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Abstract 16 

Diatom communities preserved in sediment samples are valuable indicators for understanding 17 

the past and present dynamics of phytoplankton communities, and their response to 18 

environmental changes. These studies are traditionally achieved by counting methods using 19 

optical microscopy, a time-consuming process that requires taxonomic expertise. With the 20 

advent of automated image acquisition workflows, large image datasets can now be acquired, but 21 

require efficient preprocessing methods. Detecting diatom frustules on microscope images is a 22 

challenge due to their low relief, diverse shapes, and tendency to aggregate, which prevent the 23 

use of traditional thresholding techniques. Deep learning algorithms have the potential to resolve 24 

these challenges, more particularly for the task of object detection. Here we explore the use of a 25 

Faster R-CNN (Region-based Convolutional Neural Network) model to detect siliceous 26 

biominerals, including diatoms, in microscope images of a sediment trap series from the 27 

Mediterranean Sea. Our workflow demonstrates promising results, achieving a precision score of 28 

0.72 and a recall score of 0.74 when applied to a test set of Mediterranean diatom images. Our 29 

model performance decreases when used to detect fragments of these microfossils; it also 30 

decreases when particles are aggregated or when images are out of focus. Microfossil detection 31 

remains high when the model is used on a microscope image set of sediments from a different 32 

oceanic basin, demonstrating its potential for application in a wide range of contemporary and 33 

paleoenvironmental studies. This automated method provides a valuable tool for analysing 34 

complex samples, particularly for rare species under-represented in training datasets. 35 

 36 

Plain Language Summary 37 

Microfossils preserved in ocean sediments are studied to explore the impact of climate change on 38 

planktonic communities. The usual way to count these microfossils is slow and requires an 39 

expert to identify them on microscope images. In this study, we explore how artificial 40 

intelligence can be used on microscope images to detect the microfossils produced by one 41 

particular group, diatoms. Our results show that models can be trained to identify these objects, 42 

including the ones that were not specifically shown to the model during the training phase. 43 

However, the quality of the microscope image, and of the sample preparation beforehand, can 44 

affect how well the model works. This new protocol has good potential to be used on diatom 45 

images differing in age and geographical origins. Adopting this method could make it possible to 46 

rapidly increase the temporal resolution and spatial extent of existing data on diatom diversity, 47 

which could thus improve our knowledge of plankton resilience to climate change. 48 

1 Introduction 49 

There exists a significant variability in size, growth rates, nutrient acquisition, and trophic 50 

interactions within and between different phytoplankton groups. This diversity exerts a 51 

fundamental control on biogeochemical cycles, for instance through its influence on carbon 52 

export from the surface ocean and on food web dynamics. Ongoing climate change, through a 53 

comprehensive set of processes, impacts phytoplankton diversity and size structure, with 54 

consequences both for carbon storage and trophic efficiency (Henson et al., 2021; Passow & 55 

Carlson, 2012). As a result, efforts have been made to integrate phytoplankton diversity into 56 

Earth system models (Le Quéré et al., 2005), to better predict the effect of different climate 57 

scenarios on biogeochemical cycling and food web efficiency. 58 

The study of phytoplankton communities is traditionally achieved by manually counting 59 

species identified in sediment or plankton net samples, a time-consuming process that requires 60 

specific taxonomic expertise. Consequently, existing time series of plankton changes often have 61 

low temporal and spatial resolution. Moreover, counting methodologies may vary between 62 

research groups, making interlaboratory comparisons difficult (Zingone et al., 2015). As a 63 

response to these challenges, a variety of proxies have been proposed to describe the 64 
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phytoplankton community (Lombard et al., 2019), including (but not limited to) the use of 65 

satellite ocean colour (Hirata et al., 2008; Mouw et al., 2017; Nair et al., 2008), DNA meta-66 

barcoding analyses (De Vargas et al., 2015), pigment analysis (Claustre, 1994) and fluorescence 67 

(Petit et al., 2022). These methods yield information on the planktonic community’s size 68 

distribution and taxonomic composition over a broad range of sizes. However, their analyses 69 

operate at different levels (functional, genetic, etc.), which may only partially align with the 70 

traditional approach of morphological taxonomy. In parallel, efforts have been made to develop 71 

automated imaging techniques, making it possible to obtain taxonomical and morphological data 72 

on both single organisms and the total population (reviewed in Lombard et al. 2019). The palette 73 

of methods described above is powerful for monitoring present-day plankton diversity and 74 

provides a means of obtaining standardized phytoplankton time series.  75 

The study of the sediment record of the biominerals produced by different phytoplankton 76 

groups constitutes a different type of archive. It can be used to study the past sensitivity of the 77 

phytoplankton community to environmental change and its implications on the past strength of 78 

the biological pump (Kohfeld et al., 2005). The taxonomic composition of phytoplankton is also 79 

used as a proxy for various environmental variables (Abrantes et al., 2007; Marino et al., 2014). 80 

The study of the sedimentary record of biomineralisation is typically achieved using light 81 

microscopy on fixed samples. The development of automated image acquisition techniques using 82 

electron scanning or optical microscopy has made it possible to acquire large sets of plankton 83 

images from sediment samples with limited human intervention. These methods have been used 84 

successfully to obtain large image datasets documenting the past production of a variety of fossil 85 

organisms in marine and freshwater environments, including coccoliths, radiolarians, 86 

foraminifera, or pollen grains (Beaufort et al., 2014; Bourel et al., 2020; Marchant et al., 2020; 87 

Tetard et al., 2020). To treat these large image datasets, studies increasingly rely on machine 88 

learning algorithms for object detection and identification. While the use of these techniques was 89 

once limited to IT experts, their recent integration into user-friendly software such as EcoTaxa 90 

(Picheral et al., 2017) or ParticleTrieur (Marchant et al., 2020) now makes it possible for 91 

researchers without specific training in plankton identification to obtain plankton counts from 92 

their images or to build and train a classification model based on their own image library. This is 93 

a handy feature when studying fossil data (Carlsson et al., 2023), for which annotated datasets 94 

are rare. Among machine learning techniques, the use of deep-learning algorithms has been 95 

generalized (Borowiec et al., 2022), encouraged by the increasing amount of publicly available 96 

software libraries and the advent of fast and affordable GPU-based computing systems. The use 97 

of convolutional neural networks (CNNs) for image recognition has been developed in 98 

particular; CNNs are able to extract the features of interest in an image, which makes them 99 

useful and efficient for tasks such as object detection and object classification (Borowiec et al., 100 

2022; Serre, 2019). To date, fully automatic workflows have been successfully developed to 101 

study the fossil record of a variety of biominerals (Beaufort & Dollfus, 2004; Tetard et al., 2020, 102 

2020); however, there exists to our knowledge no means of performing such studies on the 103 

diatom record. This, in part, is due to the difficulties in efficiently detecting them on a 104 

microscope image.  105 

Diatoms are a phytoplankton group of particular interest, as they live in most marine and 106 

freshwater environments, which makes them responsible for one-fifth of the photosynthesis on 107 

Earth (Armbrust, 2009). They are often the dominant phytoplankton group in turbulent and 108 

nutrient-rich environments (Kemp & Villareal, 2018; Margalef, 1978). Diatoms produce 109 

remarkable species-specific silicified cell walls called frustules. At the end of their life cycle, 110 

these biominerals are transported through the water column and accumulate in the sediments, 111 

creating deposits that can reach, in some areas, more than several hundred meters in thickness 112 

(Armbrust, 2009). The number and large size of these frustules in comparison to the biominerals 113 

produced by other phytoplankton groups makes them one of the main contributors to the 114 

biological pump (Jin et al., 2006). The blooms formed by some diatom species have also been 115 
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shown to contribute significantly to carbon export from the surface ocean in more oligotrophic 116 

regions such as the Mediterranean Sea (Leblanc et al., 2018). Studies have shown, however, that 117 

the diatoms’ contribution to carbon export depends on the group’s composition (Ragueneau et 118 

al., 2006; Tréguer et al., 2018). Climate-induced changes in the diversity of this group could, 119 

therefore, have implications for the biological pump. Furthermore, the decrease in diatom 120 

abundance in the total phytoplankton assemblage in favour of nanoplankton groups, including 121 

coccolithophores, has been linked in some environments to a decrease in primary productivity 122 

and carbon export (Iriarte & González, 2004). It is thus essential to describe how the diatom 123 

community responds to climate change, both within the group and in comparison to other 124 

phytoplankton groups.  125 

Diatom identification in sediments is traditionally achieved using optical and electron 126 

scanning microscopy (SEM). Detecting diatom frustules on a microscope image remains a 127 

challenge. Implementing an automated object detection workflow for diatoms is indeed hindered 128 

by the difficulty of isolating these minerals from the background image. Traditional thresholding 129 

techniques have proven effective to segment calcareous nanofossils, due to their birefringence 130 

properties (Beaufort et al., 2021), as well as radiolarians, which exhibit high relief (Tetard et al., 131 

2020). They have also been used to detect diatoms from images of modern-day river samples 132 

(Bueno et al., 2017) or, more generally, on frustule images obtained using brightfield microscopy 133 

(Kloster et al., 2014). However, the low relief of diatom frustules on sediment slides, the 134 

diversity of frustule shapes, and a tendency for frustules to cluster or break complicate the use of 135 

existing plankton detection workflows (Kloster et al., 2014). As a result, studies increasingly 136 

explore the use of deep neural networks (Kloster et al., 2020, 2023) to extract individual diatom 137 

frustules from a raw image. However, most deep learning-based attempts at detecting diatoms on 138 

microscope images have focused on samples used for water monitoring (Bueno et al., 2018; 139 

Kloster et al., 2023) or for forensic analyses (Yu et al., 2022). These models have been either 140 

developed for living cells (Li et al., 2020) or for images acquired using SEM (Yu et al., 2022) 141 

and thus are not directly transposable to marine sediment samples, which present a lot of 142 

damaged and broken cells.  143 

In this study, we propose and test the use of a Faster RCNN model to detect diatom 144 

frustules on images obtained from sediment slides using an automated microscope. We detail 145 

how the images in the dataset were acquired, how they were annotated to constitute a training 146 

and validation library, and how the CNN model performed when compared to a test set. We 147 

investigate which factors influence the detection performance.  148 

 149 

2 Materials and Methods 150 

2.1 Image acqusition 151 

We trained an object detection model using images from samples collected from the Lionceau 152 

sediment trap series located in the Gulf of Lion in the NW Mediterranean Sea (42°N, 4.5° E, 153 

2400 m). This series comprises 80 samples collected between 2010 and 2018. The Gulf of Lion 154 

is among the most productive areas in the Mediterranean Sea and exhibits a relatively large 155 

diversity of siliceous biomineralizers, including diatoms and silicoflagellates (Rigual-Hernández 156 

et al., 2013). Each sample’s collection period was two weeks, on average, and the samples span 157 

the entire seasonal cycle. To evaluate how the model performs on an image dataset from a 158 

different oceanographical setting, we also included images from three sediment samples aged 159 

less than 100 years from the core B1404-11 (14.14°S, 76.50°W, 302 m) recovered from the 160 

Peruvian upwelling zone in 2014.  161 

Sediment trap and core samples were prepared using the random settling method (Beaufort et al., 162 

2014; Tetard et al., 2020), a protocol that can also be used to study calcareous nanofossils. A 163 
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couple of milligrams of dried sediment were resuspended in water and ultrasonicated for less 164 

than a minute to remove major aggregates. Around 3 ml of the suspension was collected, left to 165 

settle for four hours on 12 mm x 12 mm coverslips, and left to dry overnight after pipetting the 166 

excess water. Subtracting the initial mass from the final mass of the coverslips yielded a mass of 167 

sediment on each coverslip within the range of 50 to 150 μg. Sets of eight coverslips were then 168 

mounted on a microscope slide using Norland Optical Adhesive 81. Each slide was mounted 169 

consecutively on a Leica DMR6000 B automated transmitted light microscope with 630x 170 

magnification using a HCX PL FLUOTAR 63× Leica lens. Images (210 μm x 210 μm) were 171 

taken using a Hamamatsu ORCA-Flash4.0 LT camera, controlled via a LabVIEW (National 172 

Instruments) interface. We acquired images for around 250 fields of view for each sample. For 173 

each field of view, we acquired 15 images of different focal lengths to image a depth of at least 174 

100 μm. Hyperfocused stacks were created from these 15 images using the Helicon Focus 7 175 

software (Helicon Soft). 176 

 177 

2.2 Experimental design for automatic diatom detection using deep learning approaches 178 

2.2.1 Training and validation image dataset 179 

The use of deep learning methods requires the creation of a labelled set of images for training. 180 

For this experiment, we randomly chose 253 images from the Lionceau image set (corresponding 181 

to 39 samples). We used the Computer Vision Annotation Tool (CVAT) developed by Intel to 182 

label these 8-bit images of 2048 x 2048 pixels.  183 

We drew bounding boxes around all microfossil material identified on the images for a total of 184 

10293 bounding boxes. We attributed each bounding box to twelve different microfossil 185 

categories (i.e. silicoflagellates, diatoms, coccoliths, other biominerals, etc.; Figure 1) but 186 

pooled all the boxes into a single “microfossil” category for training. Our dataset is dominated 187 

by small fragmented elements (“Undetermined_silica”), pennates (often fragmented), and large 188 

coccoliths (“Cocco”) (Figure 1).  189 
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Figure 1: CVAT screenshots of different microscope images annotated (a-c) and relative 190 

contribution of different microfossil material to the total bounding box dataset (d). The color 191 

code for the bounding boxes is reported in panel (d). The models were not trained for object 192 

classification, however the training set is dominated by small fractured elements 193 

(“Undetermined_silica”), pennates (often fragmented), and large coccoliths (“Cocco”). The scale 194 

is 20 micrometers 195 

 196 

2.2.2 Test image dataset 197 

To test the model, a second set of randomly selected images of the Lionceau sediments was 198 

manually annotated to generate a set of ground-truth bounding boxes. This test set includes 66 199 

annotated images for a total of 2165 bounding boxes. These bounding boxes were attributed to 200 

one of the twelve categories used for the training set to better constrain the objects that the model 201 

might overlook. In addition, descriptive tags were associated with the images of the dataset to 202 

investigate how the image or sample quality could impact the detection model. These descriptive 203 

tags account for images with one or several characteristics, including low concentration of 204 

elements, high concentration of fragmented elements, presence of aggregates, image out of 205 

focus, and image darker in appearance due to the use of a different set of light parameters on the 206 

microscope. Images that did not fall into these categories were labelled as “good quality”. 207 

 208 
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2.2.3 Model training 209 

The model was trained using 80% of the images as a training set and the remaining 20% for 210 

validation. All bounding boxes drawn on CVAT were pooled into a single “microfossil” 211 

category for model training. This was intended as a way of generating a model capable of 212 

detecting any microfossil on a microscope image regardless of its species or type, including rare 213 

species for which collecting a detailed dataset can be a time-consuming task. A Faster R-CNN 214 

(faster region-based convolutional neural network) object detection model with a ResNet50 215 

backbone was trained on the data. Faster R-CNN models were indeed shown to perform better 216 

on diatom images from microscope observations than other deep-learning algorithms such as 217 

You Only Look Once (YOLOv3), which did not perform very well on small objects, and single-218 

shot multi-box detector (SSD) (Li et al., 2020). Faster R-CNN feeds the initial image to a 219 

backbone CNN to generate a feature map of the image. The features propose regions that may 220 

correspond to objects, and these regions are subsequently pooled before being classified into 221 

object classes using fully connected prediction layers. In our case, we use the ResNet50 CNN 222 

pre-trained on the COCO dataset as the backbone. Faster R-CNN provides bounding box 223 

coordinates and class labels for the detected objects. 224 

Training was performed using data augmentations such as random horizontal flip, random 225 

vertical flip, and random photometric distortion (brightness, contrast, saturation, hue), using 226 

either the stochastic gradient descent (SGD) or Adam optimisers with learning rate adjusted 227 

using the adaptive learning rate scheduler (ALRS) described in (Marchant et al., 2020). We 228 

experimented with different training set sizes, optimisation methods, and ALRS parameters. 229 

Code for the training routine is available at https://github.com/microfossil/particle-object-230 

detection. 231 

 232 

2.2.4 Model testing 233 

Using the object detection model that was most performant on the training and validation set, we 234 

generated a set of “modelled” bounding boxes on our test set, which we compared to the 235 

“ground-truth” bounding boxes drawn manually on the test set. The comparison of the sets of 236 

ground-truth bounding boxes with the modelled set was achieved using the bounding box 237 

coordinates. We calculated the “intersection over union” (IoU; Table 1) metric for all possible 238 

pairs of ground-truth and modelled bounding boxes of a single image. In general, a higher IoU 239 

score indicates a better performance, an IoU score of 1.0 being the perfect case. We matched the 240 

best pairs of bounding boxes using a cost algorithm (R package RcppHungarian). True positives 241 

(tp) were calculated for the dataset as the number of bounding box pairs with an IoU metric 242 

greater than or equal to 0.5. Unattributed ground-truth bounding boxes were counted as false 243 

negatives (fn), while unattributed modelled bounding boxes were counted as false positives (fp). 244 

With these different metrics, we could generate the model’s precision and recall metrics (Table 245 

1). 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

https://github.com/microfossil/particle-object-detection
https://github.com/microfossil/particle-object-detection
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Table 1: definition of the metrics used to evaluate the performance of the object detection 254 

model 255 

 256 

Metric Formula Description 

Intersection over 

Union (IoU) 

𝐵𝐵1 ∩ 𝐵𝐵2

𝐵𝐵1 ∪ 𝐵𝐵2
 

The ratio of area of overlap between bounding 

boxes 1 (BB1) and 2 (BB2) to the total area 

represented by BB1 and BB2. 

Precision  ∑ 𝑡𝑝

∑ 𝑡𝑝 + ∑ 𝑓𝑝
 

The number of correct predictions to the total 

number of predictions made by the model 

Recall ∑ 𝑡𝑝

∑ 𝑡𝑝 + ∑ 𝑓𝑛
 

The number of correct predictions to the total 

number of initial ground-truth bounding boxes 

 257 

 258 

3 Results and Discussion 259 

3.1 Training outputs 260 

 261 

The different model outputs can be compared using standard COCO object detection metrics 262 

(Table 2). To account for the large number of microfossils in each image, we increased the 263 

maximum number of objects from 100 to 300. The precision metric for an IoU of 0.50 is, on 264 

average, 0.717 (± 0.006) across the different models runs. The mean recall for all bounding 265 

boxes across an IoU range of 0.50 to 0.95 is, on average, 0.537 (± 0.007). The model performs 266 

better across all trainings on objects that are comparatively larger than others (i.e. area larger 267 

than 96x96 pixels), with precision and recall scores being consistently better for large objects 268 

than for medium (i.e. area between 32x32 pixels and 96x96 pixels) objects (Table 2).  269 

Results show that increasing the training set size from 10293 bounding boxes to 12458 (+21%) 270 

(using the added annotations from the test set) slightly decreases model performance for all 271 

model metrics observed. Changing the optimizing method from SGD, used as default, to Adam 272 

increases model precision and recall on medium-sized objects, but it decreases the overall model 273 

precision for an IoU of 0.5 as well as the model recall for all objects. Changing the ALRS epochs 274 

parameter (i.e. the learning rate scheduler watches to check if training is not improving) from 10 275 

to 20 does not change the model precision for an IoU of 0.5 and decreases the model recall when 276 

all objects are considered. 277 

 278 

 279 
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 280 

Table 2: Outputs from the different model runs performed using Faster R-CNN with the training and validation dataset. Output variables are 281 

standard COCO object detection metrics, modified to detect up to 300 objects in a single image. Average precision (AP) is the precision metric 282 

averaged over a range of IoUs from 0.50 to 0.95, for medium (area between 32x32 pixels and 96x96 pixels) and large (larea larger than 96x96 pixels) 283 

objects. Recall scores are all calculated over a range of IoUs from 0.50 to 0.95. The best model result for each metric considered is shown in bold.  284 

 285 

Input Output 

Model 

Number 

Test description Total 

images 

(training + 

validation) 

Total 

bounding 

boxes 

ALRS 

epochs 

Optimiser 

 

Precision: 

 IoU = 

0.5 

 IoU = 

0.75 

Average 

precision: 

@0.50:0.95 

 Medium 

 Large 

 

Recall: 

Max detections = 

300 

Area=all 

Recall: 

Max detections = 

300 

 Medium 

 Large 

1 Base parameters 253 

(203+50) 

10293 Default 

(10) 

Default 

(SGD) 
 0.720 

 0.531 

 0.381 

 0.574 

0.545 
 0.475 

 0.649 

2 Increase dataset size 319 

(256+63) 

12458 Default 

(10) 

Default 

(SGD) 
 0.706 

 0.508 

 0.350 

 0.571 

0.525 
 0.446 

 0.637 

3 Change optimiser from 

“SGD” to “Adam” 

253 

(203+50) 

10293 Default 

(10) 

Adam 
 0.716 

 0.543 

 0.382 

 0.561 

0.539 
 0.479 

 0.627 

4 Change ALRS epochs 

from 10 to 20 

253 

(203+50) 

10293 20 Default 

(SGD) 
 0.720 

 0.516 

 0.376 

 0.540 

0.540 
 0.466 

 0.650 
 286 

 287 

 288 
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 289 

Figure 2 –  Prediction results on a test set using a detection threshold of 0.3. Ground-truth 290 

bounding boxes are represented in dark blue. True positive bounding boxes are in green, and 291 

false positives are shown in orange. The scale is 20 micrometers. Images are acquired in optical 292 

microscopy from the Lionceau sediment trap series in the Gulf of Lion. Left: sample collected in 293 

July 2011, Right: sample collected in April 2014. 294 

 295 

3.2. Model performance on a test set 296 

The model trained using the base parameters, which showed the best overall performance on the 297 

trap sediment images, was then applied to a test set of images from the same sediment trap 298 

series. Bounding boxes were matched when the IoU metric was over 0.50 (see example outputs 299 

and cropping results in Figure 2). Of the 2165 ground-truth bounding boxes on which the model 300 

was tested, the model recognized 1569 objects (recall = 0.725) when a detection threshold of 0.5 301 

was used. The model generated 565 false positive bounding boxes (precision = 0.735). Lowering 302 

the detection threshold to 0.3 increases the number of true positives (1599) and, thus, recall 303 

(0.739) (Table 3). However, using a detection threshold of 0.3 also increases the number of false 304 

positive bounding boxes (623) and thus leads to lower model precision (0.72). 305 

 306 

 3.2.1. Controls on model recall 307 

To ensure that all objects present on the raw images are efficiently cropped to be used in a 308 

further classification algorithm, we are most interested in maximising model recall – i.e. its skill 309 

at detecting any object – and identifying which of the ground-truth boxes the model misses. In 310 

detail, not all microfossil categories are detected the same way by the model (Figure 3). Results 311 

show that recall scores are better for high relief particles such as silicoflagellates, with 100% 312 

particles identified, than for Chaetoceros spp. (70%) which exhibit lower relief and are prone to 313 

dissolution due to less robust frustules. The lowest recall scores are obtained for calcispheres and 314 

centric diatoms.  315 

When considering the total category area instead of category counts, it appears that the model 316 

captures more than 80% of the ground-truth area in each category, except for calcispheres (57%), 317 

which are only present as fragments in this test dataset. The model also exhibits low recall values 318 

for total coccolith area (78%) and for the total area of silica not attributed to a specific producer 319 
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(75%), despite these classes dominating the training set (Figure 1). These results and the raw 320 

model outputs suggest that the object detection model works best for the large elements across 321 

all categories. 322 

Model precision and recall may be affected by the quality of the sample image. We pooled all 323 

the ground-truth bounding boxes into categories corresponding to the descriptive tags listed in 324 

the Methods section. Due to multiple tags being sometimes attributed to the same image, some 325 

bounding boxes are present in different categories. We calculated precision and recall scores for 326 

each descriptive tag (Figure 4). Good-quality images display the best precision and recall scores 327 

(0.775 and 0.766 respectively). Changes in microscope acquisition parameters, which can yield 328 

darker images and/or less contrasted images, decrease precision (0.70) and, to a lesser extent, 329 

recall (0.75). A low concentration of objects of interest, which in the images observed can be 330 

attributed to some extent to dissolution, reduces precision (0.692) and recall (0.734). The 331 

presence of fragmented elements also reduces precision (0.691) and recall (0.71) scores. This 332 

could be explained by the fact that the model appears to perform more poorly on small objects. 333 

Images that are out of focus generate more false positives and negatives, with precision and 334 

recall scores of 0.586 and 0.63. The presence of aggregates on the images, which lead to more 335 

objects being superimposed, also impacts the quality of object detection, with precision and 336 

recall scores of 0.53 and 0.631. 337 

 338 

Figure 3 – Object detection performance on a test set using the base model with a detection 339 

threshold of 0.3. a. Stacked bar plot of the percentage of false negative (FN) and true positive 340 

(TP) bounding boxes obtained, per ground-truth box category. b. Bar plot of the total predicted 341 

bounding box area per ground-truth bounding box category. The color code is the same as for 342 

panel A. Model recall is highest for silicoflagellates and pennates. When considering the 343 

bounding box area instead of total counts, the model appears to perform better, suggesting that 344 

small elements are more likely to lead to false negatives. 345 

 346 

 347 
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 348 

 349 

Figure 4 – Object detection performance on a test set, per descriptive tag. The set of 350 

predicted bounding boxes was generated using the base model with a detection threshold of 0.3. 351 

Acquiring images with a different set of light parameters on the microscope has little effect on 352 

model recall, but may lead to a reduction in model precision. However, the detection model does 353 

not perform as well when images are out of focus, and/or have a low concentration of elements 354 

(usually linked to dissolution), and/or include fragments and/or aggregates.  355 

 356 

 357 

3.2.2. Model precision 358 

 359 

Model precision is low when the model generates many false positive bounding boxes. One issue 360 

with low model precision in a detection task is the generation of multiple bounding boxes per 361 

microfossil (Figure 2). This can lead to certain particles being transferred multiple times to a 362 

classification algorithm and thus counted twice. We reviewed the false positive bounding boxes 363 

generated using a detection threshold of 0.3 (Figure 5) into five categories to evaluate this bias. 364 

Results show that 37 of the 623 false positives are duplicate bounding boxes, which represents 365 

1.7% of the ground-truth bounding boxes. Therefore, it appears that the generation of multiple 366 

bounding boxes of the same microfossil occurs marginally in our dataset. 367 

 368 

We find that 30 of the fp bounding boxes generated by the model partially overlap a ground-truth 369 

bounding box. However, they are not counted as tp due to low IoU scores (< 0.5): the predicted 370 

bounding box may capture only part of the microfossil (n=16, Figure 5) or be too large or 371 

shifted (n=14) compared to the ground-truth bounding boxes. Additionally, 37 of the fp bounding 372 

boxes are actual microfossils that were overlooked during annotation. The remaining 526 fp 373 

bounding boxes do not correspond to a microfossil and can easily be eliminated in a 374 

classification step. 375 

 376 

 377 
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3.3. Transfer to a new dataset 378 

One of the goals of this experiment is to test the potential for a CNN-based model to perform 379 

diatom frustule detection for samples originating from various oceanographical settings and time 380 

periods. Indeed, deep neural networks have a limited capability of transferring to image datasets 381 

which differ from the training set (Serre, 2019). We explore how the detection model trained on 382 

images from Mediterranean trap sediments performs on a set of images from a sediment core of 383 

the Peruvian upwelling. Although these images were acquired using a similar methodology, they 384 

contain microfossils from species that are not present in the Mediterranean dataset. Similarly to 385 

the test set from the Mediterranean sediment traps, we labelled 37 images, drawing 1868 ground-386 

truth bounding boxes, which were attributed to twelve categories. We apply the base model with 387 

a detection threshold of 0.3 and compare it to a set of ground-truth bounding boxes using the 388 

same method as for the Mediterranean sediment trap test dataset (see Methods section). 389 

The comparison of these two bounding box datasets yields precision and recall scores of 0.729 390 

and 0.754 respectively. The model thus performs slightly better on this new test set of images 391 

from the Peruvian setting than on the test set of images from the Mediterranean trap (Table 3). 392 

Multiple factors might explain this result, such as (1) the smaller abundance of coccoliths in 393 

these samples, which were shown to be less well captured by the model, (2) the good 394 

preservation of these diatom-rich sediments formed in an environment with a high accumulation 395 

rate, and (3) a smaller amount of out-of-focus images than in the test dataset. 396 

As for the Mediterranean dataset, the model performs better on the largest particles present on 397 

the images, especially on silicoflagellates. Interestingly, the model detects plankton species and 398 

morphospecies that are absent from the test set, including the silicoflagellate Octactis genus and 399 

the diatom genus Actinoptychus (Figure 6). However, the model performs poorly on detecting 400 

diatom resting spores, which are nearly absent from the training set (Figure 1). These results 401 

suggest that this CNN-based object detection protocol has the potential to be used across a 402 

variety of image datasets from sediment samples but could still benefit from being trained 403 

specifically on some particles not captured by our training set.  404 

Figure 5 – False positive outputs for the test dataset. a. Classification scheme for the false 405 

positive bounding boxes; see Fig.2 for color scheme explanation. b. Distribution of false positive 406 

bounding boxes. 407 

 408 

 409 
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 410 

Figure 6 – Prediction results on an image dataset from the Peruvian upwelling zone. a. – b.: 411 

Ground-truth bounding boxes are represented in dark blue. True positive bounding boxes are in 412 

green, and false positives are shown in orange. The scale is 20 micrometers. c. Stacked bar plot 413 

of the percentage of false negative (FN) and true positive (TP) bounding boxes obtained, per 414 

ground-truth box category. d. Bar plot of the total predicted bounding box area per ground-truth 415 

bounding box category. The color code is the same as for panel A.  416 

 417 

 418 
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Table 3: Performance of the object detection model applied to different test sets.  419 

Test set Model used TP bounding 

boxes 

FN bounding 

boxes 

FP bounding 

boxes 

Precision Recall 

Mediterranean sediment 

trap 

Detection model with base parameters 

applied with a 0.5 detection threshold 

1569 596 565 0.7352 0.7247 

Mediterranean sediment 

trap 

Detection model with base parameters 

applied with a 0.3 detection threshold 

1599 566 623 0.720 0.739 

Peruvian sediments Detection model with base parameters 

applied with a 0.3 detection threshold 

1408 460 524 0.729 0.754 

 420 

 421 

 422 
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4. Conclusions 423 

In this study, we developed an object detection workflow using Faster R-CNN model which 424 

allows for the automatic detection of diatom frustules on sample slides. Given their non-425 

birefringent nature, wide variety in shapes and sizes, and tendency to overlap, diatom frustules 426 

remain challenging to detect and crop with traditional thresholding techniques. The method 427 

showed promising results for detecting diatom frustules on microscope images, with a precision 428 

score reaching 0.72 for an IoU of 0.5, and a corresponding recall score of 0.58 for IoU scores 429 

ranging from 0.5 to 0.95. The comparison of modelled bounding boxes with a test set showed 430 

that, for the generally accepted IoU threshold of 0.5, the recall for the model reaches an 431 

acceptable level for analyzing real and complex samples, with a value of 0.73. Large and high 432 

relief particles are well detected by the Faster R-CNN (Figure 3) despite making up a smaller 433 

fraction of the training dataset. Our workflow can deal with overlapping particles, however the 434 

proposed method is not completely efficient on large aggregates (Figure 4). Ensuring properly 435 

focused microscope images and reducing the number of images containing fragments and 436 

dissolved elements minimizes potential errors in the detection process.  437 

Decoupling the detection from the identification makes our method interesting for the detection 438 

of rare species which may be under-represented in the training dataset. A possible solution to 439 

combine detection and identification into a single deep-learning model would be to test the use 440 

of virtual slides to artificially increase the instances of rare microfossils in the training set 441 

(Venkataramanan et al., 2023), however this solution would still require the acquisition of a large 442 

image dataset to cover the full diversity spectrum. 443 

Prospects for this particular workflow include incorporating this detection and cropping 444 

algorithm into a more general identification workflow, specific to siliceous biominerals. The 445 

microfossil crops generated from the microscope images by the workflow can be uploaded into 446 

open-access computer programs such as ParticleTrieur (Marchant et al., 2020) for labelling and 447 

training a classification model. The microscope slides processed in this workflow are also 448 

suitable for analysis by the SYRACO software to obtain coccolith counts and morphology 449 

(Beaufort & Dollfus, 2004) and radiolarian analysis (Tetard et al., 2020). This makes it possible 450 

to study the changes in species composition within and between different groups of marine 451 

phytoplankton, a critical step when studying biogeochemical cycles and changes in planktonic 452 

communities. 453 

This workflow has the potential to detect microfossils present on sediment samples from 454 

different spatial and temporal settings, both from sediment traps and sediment coring systems 455 

(Figure 6). Future work will focus on enriching the image database used for training to include 456 

microfossils that require better detection, to obtain a model applicable to any sedimentary sample 457 

containing siliceous biominerals. 458 

 459 

 460 

 461 

 462 

 463 
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