Separation of Red Blood Cells (RBC) from
Bacteria Cells, 2020 21st International Conference on Thermal,
Mechanical and Multi-Physics Simulation and Experiments in
Microelectronics and Microsystems (EuroSimE) , 2020, 1-4.doi: 10.1109/EuroSimE48426.2020.9152677.
- Moon, H. S., Kwon, K., Kim S. I., Han, H., Sohn J., et al.(2011). Continuous separation of breast cancer cells from blood
samples using multi-orifice flow fractionation (MOFF) and
dielectrophoresis (DEP). Lab Chip, 11, 1118-1125.doi: 10.1039/c0lc00345j
- Çağlayan, Z., Demircan, Y. Y., Külah. H. (2020). A Prominent Cell
Manipulation Technique in BioMEMS:
Dielectrophoresis. Micromachines , 11, 990.doi: 10.3390/mi11110990
- Lewis, J., Alattar, A.A., Akers, J. et al. (2019). A Pilot
Proof-Of-Principle Analysis Demonstrating Dielectrophoresis (DEP) as a
Glioblastoma Biomarker Platform. Sci Rep 9, 10279.doi: 10.1038/s41598-019-46311-8
- Memmelm S., Sukhorukov, V. L., Höring, M., Westerling, K., Fiedler,
V., et al. (2014). Cell Surface Area and Membrane Folding in
Glioblastoma Cell Lines Differing
in PTEN and p53 Status. PLoS ONE, 9, e87052.doi :10.1371/journal.pone.0087052Figure Legends
Figure 1. Fabrication of the interdigitated gold electrode
arrays and microfluidic chip . a) Schematic of the process flow
for the fabrication of gold electrodes, which includes photolithography
of a positive photoresist followed by evaporation of gold and lift-off
of the positive photoresist. b) Different layers of the
microfluidic chip, which includes a SiO2/Si substrate,
interdigitated gold electrodes, a PSA-based microchannel, and a PMMA
cover with inlet and outlet holes.