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Abstract. This paper is concerned with a von Karman plate model with memory. Using some prop-
erties of the convex function and the multiplier method, we show the general decay rate result for a
von Karman equations with minimal condition on the relaxation function. This result extends and
improves on some earlier results-exponential or polynomial decay rates for a von Karman equations
with memory.
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1. Introduction

This paper is concerned with the general decay of the solutions to a von Karman equations with memory:

wtt − α∆wtt + ∆2w −
∫ t

0

h(t− s)∆2w(s)ds = [w, v] in Ω× (0,∞), (1.1)

∆2v = −[w,w] in Ω× (0,∞), (1.2)

v =
∂v

∂ν
= 0 on Γ× (0,∞), (1.3)

w =
∂w

∂ν
= 0 on Γ0 × (0,∞), (1.4)

B1w − B1

{∫ t

0

h(t− s)w(s)ds
}

= 0 on Γ1 × (0,∞), (1.5)

B2w − α
∂wtt
∂ν
− B2

{∫ t

0

h(t− s)w(s)ds
}

= 0 on Γ1 × (0,∞), (1.6)

w(x, y, 0) = w0(x, y), wt(x, y, 0) = w1(x, y) in Ω. (1.7)

where w is the vertical displacement and v is the Airy-stress function. The von Karman equations describe

small vibrations of a thin isotropic plate of uniform thickness α. Here Ω is an open bounded set of R2 with

a sufficiently smooth boundary Γ = Γ0 ∪ Γ1, Γ0 and Γ1 are closed and disjoint. The relaxation function h

is a positive decreasing function and we will give later the minimal conditions on h in order to obtain the

general decay results. The differential operators

B1w = ∆w + (1− µ)B1w, and B2w =
∂∆w

∂ν
+ (1− µ)B2w
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where constant µ(0 < µ < 1
2
) is Poisson’s ratio and

B1w = 2ν1ν2wxy − ν2
1wyy − ν2

2wxx, B2w =
∂

∂η
[(ν2

1 − ν2
2 )wxy + ν1ν2(wyy − wxx)].

Here ν = (ν1, ν2) is the outward unit normal vector to Γ, η = (−ν2, ν1) is the corresponding unit tangent

vector. The von Kármán bracket is given by

[w, u] = wxxuyy − 2wxyuxy + wyyuxx.

The energy decay of the solutions to a von Karman system has been studied by several authors. In

[1-3] the authors considered the von Karman system with frictional dissipations effective in the boundary.

Rivera and Menzala [4] proved the stability of the solutions to a von Karman system for viscoelastic plates

with boundary memory conditions. They obtained that the energy decays uniformly exponentially or

algebraically with the same rate of decay as the relaxation function. The function h satisfies

−C0h(t) ≤ h′(t) ≤ −C1h(t) and 0 ≤ h′′(t) ≤ C2h(t)

for some Ci, i = 0, 1, 2. Raposo and Santos [5] improved the decay result of [4]. They proved the general

decay of the solutions to a von Karman plate model under the condition on h such as

h′(t) ≤ −ξ(t)h(t), ξ(t) > 0, ξ′(t) < 0, ∀t ≥ 0 (1.8)

where ξ is a nonincreasing and positive function. Kang [6] showed the general decay of the solutions to

a von Karman plate model with memory and boundary damping. Kang [6] generalized the results of [5]

without imposing any restrictive growth assumption on the damping term. Kang [7] studied the general

stability for a von Karman system with memory using some properties of the convex functions. The

relaxation function h satisfies

h′(t) ≤ −H(h(t)), (1.9)

where H is a non-negative function, with H(0) = 0, and H is a linear or strictly increasing and strictly

convex on (0, r], for some r > 0. The above conditions are weaker conditions on H than those introduced

in [8]. When α = 0 in (1.1) and the memory kernel h satisfies (1.9), Cavalcanti et al. [9] studied the

existence and uniform decay rates of the energy for solutions.

On the other hand, many authors([10-20]) investigated the energy decay rates of the solutions to a

viscoelastic wave equation. Recently, Mustafa [21] considered the general decay rate for a viscoelastic wave

equations under a more general condition than the ones in (1.8) and (1.9) such as

h′(t) ≤ −ξ(t)H(h(t)), (1.10)

where ξ is a positive nonincreasing differentiable function and H is a non-negative function, with H(0) = 0,

and H is a linear or strictly increasing and strictly convex on (0, r], for some 0 < r ≤ h(0). When h satisfies

the condition (1.10), the stability of the solutions to a viscoelastic system was studied in [22-24] and the

references therein.
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Motivated by the work in [21], we prove the general decay of the solutions to a von Karman plate model

(1.1)-(1.7) for relaxation function h satisfying (1.10). Using the multiplier method and some properties

of convex functions, we establish the general decay rate of the solutions to a von Karman plate model

(1.1)-(1.7).

The paper is organized as follows. In Section 2, we present some notations and material needed for

our work and state the main result. In Section 3, we prove the general decay of the solutions to the von

Karman system with general type of relaxation functions.

2. preliminaries

In this section, we present some material needed in the proof of our result and state the main result.

Throughout this paper we define

V = {v ∈ H1(Ω) | v = 0 on Γ0}, W =
{
w ∈ H2(Ω) | w =

∂w

∂ν
= 0 on Γ0

}
.

For simplicity, we denote || · ||L2(Ω) by || · ||. From the Green’s formula, we have

(∆2w, u) = a(w, u) + (B2w, u)Γ −
(
B1w,

∂u

∂ν

)
Γ

(2.1)

where the bilinear symmetric form a(w, u) is given by

a(w, u) =

∫
Ω

{
wxxuxx + wyyuyy + µ(wxxuyy + wyyuxx) + 2(1− µ)wxyuxy

}
dΩ,

where dΩ = dxdy. Since Γ0 6= ∅, we find that
√
a(w,w) is equivalent to the H2(Ω) norm on W, that is,

c0||w||2H2(Ω) ≤ a(w,w) ≤ c1||w||2H2(Ω), (2.2)

where c0 and c1 are positive constants. The Sobolev imbedding theorem and (2.2) imply that

||w||2 ≤ cpa(w,w), ||∇w||2 ≤ csa(w,w), ∀w ∈W (2.3)

where cp and cs are positive constants. Using the symmetry of a(·, ·), we obtain that for any w ∈

C1(0, T ;H2(Ω)),

a(h ∗ w,wt) = −1

2

d

dt

{
h�∂2w −

(∫ t

0

h(s)ds
)
a(w,w)

}
− 1

2
h(t)a(w,w) +

1

2
h′�∂2w, (2.4)

where

(h ∗ w)(t) :=

∫ t

0

h(t− s)w(s)ds, (h�∂2w)(t) :=

∫ t

0

h(t− s)a(w(·, t)− w(·, s), w(·, t)− w(·, s))ds.

We consider the following hypotheses:

(H1) h : R+ → R+ is a differentiable function such that

1−
∫ ∞

0

h(s)ds = l > 0. (2.5)

(H2) There exists a positive function G ∈ C1(R+), with G(0) = G′(0) = 0, and G is a linear or it is strictly

increasing and strictly convex C2 function on (0, k], k ≤ h(0), such that

h′(t) ≤ −ζ(t)G(h(t)), ∀t ≥ 0, (2.6)
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where ζ is a positive nonincreasing differentiable function.

Specific examples of relaxation functions are introduced in reference [21].

Remark 2.1. ([21])

1. By using (H1) and (H2), we conclude that lim
t→+∞

h(t) = 0. Therefore, there is t0 > 0 large enough such

that

h(t0) = k =⇒ h(t) ≤ k, ∀t ≥ t0.

Because h and ζ are positive nonincreasing continuous functions and G is a positive continuous function

then, for all t ∈ [0, t0],

h′(t) ≤ −ζ(t)G(h(t)) ≤ − c2
h(0)

h(0) ≤ − c2
h(0)

h(t),

which gives

h′(t) ≤ −c3h(t), ∀t ∈ [0, t0], (2.7)

where c2 and c3 are positive constants.

2. If G is a strictly convex on (0, k] and G(0) = 0, then

G(θx) ≤ θG(x), x ∈ (0, k] and 0 ≤ θ ≤ 1. (2.8)

3. Let G∗ be the convex conjugate of G in the sense of Young (see [25]); then

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)] ≤ s(G′)−1(s), if s ∈ (0, G′(k)] (2.9)

and G∗ satisfies the following Young’s inequality

AB ≤ G∗(A) +G(B), if A ∈ (0, G′(k)], B ∈ (0, k]. (2.10)

The well-known Jensen’s inequality and lemma for the bracket’s binary will be of essential use in proving

our result.

Remark 2.2. (Jensen’s inequality) If P is a convex function on [a, b], ξ : Ω→ [a, b] and q are integrable

functions on Ω, q(x) ≥ 0, and
∫

Ω
q(x)dx = q0 > 0, then Jensen’s inequality states that

P
( 1

q0

∫
Ω

ξ(x)q(x)dx
)
≤ 1

q0

∫
Ω

P
(
ξ(x)

)
q(x)dx. (2.11)

Lemma 2.1. ([9]) The bilinear form

[·, ·] : H2
0 (Ω)×H2

0 (Ω)→ H−1−ε(Ω)

(w, v) 7−→ [w, v]

is continuous for every ε > 0. In addition, the following estimate holds

||[w, v]||H−1−ε(Ω) ≤ c4||w||H2
0 (Ω)||v||H2

0 (Ω), (2.12)

where c4 is a positive constant.
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Using the Galerkin’s approximation, we can prove the following result of the solution for a von Karman

plate model with memory (1.1)-(1.7).

Theorem 2.1. ([4, 5]) For the initial data (w0, w1) ∈W ×V, T > 0 and α > 0, the system (1.1)-(1.7) has

a unique weak solution. For (w0, w1) ∈ (W ∩H4(Ω))× (V ∩H3(Ω)), the weak solution satisfies

w ∈ C0([0, T ];W ∩H4(Ω)) ∩ C1([0, T ];V ∩H3(Ω)).

Let us introduce the energy of problem (1.1)-(1.7)

E(t) =
1

2
||wt||2 +

α

2
||∇wt||2 +

1

2

(
1−

∫ t

0

h(s)ds
)
a(w,w) +

1

2
h�∂2w +

1

4
||∆v||2. (2.13)

Now, we state the main result.

Theorem 2.2. Assume that (H1) and (H2) hold. Then there exist positive constants k0 and k1 such that

the energy functional satisfies

E(t) ≤ k1G
−1
1

(
k0

∫ t

h−1(k)

ζ(s)ds
)

(2.14)

where

G1(t) =

∫ k

t

1

sG′(s)
ds

and G1 is strictly decreasing and convex on (0, k], with lim
t→0

G1(t) = +∞.

3. General decay of the energy

In this section, we prove the general decay rates in Theorem 2.2. First, Multiplying (1.1) by wt(t) and

using (2.1), (2.4) and (2.13), we get

E′(t) = −h(t)

2
a(w,w) +

1

2
h′�∂2w ≤ 0. (3.1)

This implies that E(t) is nonincreasing.

For suitable choice of N,N0, N1 > 0, let us define the perturbed energy by

L(t) = NE(t) +N0Φ(t) +N1Ψ(t), (3.2)

where

Φ(t) =

∫
Ω

wtwdΩ + α

∫
Ω

∇wt∇wdΩ

and

Ψ(t) =

∫
Ω

(α∆wt − wt)
∫ t

0

h(t− s)(w(t)− w(s))dsdΩ.

By the ideas presented in [6, 7], we easily have the following lemma.

Lemma 3.1. For N > 0 large enough, there exist α1 > 0 and α2 > 0 such that

α1E(t) ≤ L(t) ≤ α2E(t), ∀t ≥ 0. (3.3)
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Lemma 3.2. Under the assumption (H1), the functional Φ(t) satisfies, along the solution of (1.1)-(1.7),

the estimate

Φ′(t) ≤ − l
2
a(w,w) + ||wt||2 + α||∇wt||2 +

Cγ
2l
f�∂2w − ||∆v||2 (3.4)

for any 0 < γ < 1, where

Cγ =

∫ ∞
0

h2(s)

f(s)
ds and f(t) = γh(t)− h′(t) > 0. (3.5)

Proof. From (1.1), (2.5) and Young’s inequality, we obtain

Φ′(t) = −a(w,w) + a(h ∗ w,w) + ([w, v], w) + ||wt||2 + α||∇wt||2

≤ ||wt||2 + α||∇wt||2 − ||∆v||2 −
(

1−
∫ ∞

0

h(s)ds
)
a(w,w) +

∫ t

0

h(t− s)a(w(s)− w(t), w(t))ds

≤ ||wt||2 + α||∇wt||2 − ||∆v||2 −
l

2
a(w,w)

+
1

2l

∫ t

0

h(t− s)
∫ t

0

h(t− s)a(w(t)− w(s), w(t)− w(s))dsds. (3.6)

By using Cauchy-Schwarz inequality and (3.5), we have∫ t

0

h(t− s)
∫ t

0

h(t− s)a(w(t)− w(s), w(t)− w(s))dsds

≤
(∫ t

0

h2(s)

f(s)
ds
)∫ t

0

f(t− s)a(w(t)− w(s), w(t)− w(s))ds ≤ Cγf�∂2w. (3.7)

From (3.6) and (3.7), we get the estimate (3.4). �

Lemma 3.3. Under the assumption (H1), the functional Ψ(t) satisfies, along the solution of (1.1)-(1.7),

the estimate

Ψ′(t) ≤ −
(∫ t

0

h(s)ds− δ
)(
||wt||2 + α||∇wt||2

)
+ δa(w,w) + c5δ||∆v||2 +

(
Cγ +

c6 + c7Cγ
2δ

)
f�∂2w, (3.8)

where 0 < δ < 1, c5 = 4E(0)2

lc20
, c6 = (cp + αcs)

(
h(0) + γ(1− l)

)
and c7 = 1 +

c24
2c0

+ γ2(cp + αcs).

Proof. Similarly we see that

Ψ′(t) =
(

1−
∫ t

0

h(s)ds
)∫ t

0

h(t− s)a(w(t)− w(s), w(t))ds−
∫ t

0

h(t− s)(w(t)− w(s), [w, v])ds

+

∫ t

0

h(t− s)a(w(t)− w(s),

∫ t

0

h(t− s)(w(t)− w(s))ds)ds

−
∫ t

0

h′(t− s)(w(t)− w(s), wt(t))ds−
(∫ t

0

h(s)ds
)
||wt||2

−α
∫ t

0

h′(t− s)(∇w(t)−∇w(s),∇wt(t))ds− α
(∫ t

0

h(s)ds
)
||∇wt||2

:= I1 + I2 + · · ·+ I5 −
(∫ t

0

h(s)ds
)
||wt||2 − α

(∫ t

0

h(s)ds
)
||∇wt||2. (3.9)
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Now, we estimate the terms in the right hand side of (3.9). Using Young and Hölder inequalities, (2.2),

(2.12), (2.13), (3.1)and (3.7), we have

|I1| ≤
δ

2
a(w,w) +

1

2δ

∫ t

0

h(t− s)
∫ t

0

h(t− s)a(w(t)− w(s), w(t)− w(s))dsds

≤ δ

2
a(w,w) +

Cγ
2δ
f�∂2w,

|I2| =
∣∣∣ ∫

Ω

[w, v]

∫ t

0

h(t− s)(w(t)− w(s))dsdΩ
∣∣∣ ≤ c4||∆w||||∆v||∣∣∣∣∣∣∣∣ ∫ t

0

h(t− s)(∆w(t)−∆w(s))ds

∣∣∣∣∣∣∣∣
≤ δ||∆w||2||∆v||2 +

c24
4δ

∣∣∣∣∣∣∣∣ ∫ t

0

h(t− s)(∆w(t)−∆w(s))ds

∣∣∣∣∣∣∣∣2
≤ δlc20

4E(0)
||∆w||4 +

δE(0)

lc20
||∆v||4 +

c24
4δ

∣∣∣∣∣∣∣∣ ∫ t

0

h(t− s)(∆w(t)−∆w(s))ds

∣∣∣∣∣∣∣∣2
≤ δ

2
a(w,w) +

4E(0)2δ

lc20
||∆v||2 +

c24Cγ
4δc0

f�∂2w,

|I3| ≤ Cγf�∂2w.

By the Young’s inequality, Cauchy-Schwarz inequality, (2.3) and (3.5), we obtain

|I4| ≤
∣∣∣ ∫ t

0

f(t− s)(w(t)− w(s), wt(t))ds
∣∣∣+
∣∣∣γ ∫ t

0

h(t− s)(w(t)− w(s), wt(t))ds
∣∣∣

≤ δ||wt||2 +
1

2δ

∫
Ω

(∫ t

0

f(t− s)|w(t)− w(s)|ds
)2

dx+
γ2

2δ

∫
Ω

(∫ t

0

h(t− s)|w(t)− w(s)|ds
)2

dx

≤ δ||wt||2 +
cp
2δ

(∫ t

0

f(s)ds
)
f�∂2w +

γ2

2δ

(∫ t

0

h2(s)

f(s)
ds
)∫

Ω

∫ t

0

f(t− s)|w(t)− w(s)|2dsdx

≤ δ||wt||2 +
cp
(
h(0) + γ(1− l) + γ2Cγ

)
2δ

f�∂2w,

|I5| ≤ αδ||∇wt||2 +
αcs
(
h(0) + γ(1− l) + γ2Cγ

)
2δ

f�∂2w.

From all above estimates and (3.9), we arrive at

Ψ′(t) ≤ −
(∫ t

0

h(s)ds− δ
)
||wt||2 −

(∫ t

0

h(s)ds− δ
)
α||∇wt||2 + δa(w,w) +

4E(0)2δ

lc20
||∆v||2

+
(
Cγ +

Cγ
2δ

+
c24Cγ
4δc0

+
(cp + αcs)

(
h(0) + γ(1− l) + γ2Cγ

)
2δ

)
f�∂2w.

�

Now, we establish the estimate of the Lyapunov functional L.

Lemma 3.4. Under the assumptions (H1) and (H2). Then for suitable choice of N,N0, N1 > 0, the

functional L satisfies that

L′(t) ≤ −||wt||2 − α||∇wt||2 − 6(1− l)a(w,w)− ||∆v||2 +
1

2
h�∂2w, ∀t ≥ t0. (3.10)
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Proof. Since h is positive, we get
∫ t

0
h(s)ds ≥ h0, for all t ≥ t0. Thus, making use of this and combining

(3.1), (3.2), (3.4), (3.8), recalling that h′(t) = γh(t)− f(t), and choosing δ = l
2N1

, we have

L′(t) ≤ −
(
N1h0 −N0 −

l

2

)
||wt||2 − α

(
N1h0 −N0 −

l

2

)
||∇wt||2 −

( lN0

2
− l

2

)
a(w,w)

−
(
N0 −

lc5
2

)
||∆v||2 +

γN

2
h�∂2w −

(N
2
− c6N

2
1

l
− Cγ

(N0

2l
+
c7N

2
1

l
+N1

))
f�∂2w.

We first take N0 large enough so that

lN0

2
− l

2
> 6(1− l), N0 −

lc5
2
> 1 (3.11)

then N1 large enough so that

N1h0 −N0 −
l

2
> 1. (3.12)

From (2.6) and (3.5), we get

0 ≤ −h′(t) ⇒ γh(t) ≤ γh(t)− h′(t) ⇒ γh(t)

f(t)
≤ 1 ⇒ γh2(t)

f(t)
≤ h(t). (3.13)

Therefore, by (2.5) and (3.13), we obtain

γCγ = γ

∫ ∞
0

h2(s)

f(s)
ds ≤

∫ ∞
0

h(s)ds = 1− l. (3.14)

Applying (3.14) and the Lebesgue dominated convergence theorem, we have

γCγ → 0 as γ → 0.

Hence, there is 0 < γ0 < 1 such that if γ < γ0, then

γCγ
(N0

2l
+
c7N

2
1

l
+N1

))
<

1

4
.

We choose γ = 1
N
< γ0 and take N large enough so that

N

4
− c6N

2
1

l
> 0,

which means

N

2
− c6N

2
1

l
− Cγ

(N0

2l
+
c7N

2
1

l
+N1

)
> 0. (3.15)

Combining (3.11), (3.12) and (3.15) gives (3.10). �

Lemma 3.5. Under the assumption (H1), the functional K defined by

K(t) =

∫ t

0

g(t− s)a(w(s), w(s))ds

satisfies the estimate

K′(t) ≤ 5(1− l)a(w,w)− 3

4
h�∂2w, (3.16)

where g(t) =
∫∞
t
h(s)ds.
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Proof. From g′(t) = −h(t), we have g(t)− g(0) = −
∫ t

0

h(s)ds ≤ 0, which means

g(t) ≤ g(0) =

∫ ∞
0

h(s)ds = 1− l. (3.17)

Using the Young’s inequality, (2.5) and (3.17), we see that

K′(t) = g(0)a(w,w)−
∫ t

0

h(t− s)a(w(s), w(s))ds

≤
(
g(0)−

∫ t

0

h(s)ds
)
a(w,w)− h�∂2w − 2

∫ t

0

h(t− s)a(w(s)− w(t), w(t))ds

≤ 5(1− l)a(w,w)− 3

4
h�∂2w.

�

Proof of Theorem 2.2. From (2.13) and (3.10), there exist positive constants β1 and β2 such that

L′(t) ≤ −β1E(t) + β2h�∂
2w. (3.18)

Using (2.7), (3.1) and (3.18), we get, for all t ≥ t0,

L′(t) ≤ −β1E(t) + β2

∫ t

t0

h(s)a(w(t)− w(t− s), w(t)− w(t− s))ds (3.19)

where L(t) = L(t) + 2β2
c3
E(t), which is clearly equivalent to E(t).

We consider the following two cases.

Case 1. G(t) is linear: Multiplying (3.19) by ζ(t) and utilizing (2.6) and (3.1), we have

ζ(t)L′(t) ≤ −β1ζ(t)E(t)− β2

∫ t

t0

h′(s)a(w(t)− w(t− s), w(t)− w(t− s))ds

≤ −β1ζ(t)E(t)− 2β2E
′(t), (3.20)

which gives (
ζL+ 2β2E

)′
(t) ≤ −β1ζ(t)E(t), ∀t ≥ t0.

From (3.3), we find that ζL+ 2β2E ∼ E. Then, we obtain

E(t) ≤ c′e−c
∫ t
t0
ζ(s)ds

.

Case 2. G(t) is nonlinear: This case is obtained on account of the ideas presented in [21, 23, 24] as follows.

We take

F (t) = L(t) +K(t),

which is nonnegative. From (2.13), (3.10) and (3.16), we get

F ′(t) ≤ −||wt||2 − α||∇wt||2 − (1− l)a(w,w)− 1

4
h�∂2w − ||∆v||2 ≤ −β3E(t) (3.21)

where β3 is some positive constant. Integrating (3.21) from t0 to t, we obtain

β3

∫ t

t0

E(s)ds ≤ F (t0)− F (t) ≤ F (t0).
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Therefore, we deduce that ∫ ∞
0

E(s)ds <∞. (3.22)

We define η(t) by, for a constant 0 < p < 1,

η(t) := p

∫ t

t0

a(w(t)− w(t− s), w(t)− w(t− s))ds.

From (3.22), we find that η(t) satisfies

η(t) < 1, ∀t ≥ t0. (3.23)

Using (2.6), (2.8), (2.11), (3.1), (3.23) and the fact that ζ(t) is a positive nonincreasing function, we find

that ∫ t

t0

h(s)a(w(t)− w(t− s), w(t)− w(t− s))ds

≤ η(t)

p

∫ t

t0

G−1
(
− h′(s)

ζ(s)

)pa(w(t)− w(t− s), w(t)− w(t− s))
η(t)

ds

≤ η(t)

p
G−1

(
p

∫ t

t0

−h′(s)a(w(t)− w(t− s), w(t)− w(t− s))
ζ(s)η(t)

ds

)
≤ 1

p
G−1

(
p

∫ t

t0

−h′(s)a(w(t)− w(t− s), w(t)− w(t− s))
ζ(s)

ds

)
≤ 1

p
G−1

( 1

ζ(t)

∫ t

t0

−h′(s)a(w(t)− w(t− s), w(t)− w(t− s))ds
)

≤ 1

p
G−1

(−2E(t)

ζ(t)

)
. (3.24)

Combining (3.19) and (3.24), we have

L′(t) ≤ −β1E(t) +
β2

p
G−1

(−2E(t)

ζ(t)

)
, ∀t ≥ t0. (3.25)

Now, for ε0 <
k

E(0)
, we define the functional

I(t) := L(t)G′
(
ε0E(t)

)
+ E(t),

which is equivalent to E. With A = G′
(
ε0E(t)

)
and B = G−1

(
−2E(t)
ζ(t)

)
, using (2.9), (2.10), (3.25) and the

fact that E′ ≤ 0, G > 0, G′ > 0 and G′′ > 0, we see that

I ′(t) ≤ −β1E(t)G′
(
ε0E(t)

)
+
β2

p
G′
(
ε0E(t)

)
G−1

(−2E(t)

ζ(t)

)
≤ −β1E(t)G′

(
ε0E(t)

)
+
β2

p
G∗
(
G′
(
ε0E(t)

))
− 2β2E

′(t)

pζ(t)

≤ −
(
β1 −

ε0β2

p

)
E(t)G′

(
ε0E(t)

)
− 2β2E

′(t)

pζ(t)
. (3.26)

We take R(t) = ζ(t)I(t) + 2β2E(t)
p

, which satisfies

d1E(t) ≤ R(t) ≤ d2E(t), (3.27)
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for some d1, d2 > 0. Consequently, with a suitable choice of ε0, and using (3.26), (3.27) and the fact that

ζ(t) is a positive nonincreasing function and G′(t) is strictly increasing function, we arrive at

R′(t) ≤ −
(
β1 −

ε0β2

p

)
ζ(t)E(t)G′

(
ε0E(t)

)
≤ −k0ζ(t)R(t)G′(d3R(t)), ∀t ≥ t0,

where k0 = 1
d2

(
β1 − ε0β2

p

)
> 0 and d3 = ε0

d2
. Hence, a simple integration and a variable transformation

give ∫ t

t0

−R′(s)
R(s)G′(d3R(s))

ds ≥ k0

∫ t

t0

ζ(s)ds =⇒
∫ d3R(t0)

d3R(t)

1

sG′(s)
ds ≥ k0

∫ t

t0

ζ(s)ds, ∀t ≥ t0. (3.28)

We take

G1(t) =

∫ k

t

1

sG′(s)
ds,

which is strictly decreasing function on (0, k]. From (3.27), (3.28) and ε0E(0) < k, we have

G1(d3R(t)) =

∫ k

d3R(t)

1

sG′(s)
ds ≥

∫ d3R(t0)

d3R(t)

1

sG′(s)
ds ≥ k0

∫ t

t0

ζ(s)ds, ∀t ≥ t0.

Applying (3.27) and the fact that G1 is strictly decreasing function on (0, k], we conclude that

E(t) ≤ k1G
−1
1

(
k0

∫ t

t0

ζ(s)ds
)

where k1 = 1
d1d3

> 0. Therefore, estimate (2.14) is established.
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