References
Bai, X. J., Dippold, M. A., An, S. S., Wang, B. R., Zhang, H. X. & Loeppmann, S. (2021) Extracellular enzyme activity and stoichiometry: The effect of soil microbial element limitation during leaf litter decomposition. Ecological Indicators, 121, 107200.https://doi.org/10.1016/j.ecolind.2020.107200
Bell, L. W., Sparling, B., Tenuta, M. & Entz, M. H. (2012) Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland.Agriculture, Ecosystems and Environment, 158(3),156-163.http://dx.doi.org/10.1016/j.agee.2012.06.006.
Bhattacharyya, R., Rabbi, S. M. F., Zhang, Y. Q., Young, I. M., Jones, A. R., Dennis, P. G., Menzies, N. W., Kopittke, P. M. & Dalal, R. C. (2021) Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Science of The Total Environment, 778, 146286.https://doi.org/10.1016/j.scitotenv.2021.146286.
Blagodatskaya, E., Khomyakov, N., Myachina, O., Bogomolova, I., Blagodatsky, S. & Kuzyakov, Y. (2014) Microbial interactions affect sources of priming induced by cellulose. Soil Biology & Biochemistry, 74, 39-49.http://dx.doi.org/10.1016/j.soilbio.2014.02.017.
Chen, Q. Y., Liu, Z. J., Zhou, J. B., Xu, X. P. & Zhu, Y. J. (2021) Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Science of The Total Environment,775, 145930.https://doi.org/10.1016/j.scitotenv.2021.145930.
Cleveland, C. C. & Liptzin, D. (2007) C:N:P stoichiometry in soil: is there a ”Redfield ratio” for the microbial biomass?Biogeochemistry, 85, 235-252.https://doi.org/10.1007/s10533-007-9132-0.
Cui, Q., Xia, J. B., Yang, H. J., Liu, J. T. & Shao, P. S. (2021) Biochar and effective microorganisms promote Sesbania cannabina growth and soil quality in the coastal saline-alkali soil of the Yellow River Delta, China. Science of The Total Environment, 756,143801.https://doi.org/10.1016/j.scitotenv.2020.143801.
Cui, Y. X., Fang, L. C., Guo, X. B., Han, F., Ju, W. L., Ye, L. P. & Wang, X. (2019) Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the total environment,648, 388-397.https://doi.org/10.1016/j.scitotenv.2018.08.173.
Deforest, J. L. (2009) The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l -DOPA. Soil Biology & Biochemistry, 41, 1180-1186.https://doi.org/10.1016/j.soilbio.2009.02.029.
Gao, Y., He, N. P., Yu, G. R., Chen, W. L. & Wang, Q. F. (2014) Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecological Engineering, 67, 171-181.http://dx.doi.org/10.1016/j.ecoleng.2014.03.013.
Hazra, K. K., Nath, C. P., Singh, U., Praharaj, C. S., Kumar, N. & Singh, N. P. (2019) Diversification of maize-wheat cropping system with legumes and integrated nutrient management increases soil aggregation and carbon sequestration. Geoderma, 353, 308-319.https://doi.org/10.1016/j.geoderma.2019.06.039.
He, Q. Q., Wu, Y. H., Bing, H. J., Zhou, J. & Wang, J. P. (2020) Vegetation type rather than climate modulates the variation in soil enzyme activities and stoichiometry in subalpine forests in the eastern Tibetan Plateau. Geoderma, 374, 114424.https://doi.org/10.1016/j.geoderma.2020.114424.
Jiang, H. M., Jiang, J. P., Jia, Y., Li, F. M. & Xu, J. Z. (2006) Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biology & Biochemistry, 38, 2350-2358.https://doi.org/10.1016/j.soilbio.2006.02.008.
Jiao, S. Y., Li, J. R., Li, Y. Q., Jia, J. W. & Xu, Z. Y. (2019) Soil C, N, and P distribution as affected by plant communities in the Yellow River Delta, China. PLoS ONE, 14(12), e0226887.https://doi.org/10.1371/journal.pone.0226887.
Jiao, S. Y., Zhang, M., Wang, Y. M., Liu, J. Q. & Li, Y. Q. (2014) Variation of soil nutrients and particle size under different vegetation types in the Yellow River Delta. Acta Ecologica Sinica,34, 148-153.http://dx.doi.org/10.1016/j.chnaes.2014.03.003.
Li, J. W., Liu, Y. L., Hai, X. Y., Shangguan, Z. P. & Deng, L. (2019a) Dynamics of soil microbial C:N:P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment. Science of the Total Environment, 693,133613.https://doi.org/10.1016/j.scitotenv.2019.133613.
Li, L., Liu, Y., Xiao, T. H. & Hou, F. J. (2021) Different responses of soil C:N:P stoichiometry to stocking rate and nitrogen addition level in an alpine meadow on the Qinghai-Tibetan Plateau. Applied Soil Ecology, 165, 103961.https://doi.org/10.1016/j.apsoil.2021.103961
Li, Q., Zhou, D. W., Denton, M. D. & Cong, S. (2019b) Alfalfa monocultures promote soil organic carbon accumulation to a greater extent than perennial grass monocultures or grass-alfalfa mixtures.Ecological Engineering, 131, 53-62.https://doi.org/10.1016/j.ecoleng.2019.03.002.
Li, X. G., Li, Y. K., Li, F. M., Ma, Q. F., Zhang, P. L. & Yin, P. (2009) Changes in soil organic carbon, nutrients and aggregation after conversion of native desert soil into irrigated arable land. Soil & Tillage Research, 104(2), 263-269.https://doi.org/10.1016/j.still.2009.03.002.
Li, X. Q., Xia, J. B., Zhao, X. M. & Chen, Y. P. (2019c) Effects of planting Tamarix chinensis on shallow soil water and salt content under different groundwater depths in the Yellow River Delta. Geoderma,335, 104-111.https://doi.org/10.1016/j.geoderma.2018.08.017.
Li, Y., Zhang, H. B., Chen, X. B., Tu, C. & Luo, Y. M. (2014) Gradient distributions of nitrogen and organic carbon in the soils from inland to tidal flat in the Yellow River Delta. Geochimica, 43(4),338-345.https://doi.org/10.3969/j.issn.0379-1726.2014.04.003
Liao, R. K., Han, Y. G. & Guo, Z. F. (2021) Assessing the impact of soil aggregate size on mineralization of nitrogen in different soils, China. Catena, 203, 105358.https://doi.org/10.1016/j.catena.2021.105358
Liu, R., Zhang, Y., Hu, X. F., Wan, S. Z., Wang, H. M., Liang, C. & Chen, F. S. (2021a) Litter manipulation effects on microbial communities and enzymatic activities vary with soil depth in a subtropical Chinese fir plantation. Forest Ecology & Management, 480,118641.https://doi.org/10.1016/j.foreco.2020.118641
Liu, X. Y., Penuelas, J., Sardans, J., Fang, Y. Y., Wiesmeier, M., Wu, L. Q., Chen, X. X., Chen, Y. Y., Jin, Q. & Wang, W. Q. (2021b) Response of soil nutrient concentrations and stoichiometry, and greenhouse gas carbon emissions linked to change in land-use of paddy fields in China.Catena, 203, 105326.https://doi.org/10.1016/j.catena.2021.105326
Meng, L., Qu, F. Z., Bi, X. L., Xia, J. B., Li, Y. Z., Wang, X. H. & Yu, J. B. (2021) Elemental stoichiometry (C, N, P) of soil in the Yellow River Delta nature reserve: Understanding N and P status of soil in the coastal estuary. Science of The Total Environment, 751,141737.https://doi.org/10.1016/j.scitotenv.2020.141737.
Michał, R., Maciej, G., Ratajczak, I., Magdalena, W., Tadeusz, S. & Tomasz, J. (2020) In-situ behavioural response and ecological stoichiometry adjustment of macroalgae (Characeae, Charophyceae) to iron overload: Implications for lake restoration. Water Research,173, 115602.https://doi.org/10.1016/j.watres.2020.115602.
Muhammad, Q., Huang, J., Waqas, A., Muhammad, A., Li, D. C., Zulqarnain, H. K., Gao, J. S., Liu, S. J. & Zhang, H. M. (2021) Linkages between ecoenzymatic stoichiometry and microbial community structure under long-term fertilization in paddy soil: A case study in China.Applied Soil Ecology, 161, 103860.https://doi.org/10.1016/j.apsoil.2020.103860
Nannipieri, P., Trasar-Cepeda, C. & Dick, R. P. (2018) Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology & Fertility of Soils,54, 11-49.https://doi.org/10.1007/s00374-017-1245-6.
Qiu, X. C., Peng, D. L., Tian, H. X., Wang, H. B., Liu, X., Cao, L., Li, Z. & Cheng, S. (2021) Soil ecoenzymatic stoichiometry and microbial resource limitation driven by thinning practices and season types in Larix principis-rupprechtii plantations in North China. Forest Ecology and Management, 482, 118880.https://doi.org/10.1016/j.foreco.2020.118880
Sanginga, N. (2003) Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems.Plant and Soil, 252, 25-39.https://doi.org/10.1023/a:1024192604607.
Singh, J. & Kumar, S. (2021) Responses of soil microbial community structure and greenhouse gas fluxes to crop rotations that include winter cover crops. Geoderma, 385, 114843.https://doi.org/10.1016/j.geoderma.2020.114843
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B. & Zeglin, L. H. (2008) Stoichiometry of soil enzyme activity at global scale.Ecology Letters, 11(11), 1252-1264.https://doi.org/10.1111/j.1461-0248.2008.01245.x.
Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. (2010) Pattern and variation of C:N:P ratios in China’s soils: a synthesis of observational data. Biogeochemistry, 98,139-151.https://doi.org/10.1007/s10533-009-9382-0.
Topa, D., Cara, I. G. & Jitareanu, G. (2021) Long term impact of different tillage systems on carbon pools and stocks, soil bulk density, aggregation and nutrients: A field meta-analysis. Catena,199, 105102.https://doi.org/10.1016/j.catena.2020.105102
Wang, L. L., Xie, J. H., Luo, Z. Z., Niu, Y. N., Coulter, J. A., Zhang, R. Z. & Li, L. L. (2021a) Forage yield, water use efficiency, and soil fertility response to alfalfa growing age in the semiarid Loess Plateau of China. Agricultural Water Management, 243, 106415.https://doi.org/10.1016/j.agwat.2020.106415.
Wang, Y. B., Wang, D. L., Shi, B. K. & Sun, W. (2020) Differential effects of grazing, water, and nitrogen addition on soil respiration and its components in a meadow steppe. Plant Soil, 447,581-598.https://doi.org/10.1007/s11104-019-04410-5.
Wang, Y. X., Liu, G. H., Zhao, Z. H., Wu, C. S. & Yu, B. W. (2021b) Using soil erosion to locate nonpoint source pollution risks in coastal zones: a case study in the Yellow River Delta, China.Environmental Pollution, 283, 117117.https://doi.org/10.1016/j.envpol.2021.1171 17.
Xi, G. & Jiang, Y. F. (2019) Spatial characteristics of ecological stoichiometry and their driving factors in farmland soils in Poyang Lake Plain, Southeast China. Journal of Soils and Sediments,19, 263-274.https://doi.org/10.1007/s11368-018-2047-7.
Xia, J. B., Ren, J. Y., Zhang, S. Y., Wang, Y. H. & Fang, Y. (2019) Forest and grass composite patterns improve the soil quality in the coastal saline-alkali land of the Yellow River Delta, China.Geoderma, 349, 25-35.https://doi.org/10.1016/j.geoderma.2019.04.032.
Xiao, L., Liu, G. B., Li, P., Li, Q. & Xue, S. (2020) Ecoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess Plateau, China. Soil & Tillage Research, 200, 104605.https://doi.org/10.1016/j.still.2020.104605.
Xiao, L., Liu, G. B., Li, P. & Xue, S. (2021) Ecological stoichiometry of plant-soil-enzyme interactions drives secondary plant succession in the abandoned grasslands of Loess Plateau, China. Catena,202, 105302.https://doi.org/10.1016/j.catena.2021.105302
Xie, T., Liu, X. H. & Sun, T. (2011) The effects of groundwater table and flood irrigation strategies on soil water and salt dynamics and reed water use in the Yellow River Delta, China. Ecological Modelling,222(2), 241-252.https://doi.org/10.1016/j.ecolmodel.2010.01.012.
Yang, Y., Liang, C., Wang, Y. Q., Cheng, H., An, S. S. & Chang, S. X. (2020) Soil extracellular enzyme stoichiometry reflects the shift from P- to N-limitation of microorganisms with grassland restoration.Soil Biology and Biochemistry, 149, 107928.https://doi.org/10.1016/j.soilbio.2020.107928
Yu, P. J., Liu, S. W., Han, K. X., Guan, S. C. & Zhou, D. W. (2017) Conversion of cropland to forage land and grassland increases soil labile carbon and enzyme activities in northeastern China.Agriculture, Ecosystems and Environment, 245, 83-91.http://dx.doi.org/10.1016/j.agee.2017.05.013.
Zhang, H., Li, Y., Meng, Y. L., Cao, N., Li, D. S., Zhou, Z. G., Chen, B. L. & Dou, F. G. (2019a) The effects of soil moisture and salinity as functions of groundwater depth on wheat growth and yield in coastal saline soils. Journal of Integrative Agriculture,18(11), 2472-2482.https://doi.org/10.1016/S2095-3119(19)62713-9.
Zhang, J. Y., Yang, X. M., Song, Y. H., Liu, H. F., Wang, G. L., Xue, S. & Liu, G. B. (2020) Revealing the nutrient limitation and cycling for microbes under forest management practices in the Loess Plateau – Ecological stoichiometry. Geoderma, 361, 114108.https://doi.org/10.1016/j.geoderma.2019.114108.
Zhang, T. T., Zeng, S. L., Gao, Y., Ouyang, Z. T., Li, B., Fang, C. M. & Zhao, B. (2011) Assessing impact of land uses on land salinization in the Yellow River Delta, China using an integrated and spatial statistical model. Land Use Policy, 28, 857-866.https://doi.org/10.1016/j.landusepol.2011.03.002.
Zhang, W., Liu, W. C., Xu, M. P., Deng, J., Han, X. H., Yang, G. H., Feng, Y. Z. & Ren, G. X. (2019b) Response of forest growth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma,337, 280-289.https://doi.org/10.1016/j.geoderma.2018.09.042.
Zhang, W., Xu, Y. D., Gao, D. X., Wang, X., Liu, W. C., Deng, J., Han, X. H., Yang, G. H., Feng, Y. Z. & Ren, G. X. (2019c) Ecoenzymatic stoichiometry and nutrient dynamics along a revegetation chronosequence in the soils of abandoned land and Robinia pseudoacacia plantation on the Loess Plateau, China. Soil Biology & Biochemistry,134, 1-14.https://doi.org/10.1016/j.soilbio.2019.03.017.
Zhang, X. C., Dippold, M. A., Kuzyakov, Y. & Razavi, B. S. (2019d) Spatial pattern of enzyme activities depends on root exudate composition. Soil Biology & Biochemistry, 133, 83-89.https://doi.org/10.1016/j.soilbio.2019.02.010.
Zhang, X. J., Wang, G. Q., Xue, B. L., Zhang, M. X. & Tan, Z. X. (2021a) Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Science of The Total Environment, 787, 147644.https://doi.org/10.1016/j.scitotenv.2021.147644.
Zhang, Y., E, S. Z., Wang, Y. N., Su, S. M., Bai, L. Y., Wu, C. X. & Zeng, X. B. (2021b) Long-term manure application enhances the stability of aggregates and aggregate-associated carbon by regulating soil physicochemical characteristics. Catena, 203, 105342.https://doi.org/10.1016/j.catena.2021.105342
Zhang, Y., Li, P., Liu, X. J., Xiao, L., Shi, P. & Zhao, B. H. (2019e) Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China.Geoderma, 351, 188-196.https://doi.org/10.1016/j.geoderma.2019.05.037.
Zhao, Y., Liang, C., Shao, S., Li, J., Xie, H. T., Zhang, W., Chen, F. S., He, H. B. & Zhang, X. D. (2021) Interactive effects of elevated CO2 and nitrogen fertilization levels on photosynthesized carbon allocation in a temperate spring wheat and soil system. Pedosphere,31(1), 191-203.https://doi.org/10.1016/S1002-0160(20)60056-X.
Zheng, S. M., Xia, Y. H., Hu, Y. J., Chen, X. B., Rui, Y. C. & Gunina, A. (2021) Stoichiometry of carbon, nitrogen, and phosphorus in soil: Effects of agricultural land use and climate at a continental scale.Soil & Tillage Research, 209, 104903.https://doi.org/10.1016/j.still.2020.104903
Zwetsloot, M. J., Ucros, J. M., Wickings, K., Wilhelm, R. C., Sparks, J., Buckley, D. H. & Bauerle, T. L. (2020) Prevalent root-derived phenolics drive shifts in microbial community composition and prime decomposition in forest soil. Soil Biology and Biochemistry,145, 107797.https://doi.org/10.1016/j.soilbio.2020.107797
Table 1 Cultivation history of different land use patterns