References
Bai, X. J., Dippold, M. A., An, S. S., Wang, B. R., Zhang, H. X. &
Loeppmann, S. (2021) Extracellular enzyme activity and stoichiometry:
The effect of soil microbial element limitation during leaf litter
decomposition. Ecological Indicators, 121, 107200.https://doi.org/10.1016/j.ecolind.2020.107200
Bell, L. W., Sparling, B., Tenuta, M. & Entz, M. H. (2012) Soil profile
carbon and nutrient stocks under long-term conventional and organic crop
and alfalfa-crop rotations and re-established grassland.Agriculture, Ecosystems and Environment, 158(3),156-163.http://dx.doi.org/10.1016/j.agee.2012.06.006.
Bhattacharyya, R., Rabbi, S. M. F., Zhang, Y. Q., Young, I. M., Jones,
A. R., Dennis, P. G., Menzies, N. W., Kopittke, P. M. & Dalal, R. C.
(2021) Soil organic carbon is significantly associated with the pore
geometry, microbial diversity and enzyme activity of the
macro-aggregates under different land uses. Science of The Total
Environment, 778, 146286.https://doi.org/10.1016/j.scitotenv.2021.146286.
Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I.,
Blagodatsky, S. & Kuzyakov, Y. (2014) Microbial interactions affect
sources of priming induced by cellulose. Soil Biology &
Biochemistry, 74, 39-49.http://dx.doi.org/10.1016/j.soilbio.2014.02.017.
Chen, Q. Y., Liu, Z. J., Zhou, J. B., Xu, X. P. & Zhu, Y. J. (2021)
Long-term straw mulching with nitrogen fertilization increases nutrient
and microbial determinants of soil quality in a maize–wheat rotation on
China’s Loess Plateau. Science of The Total Environment,775, 145930.https://doi.org/10.1016/j.scitotenv.2021.145930.
Cleveland, C. C. & Liptzin, D. (2007) C:N:P stoichiometry in soil: is
there a ”Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252.https://doi.org/10.1007/s10533-007-9132-0.
Cui, Q., Xia, J. B., Yang, H. J., Liu, J. T. & Shao, P. S. (2021)
Biochar and effective microorganisms promote Sesbania cannabina growth
and soil quality in the coastal saline-alkali soil of the Yellow River
Delta, China. Science of The Total Environment, 756,143801.https://doi.org/10.1016/j.scitotenv.2020.143801.
Cui, Y. X., Fang, L. C., Guo, X. B., Han, F., Ju, W. L., Ye, L. P. &
Wang, X. (2019) Natural grassland as the optimal pattern of vegetation
restoration in arid and semi-arid regions: Evidence from nutrient
limitation of soil microbes. Science of the total environment,648, 388-397.https://doi.org/10.1016/j.scitotenv.2018.08.173.
Deforest, J. L. (2009) The influence of time, storage temperature, and
substrate age on potential soil enzyme activity in acidic forest soils
using MUB-linked substrates and l -DOPA. Soil Biology &
Biochemistry, 41, 1180-1186.https://doi.org/10.1016/j.soilbio.2009.02.029.
Gao, Y., He, N. P., Yu, G. R., Chen, W. L. & Wang, Q. F. (2014)
Long-term effects of different land use types on C, N, and P
stoichiometry and storage in subtropical ecosystems: A case study in
China. Ecological Engineering, 67, 171-181.http://dx.doi.org/10.1016/j.ecoleng.2014.03.013.
Hazra, K. K., Nath, C. P., Singh, U., Praharaj, C. S., Kumar, N. &
Singh, N. P. (2019) Diversification of maize-wheat cropping system with
legumes and integrated nutrient management increases soil aggregation
and carbon sequestration. Geoderma, 353, 308-319.https://doi.org/10.1016/j.geoderma.2019.06.039.
He, Q. Q., Wu, Y. H., Bing, H. J., Zhou, J. & Wang, J. P. (2020)
Vegetation type rather than climate modulates the variation in soil
enzyme activities and stoichiometry in subalpine forests in the eastern
Tibetan Plateau. Geoderma, 374, 114424.https://doi.org/10.1016/j.geoderma.2020.114424.
Jiang, H. M., Jiang, J. P., Jia, Y., Li, F. M. & Xu, J. Z. (2006) Soil
carbon pool and effects of soil fertility in seeded alfalfa fields on
the semi-arid Loess Plateau in China. Soil Biology &
Biochemistry, 38, 2350-2358.https://doi.org/10.1016/j.soilbio.2006.02.008.
Jiao, S. Y., Li, J. R., Li, Y. Q., Jia, J. W. & Xu, Z. Y. (2019) Soil
C, N, and P distribution as affected by plant communities in the Yellow
River Delta, China. PLoS ONE, 14(12), e0226887.https://doi.org/10.1371/journal.pone.0226887.
Jiao, S. Y., Zhang, M., Wang, Y. M., Liu, J. Q. & Li, Y. Q. (2014)
Variation of soil nutrients and particle size under different vegetation
types in the Yellow River Delta. Acta Ecologica Sinica,34, 148-153.http://dx.doi.org/10.1016/j.chnaes.2014.03.003.
Li, J. W., Liu, Y. L., Hai, X. Y., Shangguan, Z. P. & Deng, L. (2019a)
Dynamics of soil microbial C:N:P stoichiometry and its driving
mechanisms following natural vegetation restoration after farmland
abandonment. Science of the Total Environment, 693,133613.https://doi.org/10.1016/j.scitotenv.2019.133613.
Li, L., Liu, Y., Xiao, T. H. & Hou, F. J. (2021) Different responses of
soil C:N:P stoichiometry to stocking rate and nitrogen addition level in
an alpine meadow on the Qinghai-Tibetan Plateau. Applied Soil
Ecology, 165, 103961.https://doi.org/10.1016/j.apsoil.2021.103961
Li, Q., Zhou, D. W., Denton, M. D. & Cong, S. (2019b) Alfalfa
monocultures promote soil organic carbon accumulation to a greater
extent than perennial grass monocultures or grass-alfalfa mixtures.Ecological Engineering, 131, 53-62.https://doi.org/10.1016/j.ecoleng.2019.03.002.
Li, X. G., Li, Y. K., Li, F. M., Ma, Q. F., Zhang, P. L. & Yin, P.
(2009) Changes in soil organic carbon, nutrients and aggregation after
conversion of native desert soil into irrigated arable land. Soil
& Tillage Research, 104(2), 263-269.https://doi.org/10.1016/j.still.2009.03.002.
Li, X. Q., Xia, J. B., Zhao, X. M. & Chen, Y. P. (2019c) Effects of
planting Tamarix chinensis on shallow soil water and salt content under
different groundwater depths in the Yellow River Delta. Geoderma,335, 104-111.https://doi.org/10.1016/j.geoderma.2018.08.017.
Li, Y., Zhang, H. B., Chen, X. B., Tu, C. & Luo, Y. M. (2014) Gradient
distributions of nitrogen and organic carbon in the soils from inland to
tidal flat in the Yellow River Delta. Geochimica, 43(4),338-345.https://doi.org/10.3969/j.issn.0379-1726.2014.04.003
Liao, R. K., Han, Y. G. & Guo, Z. F. (2021) Assessing the impact of
soil aggregate size on mineralization of nitrogen in different soils,
China. Catena, 203, 105358.https://doi.org/10.1016/j.catena.2021.105358
Liu, R., Zhang, Y., Hu, X. F., Wan, S. Z., Wang, H. M., Liang, C. &
Chen, F. S. (2021a) Litter manipulation effects on microbial communities
and enzymatic activities vary with soil depth in a subtropical Chinese
fir plantation. Forest Ecology & Management, 480,118641.https://doi.org/10.1016/j.foreco.2020.118641
Liu, X. Y., Penuelas, J., Sardans, J., Fang, Y. Y., Wiesmeier, M., Wu,
L. Q., Chen, X. X., Chen, Y. Y., Jin, Q. & Wang, W. Q. (2021b) Response
of soil nutrient concentrations and stoichiometry, and greenhouse gas
carbon emissions linked to change in land-use of paddy fields in China.Catena, 203, 105326.https://doi.org/10.1016/j.catena.2021.105326
Meng, L., Qu, F. Z., Bi, X. L., Xia, J. B., Li, Y. Z., Wang, X. H. &
Yu, J. B. (2021) Elemental stoichiometry (C, N, P) of soil in the Yellow
River Delta nature reserve: Understanding N and P status of soil in the
coastal estuary. Science of The Total Environment, 751,141737.https://doi.org/10.1016/j.scitotenv.2020.141737.
Michał, R., Maciej, G., Ratajczak, I., Magdalena, W., Tadeusz, S. &
Tomasz, J. (2020) In-situ behavioural response and ecological
stoichiometry adjustment of macroalgae (Characeae, Charophyceae) to iron
overload: Implications for lake restoration. Water Research,173, 115602.https://doi.org/10.1016/j.watres.2020.115602.
Muhammad, Q., Huang, J., Waqas, A., Muhammad, A., Li, D. C., Zulqarnain,
H. K., Gao, J. S., Liu, S. J. & Zhang, H. M. (2021) Linkages between
ecoenzymatic stoichiometry and microbial community structure under
long-term fertilization in paddy soil: A case study in China.Applied Soil Ecology, 161, 103860.https://doi.org/10.1016/j.apsoil.2020.103860
Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. (2018) Soil enzyme
activity: a brief history and biochemistry as a basis for appropriate
interpretations and meta-analysis. Biology & Fertility of Soils,54, 11-49.https://doi.org/10.1007/s00374-017-1245-6.
Qiu, X. C., Peng, D. L., Tian, H. X., Wang, H. B., Liu, X., Cao, L., Li,
Z. & Cheng, S. (2021) Soil ecoenzymatic stoichiometry and microbial
resource limitation driven by thinning practices and season types in
Larix principis-rupprechtii plantations in North China. Forest
Ecology and Management, 482, 118880.https://doi.org/10.1016/j.foreco.2020.118880
Sanginga, N. (2003) Role of biological nitrogen fixation in legume based
cropping systems; a case study of West Africa farming systems.Plant and Soil, 252, 25-39.https://doi.org/10.1023/a:1024192604607.
Singh, J. & Kumar, S. (2021) Responses of soil microbial community
structure and greenhouse gas fluxes to crop rotations that include
winter cover crops. Geoderma, 385, 114843.https://doi.org/10.1016/j.geoderma.2020.114843
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B. & Zeglin,
L. H. (2008) Stoichiometry of soil enzyme activity at global scale.Ecology Letters, 11(11), 1252-1264.https://doi.org/10.1111/j.1461-0248.2008.01245.x.
Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S.
(2010) Pattern and variation of C:N:P ratios in China’s soils: a
synthesis of observational data. Biogeochemistry, 98,139-151.https://doi.org/10.1007/s10533-009-9382-0.
Topa, D., Cara, I. G. & Jitareanu, G. (2021) Long term impact of
different tillage systems on carbon pools and stocks, soil bulk density,
aggregation and nutrients: A field meta-analysis. Catena,199, 105102.https://doi.org/10.1016/j.catena.2020.105102
Wang, L. L., Xie, J. H., Luo, Z. Z., Niu, Y. N., Coulter, J. A., Zhang,
R. Z. & Li, L. L. (2021a) Forage yield, water use efficiency, and soil
fertility response to alfalfa growing age in the semiarid Loess Plateau
of China. Agricultural Water Management, 243, 106415.https://doi.org/10.1016/j.agwat.2020.106415.
Wang, Y. B., Wang, D. L., Shi, B. K. & Sun, W. (2020) Differential
effects of grazing, water, and nitrogen addition on soil respiration and
its components in a meadow steppe. Plant Soil, 447,581-598.https://doi.org/10.1007/s11104-019-04410-5.
Wang, Y. X., Liu, G. H., Zhao, Z. H., Wu, C. S. & Yu, B. W. (2021b)
Using soil erosion to locate nonpoint source pollution risks in coastal
zones: a case study in the Yellow River Delta, China.Environmental Pollution, 283, 117117.https://doi.org/10.1016/j.envpol.2021.1171 17.
Xi, G. & Jiang, Y. F. (2019) Spatial characteristics of ecological
stoichiometry and their driving factors in farmland soils in Poyang Lake
Plain, Southeast China. Journal of Soils and Sediments,19, 263-274.https://doi.org/10.1007/s11368-018-2047-7.
Xia, J. B., Ren, J. Y., Zhang, S. Y., Wang, Y. H. & Fang, Y. (2019)
Forest and grass composite patterns improve the soil quality in the
coastal saline-alkali land of the Yellow River Delta, China.Geoderma, 349, 25-35.https://doi.org/10.1016/j.geoderma.2019.04.032.
Xiao, L., Liu, G. B., Li, P., Li, Q. & Xue, S. (2020) Ecoenzymatic
stoichiometry and microbial nutrient limitation during secondary
succession of natural grassland on the Loess Plateau, China. Soil
& Tillage Research, 200, 104605.https://doi.org/10.1016/j.still.2020.104605.
Xiao, L., Liu, G. B., Li, P. & Xue, S. (2021) Ecological stoichiometry
of plant-soil-enzyme interactions drives secondary plant succession in
the abandoned grasslands of Loess Plateau, China. Catena,202, 105302.https://doi.org/10.1016/j.catena.2021.105302
Xie, T., Liu, X. H. & Sun, T. (2011) The effects of groundwater table
and flood irrigation strategies on soil water and salt dynamics and reed
water use in the Yellow River Delta, China. Ecological Modelling,222(2), 241-252.https://doi.org/10.1016/j.ecolmodel.2010.01.012.
Yang, Y., Liang, C., Wang, Y. Q., Cheng, H., An, S. S. & Chang, S. X.
(2020) Soil extracellular enzyme stoichiometry reflects the shift from
P- to N-limitation of microorganisms with grassland restoration.Soil Biology and Biochemistry, 149, 107928.https://doi.org/10.1016/j.soilbio.2020.107928
Yu, P. J., Liu, S. W., Han, K. X., Guan, S. C. & Zhou, D. W. (2017)
Conversion of cropland to forage land and grassland increases soil
labile carbon and enzyme activities in northeastern China.Agriculture, Ecosystems and Environment, 245, 83-91.http://dx.doi.org/10.1016/j.agee.2017.05.013.
Zhang, H., Li, Y., Meng, Y. L., Cao, N., Li, D. S., Zhou, Z. G., Chen,
B. L. & Dou, F. G. (2019a) The effects of soil moisture and salinity as
functions of groundwater depth on wheat growth and yield in coastal
saline soils. Journal of Integrative Agriculture,18(11), 2472-2482.https://doi.org/10.1016/S2095-3119(19)62713-9.
Zhang, J. Y., Yang, X. M., Song, Y. H., Liu, H. F., Wang, G. L., Xue, S.
& Liu, G. B. (2020) Revealing the nutrient limitation and cycling for
microbes under forest management practices in the Loess Plateau –
Ecological stoichiometry. Geoderma, 361, 114108.https://doi.org/10.1016/j.geoderma.2019.114108.
Zhang, T. T., Zeng, S. L., Gao, Y., Ouyang, Z. T., Li, B., Fang, C. M.
& Zhao, B. (2011) Assessing impact of land uses on land salinization in
the Yellow River Delta, China using an integrated and spatial
statistical model. Land Use Policy, 28, 857-866.https://doi.org/10.1016/j.landusepol.2011.03.002.
Zhang, W., Liu, W. C., Xu, M. P., Deng, J., Han, X. H., Yang, G. H.,
Feng, Y. Z. & Ren, G. X. (2019b) Response of forest growth to C:N:P
stoichiometry in plants and soils during Robinia pseudoacacia
afforestation on the Loess Plateau, China. Geoderma,337, 280-289.https://doi.org/10.1016/j.geoderma.2018.09.042.
Zhang, W., Xu, Y. D., Gao, D. X., Wang, X., Liu, W. C., Deng, J., Han,
X. H., Yang, G. H., Feng, Y. Z. & Ren, G. X. (2019c) Ecoenzymatic
stoichiometry and nutrient dynamics along a revegetation chronosequence
in the soils of abandoned land and Robinia pseudoacacia plantation on
the Loess Plateau, China. Soil Biology & Biochemistry,134, 1-14.https://doi.org/10.1016/j.soilbio.2019.03.017.
Zhang, X. C., Dippold, M. A., Kuzyakov, Y. & Razavi, B. S. (2019d)
Spatial pattern of enzyme activities depends on root exudate
composition. Soil Biology & Biochemistry, 133, 83-89.https://doi.org/10.1016/j.soilbio.2019.02.010.
Zhang, X. J., Wang, G. Q., Xue, B. L., Zhang, M. X. & Tan, Z. X.
(2021a) Dynamic landscapes and the driving forces in the Yellow River
Delta wetland region in the past four decades. Science of The
Total Environment, 787, 147644.https://doi.org/10.1016/j.scitotenv.2021.147644.
Zhang, Y., E, S. Z., Wang, Y. N., Su, S. M., Bai, L. Y., Wu, C. X. &
Zeng, X. B. (2021b) Long-term manure application enhances the stability
of aggregates and aggregate-associated carbon by regulating soil
physicochemical characteristics. Catena, 203, 105342.https://doi.org/10.1016/j.catena.2021.105342
Zhang, Y., Li, P., Liu, X. J., Xiao, L., Shi, P. & Zhao, B. H. (2019e)
Effects of farmland conversion on the stoichiometry of carbon, nitrogen,
and phosphorus in soil aggregates on the Loess Plateau of China.Geoderma, 351, 188-196.https://doi.org/10.1016/j.geoderma.2019.05.037.
Zhao, Y., Liang, C., Shao, S., Li, J., Xie, H. T., Zhang, W., Chen, F.
S., He, H. B. & Zhang, X. D. (2021) Interactive effects of elevated CO2
and nitrogen fertilization levels on photosynthesized carbon allocation
in a temperate spring wheat and soil system. Pedosphere,31(1), 191-203.https://doi.org/10.1016/S1002-0160(20)60056-X.
Zheng, S. M., Xia, Y. H., Hu, Y. J., Chen, X. B., Rui, Y. C. & Gunina,
A. (2021) Stoichiometry of carbon, nitrogen, and phosphorus in soil:
Effects of agricultural land use and climate at a continental scale.Soil & Tillage Research, 209, 104903.https://doi.org/10.1016/j.still.2020.104903
Zwetsloot, M. J., Ucros, J. M., Wickings, K., Wilhelm, R. C., Sparks,
J., Buckley, D. H. & Bauerle, T. L. (2020) Prevalent root-derived
phenolics drive shifts in microbial community composition and prime
decomposition in forest soil. Soil Biology and Biochemistry,145, 107797.https://doi.org/10.1016/j.soilbio.2020.107797
Table 1 Cultivation history of different land use patterns