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Abstract12

The Multi-Radar Multi-Sensor (MRMS) product incorporates radar, climate model, and13

gage data at a high spatiotemporal resolution for the contiguous United States. MRMS14

is subject to various sources of measurement error, especially in complex terrain. The15

goal of this study is to provide a framework for understanding the uncertainty of MRMS16

in mountainous areas with limited observations. We evaluate 8-hour time series samples17

of MRMS 15-minute intensity through a comparison to 204 gages located in the moun-18

tains of Colorado. This analysis shows that the MRMS surface precipitation rate prod-19

uct tends to overestimate rainfall with a median normalized root mean squared error (RMSE)20

of 42% of the maximum MRMS 15-minute intensity. For each time series sample, var-21

ious features related to the physical characteristics influencing MRMS performance are22

calculated from the topography, surrounding storms, and rainfall observed at the gage23

location. A gradient-boosting regressor is trained on these features and is optimized with24

quantile loss, using the RMSE as a target, to model nonlinear patterns in the features25

that relate to a range of error. This model was used to predict a range of error through-26

out the mountains of Colorado during warm months, spanning 6 years, resulting in a spa-27

tiotemporally varying error model of MRMS for sub-hourly precipitation rates. Map-28

ping of this dataset by aggregating normalized RMSE over time reveals that areas fur-29

ther from radar sites in higher elevation terrain show consistently greater error. How-30

ever, the model predicts larger performance variability in these regions compared to al-31

ternative error assessments.32

Plain Language Summary33

Storms in mountainous regions can develop quickly and cause significant flooding.34

The lack of precipitation gages in mountainous remote areas inhibits detailed monitor-35

ing of these hazardous events. Radar estimates of precipitation can fill the gaps in ar-36

eas where gages are sparse, but the signal can be blocked by mountains, depending on37

where the storm is relative to the radar site. Because the error of radar estimates of pre-38

cipitation can change based on where the storm is located in relation to the surround-39

ing terrain and location of the radar, the reliability of these precipitation estimates is40

variable, adding to the difficulty of monitoring storms in mountains. Here we develop41

a novel method of identifying where and when the radar estimates of precipitation are42

reliable, based on attributes of the region, rainfall, and storm events. The results can43

assist in deciding when to trust radar estimates of precipitation and in determining where44

more gages or radar sites are necessary. Unsurprisingly, areas that are far from radar sites45

and in more complex mountainous terrain have less reliable radar precipitation estimates.46

However, poor performance in these regions is not certain.47

1 Introduction48

In mountainous regions, in-situ precipitation observations from sparse gage networks49

are inadequate for accurate hydrologic modeling and monitoring of hazardous events (Lundquist50

et al., 2019). Post wildfire debris flows and flash floods are often initialized by brief high-51

intensity rainfall (Cannon et al., 2008; Doswell et al., 1996) and therefore require high-52

resolution precipitation observations for accurate modeling and validation of forecasts53

(Moody et al., 2013; Sokol et al., 2021). Increasing atmospheric moisture tied to global54

warming has been shown to amplify the intensity of short-duration rainfall (Fowler et55

al., 2021). With wildfires becoming more widespread in the western United States (Higuera56

et al., 2021), these events are more likely to be coupled with intense rainfall, increasing57

the likelihood of flooding and debris flows (Touma et al., 2022). Several studies have shown58

that the magnitudes of slow-rise floods are also sensitive to spatiotemporal variability59

of precipitation (Syed et al., 2003; Nicótina et al., 2008; Zhu et al., 2018). Accurate as-60
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sessment of hydrologic risk requires precipitation observations at the scale of the event,61

which may be increasingly seen at the sub-hourly and sub-basin scale.62

Gages provide precipitation data at high temporal resolutions for point locations,63

but mountains can cause significant spatial variation in precipitation (R. B. Smith, 2019).64

Many interpolation schemes exist to create spatially distributed precipitation estimates65

from gages; for example, the Parameter-Elevation Regressions on Independent Slopes Model66

(PRISM) is a continuous dataset for the United States developed from interpolated gage67

data (Daly et al., 2008). However, the accuracy of these interpolated gage datasets de-68

clines where gages are sparse (Lundquist et al., 2019). And, the gage itself is subject to69

various sources of measurement error, such as recording errors and under-catching due70

to advection of hydrometeors and interception by the tree canopy (Sevruk, 2005; Sieck71

et al., 2007). Henn et al. (2018) compared the annual accumulation from six gage-based72

gridded datasets across the Western United States and found that relative error varied73

from 5 to 60% with the largest error located in regions of high-elevation terrain.74

Quantitative precipitation estimates (QPEs) are estimations of precipitation at lo-75

cations or regions where ground or direct measurements do not exist. Satellite-based QPEs76

have been improving, but the resolution of QPEs developed from radar reflectivity is of-77

ten superior (Derin et al., 2016). Radar-based precipitation estimates are high resolu-78

tion and spatially continuous but are subject to several sources of uncertainty, made worse79

by mountainous terrain and sampling frequency (Seo & Krajewski, 2010). Radar-based80

QPE accuracy has improved with the adoption of dual-polarization schemes and improved81

algorithms to correct for beam blockage (Zhang et al., 2016). The Multi-Radar Multi-82

Sensor (MRMS) system provides a mosaic of radar for the contiguous United States, im-83

proves ground clutter with dual-polarization and better conversion algorithms, and as-84

similates additional sources of data (Zhang et al., 2016, 2014). The MRMS products are85

used in mountainous operational forecasting settings for flash flood (NOAA, n.d.; J. A. Smith86

et al., 2007) and debris flow monitoring (Force, 2005) and to validate satellite QPEs (Kirstetter87

et al., 2012; Sun et al., 2021). Despite the usefulness of this product, the imperfect con-88

version from reflectivity to rain rate, ground clutter, and beam blockage all contribute89

to significant and complex uncertainty (Berne & Krajewski, 2013; Bytheway et al., 2020).90

MRMS is especially uncertain in the mountainous West where the minimum height ob-91

served by radar is significantly higher in the atmosphere (Maddox et al., 2002).92

Many studies have evaluated the error associated with QPEs; however, there is a93

lack of comprehensive error modeling, specifically at sub-hourly resolutions in mountain-94

ous terrain. Several case studies have evaluated MRMS at hourly and daily timescales95

over large regions of complex terrain by comparing precipitation estimates to gages. Moazami96

and Najafi (2021) compared hourly radar-only MRMS QPEs in Canada to gage data and97

found that MRMS tends to overestimate precipitation in the southern plains and under-98

estimate precipitation in western and eastern parts of Canada. Bytheway et al. (2019)99

evaluated hourly gage-corrected and elevation-adjusted MRMS QPEs in the mountains100

of California and observed that MRMS failed to capture precipitation caused by small101

scale flow patterns and interactions with terrain. Additionally, rainfall originating closer102

to the surface was often too low to be picked up by radar. Case studies reveal weather103

processes and precipitation characteristics related to performance of the QPE, but the104

error ranges are not generalizable as they can vary by storm and location.105

Stream gages have been used to evaluate the spatial variability of error associated106

with stream flow predictions from well-calibrated hydrologic models (Liao & Barros, 2023;107

Moreno et al., 2012). The QPE skill can be evaluated throughout the basin, rather than108

where precipitation gages exist, but this requires accurate flow records and many moun-109

tainous watersheds are ungaged. Other models incorporate the spatiotemporal variabil-110

ity in uncertainty by modeling particular components of QPE error. The Radar Qual-111

ity Index (RQI) is a temporally varying estimate of the reliability of MRMS based on112

known sources of radar sampling error (Zhang et al., 2012). Probabilistic models esti-113
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mate the distribution of uncertainty using dense gage networks as reference (Ciach et114

al., 2007; Villarini et al., 2014). Kirstetter et al. (2015) created a probabilistic QPE for115

the continental US using radar-only MRMS data by modeling the range of possible pre-116

cipitation values given the reflectivity and assuming the distribution of possible values.117

There is still a need for an error model that makes limited assumptions on the structure118

of error, can be applied in regions where in-situ observations are lacking, and provides119

spatiotemporally varying estimates of error.120

Machine learning excels in identifying trends in complex data with nonlinear and121

interconnected dependencies for which we have weak or incomplete theory and limited122

direct observations (Appling et al., 2022). Here we seek to develop a model for estimat-123

ing error of sub-hourly MRMS rainfall estimates in a mountainous environment. The MRMS124

15-minute intensity, an interval used in many applications such as flash flood and debris125

flow monitoring, is compared to gage observations throughout the mountains of Colorado.126

A gradient-boosting regressor is trained on sub-samples of time series at each gage lo-127

cation with associated storm and topographic features to predict a target root mean squared128

error (RMSE) calculated from the gage. The model learns what the expected range of129

RMSE should be, based on the feature values and target RMSE, and can then predict130

the error of MRMS where we have no gage records. A statewide dataset, including the131

features used in training, is developed to predict the theoretical RMSE (if a ground truth132

existed) for the MRMS-estimated 15-minute intensity. This dataset can be used to un-133

derstand the range of expected error for sub-hourly intensity estimates for a specific time134

window and location. Feature importance is calculated to understand what features the135

model deems most useful in determining QPE error.136

Through the gage comparison, modeling of error, and interpolation of error through-137

out Colorado, we seek to address a series of questions. Firstly, when and where are sub-138

hourly MRMS precipitation estimates trustworthy in the mountains of Colorado? This139

information can help forecasters and modelers understand when to trust MRMS. Also,140

trends in error can help identify where additional observations through gap-filling radar141

or more gages might be a priority. Secondly, what are the controls on performance or142

the circumstances that lead to low error? Lastly, how well can error be predicted by the143

physical aspects of the region, rainfall patterns, and storm characteristics? By examin-144

ing these factors, we aim to gain a deeper understanding of the predictability of error145

in MRMS precipitation estimates.146

2 Methods147

2.1 Study area and data extents148

The study area is confined to the state of Colorado, west of 104.5◦ longitude. This149

region includes several distinct mountain ranges with varying elevations and aspects. The150

topographic complexity of this region contributes to a spatially diverse precipitation cli-151

matology (Mahoney et al., 2015). The relief of the mountains in Colorado is significant152

enough to cause disturbances in lower atmospheric flow, which can cause significant spa-153

tiotemporal variability in precipitation (R. B. Smith, 2019). The area was selected to154

test the model’s ability to learn the influence of terrain blockage on QPE performance155

with interactions between various characteristics of storms unique to mountain precip-156

itation. The terrain of the study area is shown in Figure 1 with the locations of gages157

and radar for reference.158

Both gages and radar-based QPEs are subject to several sources of error associ-159

ated with freezing precipitation (Zhang et al., 2016), so the study period is constrained160

to warmer months (May through September) to limit the evaluation of MRMS with un-161

reliable gage data. Based on availability of archived MRMS data, a total of 30 months162

were included in the modeling from years 2018 through 2023.163
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Figure 1. Terrain and instruments within the study area. Gages used in the study are labeled

according to their source.
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2.2 Data sources and processing164

2.2.1 MRMS and gage data165

MRMS includes a collection of products with a coverage of the contiguous United166

States and southern Canada. This study evaluates the surface precipitation rate prod-167

uct, a 2-minute precipitation rate estimate from a mosaic of the Weather Surveillance168

Radar-1988 Doppler (WSR-88D) radar network and out-of-network gap-filling radar with169

a spatial resolution of 1 km (Zhang et al., 2016). This product includes several quality170

controls and an evaporative correction from the Rapid Refresh (RAP) model data (NOAA,171

n.d.). Missing MRMS data was filled with zero for calculations. All data were accessed172

through the Iowa Environmental Mesonet MRMS archived daily data (Mesonet, n.d.).173

Each file’s spatial coverage was resampled to the extents of Colorado using wgrib2 (NOAA/CPC,174

2023).175

Initially, we explored how the 1-hour multi-sensor QPE Pass 2 might be used to176

improve the 2-minute precipitation rate accuracy. The multi-sensor QPE Pass 2 includes177

additional information from several numerical weather prediction (NWP) models, var-178

ious gage networks, and climatological data such as elevation corrections from the PRISM179

dataset. The inputs vary depending on radar coverage, the type of precipitation, and lo-180

cal topography (NOAA, n.d.). A simple multiplicative correction factor, using a ratio181

of the 1-hr multi-sensor QPE to the 1-hr radar-only QPE, was applied to the 2-minute182

precipitation rate product to decrease error. A factor of 1 was used where the 1-hr radar-183

only QPE was equal to zero.184

The corrected and uncorrected radar-only 2-minute precipitation rate products were185

compared to the gage-observed 15-minute intensity. The multi-sensor correction did not186

significantly improve the RMSE error, with a median normalized RMSE of 41% of max-187

imum MRMS 15-minute intensity for years 2021 through 2022 (compared to 42% for the188

radar only rate), see Supporting Information Figure S1 for a comparison of the overall189

distributions of errors. Because the multi-sensor product did not significantly improve190

the sub-hourly precipitation estimates, and the multi-sensor product is not archived be-191

fore 2021, we did not include the correction in this analysis.192

The Radar Quality Index (RQI) was used to train the model and as a baseline to193

compare the performance of model estimated error. This product has a temporal res-194

olution of 2 minutes and provides an estimate of uncertainty, represented by a floating-195

point number ranging from 0 to 1, that is related to terrain blockage, higher beam heights,196

and the beam position with respect to the freezing level (Zhang et al., 2012). An RQI197

of 1.0 suggests limited uncertainty associated with these problems. RQI is set to 0.0 when198

terrain blockage is greater than 50%.199

The gage data was sourced from instruments monitored by Colorado State Uni-200

versity (White & Nelson, 2024a), the U.S. Geological Survey (USGS) (USGS National201

Water Information System, 2023; Rengers et al., 2023), CoAgMET (Colorado State Uni-202

versity, 2023), and other networks aggregated by MesoWest (Mesowest - Weather and203

Climate Data, Accessed 2023). The locations of these stations are shown in Figure 1.204

The set of gages includes various models of tipping buckets and one disdrometer. Sev-205

eral gages record at regular time intervals (ranging from 1 minute to 5 minutes) and some206

gages record tips with varying record lengths. A total of 204 gages were used to develop207

the dataset. Gages were quality controlled by comparing the magnitude of RMSE across208

the study area. One gage, located in central Fort Collins, was removed from the dataset209

because it had significantly higher error, with a mean RMSE of 42.8 mm/hr compared210

to the overall dataset mean of 3.43 mm/hr.211
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2.2.2 Feature extraction and labeling212

The labeled dataset is comprised of 37,215 samples, consisting of an 8-hour non-213

overlapping window of 15-minute intensity. Each sample has 28 features evaluated within214

the 8 hours and is labeled with a target RMSE calculated from the gage and MRMS in-215

tensity with the gage values assumed to be the ground truth. The sampling start times216

include 0800, 1600, and 0000 UTC. The purpose of the 8-hour window is to focus on chunks217

of time impacted differently by the diurnal cycle. In the labeled dataset, features and218

error are evaluated in relation to the MRMS grid location closest to the gage. Only 8-219

hour samples with an MRMS total accumulation above 1 mm were included to prevent220

sampling below the minimum accumulation that can be observed by a gage. The pur-221

pose of the model is to predict the error threshold of a non-zero time series of MRMS222

15-minute intensity; the model cannot determine if the time series is a false negative be-223

cause we did not include zero-value accumulations.224

Feature values were calculated for each 8-hour time series window, and include both225

point and storm attributes. Storm attributes were averaged throughout the storm foot-226

print. When several storms occur during an 8-hour window, storm values were averaged.227

Table 1 provides a description of all features with a comparison of the mean and stan-228

dard deviation of feature values for the labeled and statewide datasets. Features were229

chosen to capture the variability and magnitude of the rainfall, the orographic influences,230

the radar QPE uncertainty, and space-time characteristics of the storms.231

Rainfall statistics were calculated from nonzero values in the 8-hour sample win-232

dow. Elevation, aspect, and slope were extracted from the NASA Shuttle Radar Topog-233

raphy 1-arc second dataset (NASA Jet Propulsion Laboratory, 2022). Aspect and slope234

were calculated using ArcMap (Esri, 2020). Non-precipitation values with missing data235

were filled with NaN. All feature values were standardized for training of models by sub-236

tracting the mean and scaling it to the standard deviation of the feature values.237

Storm regions were identified using the scikit-image label module after converting238

the MRMS precipitation rate product to a binary array, with a value of 1 assigned to239

values greater than zero (van der Walt et al., 2014). The label module assigns a unique240

storm-id to neighbors in the array with equal values. Diagonal neighbors were not con-241

sidered connected to avoid stringing together objects. Objects are assigned storm ids through-242

out time, latitude, and longitude. Storm values were processed in monthly chunks to man-243

age memory resources and values were not computed across chunks.244

A statewide (west of 104◦ longitude) dataset was developed to visualize the pre-245

dictions of the model and create a spatially continuous error estimate of MRMS where246

no gage exists. This dataset includes 598,310 8-hour time series of MRMS intensity with247

the 28 features sampled throughout the state where the total accumulation is greater than248

1 mm. To decrease the size of the statewide dataset, the original MRMS dataset was sam-249

pled every 10 grid coordinates, resulting in a resolution of approximately 10 km. Data250

were sampled from May through September from 2018 through 2023.251

MRMS is subject to several temporal sampling errors mainly caused by advection252

of hydrometeors (Fabry et al., 1994). Rather than directly compare the gage and MRMS253

time series, the time series was first upsampled to 10 minute intervals. The maximum254

15-minute intensity was selected from each 10 minute interval. A more complex approach255

that includes correcting for sampling error using the movement of the storm such as the256

method presented by Seo and Krajewski (2015), would likely decrease the error further.257
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2.3 Modeling258

2.3.1 Model description259

The dataset labeled with true RMSE values from gages is used to train a tree-based260

ensemble model, which is then used to predict the error of MRMS with the statewide261

dataset and understand how the extracted features are associated with performance. The262

output of the model is a range of RMSE values for the MRMS time series sample. To263

predict this range, a gradient-boosting regressor is trained with quantile loss, using the264

implementation from scikit-learn (Pedregosa et al., 2011). Boosting methods ensemble265

weak learners to produce strong learners, improving the balance of bias and variance in266

individual decision trees, with the aim of decreasing over-fitting and increasing accuracy267

(Géron, 2021). The gradient-boosting algorithm learns sequentially from the residual er-268

ror of an ensemble of decision trees (Friedman, 2001). Each ensemble of decision trees269

is essentially attempting to improve on the residual error from its predecessor. An ad-270

ditional benefit of gradient-boosting models is that there are relatively few parameters271

to tune.272

The residual error or training loss is calculated as mean quantile loss, otherwise known273

as mean pinball loss, shown in Equation 1:274

L(y, ŷ) =
1

N

N−1∑
i=0

α ·max(yi − ŷi, 0) + (1− α) ·max(ŷi − yi, 0) (1)275

Optimizing the loss involves minimizing the difference in the predicted quantile and276

a target group of size N . We essentially have three models with different α values, rep-277

resenting the quantile, to predict the median and 90% confidence interval. In Equation278

1, when α = 0.50 the loss is equal to half of the mean absolute error. The loss (L) is279

a function of the observed value (y) and the predicted value (ŷ).280

Model performance was initially evaluated on a diverse set of single-output regres-281

sion models to compare performance. The models included k -nearest neighbors, deci-282

sion trees, various decision tree ensemble models, linear regression, multilayer percep-283

tron, and support vector machines. Models were chosen based on common use and vary-284

ing complexity. A brief description of these models can be found in the Supporting In-285

formation Table S1. After hyperparameter tuning, the coefficient of determination and286

mean absolute error (MAE) was 0.80 and 0.96 mm/hr for the highest-performing model,287

random forest regression. The model is not robust to outliers and makes many predic-288

tions significantly higher and lower than the target value (Table S2, Figure S2 in Sup-289

porting Information S1). The quantile regression model encapsulates these erroneous pre-290

dictions by providing a range of error. The confidence interval can also account for het-291

eroscedasticity in the data. Linear quantile regression was evaluated for comparison, the292

performance is shown in section 3.3.293

2.3.2 Evaluation294

Models were evaluated using 5-fold cross validation and a separate test set. The295

validation set is used to understand how each model generalizes to new data, compare296

model performance during training, select hyperparameter values without leaking knowl-297

edge from the test set, and to compare feature importance and model calibration to the298

test set. During k -fold cross validation, the model is trained on k -1 folds then validated299

with the remaining fold. 20% of the dataset was kept entirely separate to evaluate the300

final model performance.301

Performance of spatiotemporally correlated data can easily be inflated if depen-302

dencies in the sample feature values are not accounted for when splitting the training303

and testing data (Roberts et al., 2017). To limit correlation between data folds and test-304
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ing data, samples were grouped by location. Cross folds were manually set to keep sam-305

ples with the same location in the same fold.306

The models tested in this study assume independence between features. Correlated307

features must be removed to interpret how features are used by the model. Several fea-308

tures listed in Table 1 are unsurprisingly highly correlated. The Spearman’s rank cor-309

relation test was used to determine the correlation between features and Ward’s link-310

age was used to sort clusters of correlated features. A threshold of 0.55 was used for the311

distance linkage, and only one feature was selected from each cluster below this thresh-312

old. Each permutation of features below the threshold was evaluated by the α = 0.50313

model to determine the best performing group, with a remaining correlation high of 0.61.314

After feature selection, randomized search with cross fold validation was used to315

tune hyperparameters for each quantile separately. This method randomly samples pa-316

rameter values from a specified range through multiple iterations then outputs the pa-317

rameter values for the highest performing estimators, based on negative mean quantile318

loss. Hyperparameters were altered to increase performance while decreasing the ten-319

dency to over-fit. See Supporting Information Table S3 for the hyperparameters tuned320

and the final values chosen.321

The performance of the tuned models was evaluated with mean quantile loss in val-322

idation and testing. Additionally, the fraction of target values that fall outside of the pre-323

dicted 90% confidence interval were calculated to get a sense of how well calibrated the324

predicted confidence interval is; this value should be close to 10%. Feature importance325

was evaluated by randomly permuting each feature for both the validation and test dataset326

and determines importance based on the mean increase in mean quantile loss when per-327

muting the feature. The comparison of validation and test importance shows how the328

model might be over-fitting with the features.329

3 Results330

3.1 MRMS performance trends331

Figure 2a compares the distributions of normalized RMSE (nRMSE) values for all332

target values, test target values, the test α = 0.50 predictions, and the statewide α =333

0.50 predictions. The values are normalized with the maximum MRMS 15-minute in-334

tensity. The distributions peak at approximately 0.4 or 40% of the maximum intensity.335

The target nRMSE values appear to have a higher density for lower nRMSE values than336

both the test and statewide predictions, with the statewide predictions having a higher337

density towards larger nRMSE values. This suggests the model is slightly conservative,338

or tends to overestimate the error.339

Figure 2b shows the distribution of α = 0.50 predictions for the state, compared340

to the distributions of α = 0.50 state predictions grouped by coordinates with lower341

(median prediction below 0.1 quantile) and higher (median prediction above 0.9 quan-342

tile) errors. The distributions of error not only shift based on the separation of high ver-343

sus low error, but for the higher error, the density increases in the right tail. And, the344

opposite occurs for the low error distribution.345

To understand the occurrence of false negatives the labeled dataset was constrained346

to a total accumulation of 1 mm for either the gage or MRMS (rather than just MRMS).347

4.4% of the 8-hour samples had 0 mm MRMS total accumulation when the gage was above348

1 mm (false negative). 24.2% showed greater than 1 mm MRMS total accumulation when349

the gage was 0 mm (false positive). 71% of the 8-hour samples had a higher total accu-350

mulation value for MRMS.351
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Figure 2. (a) Kernel density estimations of the distributions of normalized RMSE (nRMSE)

for all target error, the test target error, the test predicted error, and the statewide predicted er-

ror. (b) The distribution of error for the coordinates in the state dataset with a median nRMSE

below the 0.1 quantile, above the 0.9 quantile, and all state predicted error values. The values

only include the α = 0.50 model predictions.

The spatial distribution of predicted median error is shown in Figure 3a. The MRMS352

grid locations with co-located gages are colored by the proportion of samples in the val-353

idation/testing labeled dataset. The lack of spatial uniformity in sampling for the labeled354

dataset does not appear to influence the spatial trends. There is a band of poor perfor-355

mance that arcs from the northwest corner of the state to the southwest corner that may356

be influenced by the terrain west of the continental divide and the distance from radar357

sites. However, areas on the map that show higher median nRMSE still have a distri-358

bution of error that includes lower nRMSE values, shown by the map of the first quar-359

tile of nRMSE in Figure 3b.360

3.2 Features related to MRMS performance361

The permutation feature importance for all quantile models for the validation and362

test dataset predictions is shown in Figure 4. The error bars represent the standard de-363

viation from 10 iterations of randomly permuting each feature. Unsurprisingly, the stan-364

dard deviation of MRMS 15-minute intensity was most important. Linear regression, us-365

ing only standard deviation of intensity, results in a coefficient of determination of 0.76366

and MAE of 1.03 mm/hr. The standard deviation of intensity was removed from Fig-367

ure 4 to understand if other features influence the model predictions or are used to over-368

fit in training.369

There is some agreement between the feature importance in the testing and train-370

ing data for the 0.50 and 0.95 quantile models. The 0.05 quantile model seems to rely371

entirely on the standard deviation and median of intensity. The discrepancy in the rank-372

ing of features between models and between the training and testing feature importance373

values within models is evidence that the models did over-fit. Although, these differences374

are marginal considering the magnitude of permutation importance. The RQI minimum375

and duration of positive values were both important for the 0.50 and 0.95 quantile mod-376

els. This consistency suggests that these features are slightly useful in determining er-377

ror.378
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Figure 3. (a) The median normalized RMSE for each coordinate, predicted by the α = 0.50

model. (b) The first quartile of normalized RMSE for each coordinate, predicted by the α = 0.50

model. The gage locations are shown with colors representing the proportion of samples in the

labeled dataset sourced from each location.
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Figure 5. Comparison of feature value distributions for samples with low (0.95 mm/hr) and

high (5.60 mm/hr) RMSE predictions for the α = 0.50 statewide predictions. See Table 1 for

feature units.

The difference in feature values for the statewide dataset for high and low predicted379

error extremes from the α = 0.50 model are shown in Figure 5. Distributions of feature380

values are separated by low (RMSE less than 0.95 mm/hr or the 0.10 quantile of pre-381

dictions) and high (RMSE greater than 5.60 mm/hr or the 0.90 quantile of predictions)382

predictions. The hour and month features are excluded, because they are essentially cat-383

egorical features.384

There is a clear difference in the inter-quartile range for standard deviation of in-385

tensity and median intensity. The inter-quartile range is lower for the low RMSE val-386

ues for standard deviation and median intensity features, as expected. The inter-quartile387

range for duration is non-overlapping between groups, suggesting that MRMS is more388

accurate when longer duration rainfall occurs. The distributions for other features dif-389

fer across performance groups, but are highly overlapping, meaning that there is no ob-390

vious decision boundary observed in these individual features.391

3.3 Model performance392

A summary of validation and test results is shown in Table 2 for both the gradient-393

boosting (GB) and linear (L) regressors. A perfect value for quantile loss (QL) is zero.394

A perfect value for the fraction of values outside of the 90% confidence interval (FO) is395

0.10. The validation standard deviations for the quantile loss and outside of the 90% con-396

fidence interval show how the model performance varies across different data folds. Model397

performance on the test data is slightly lower, which is expected given that features were398

chosen and hyperparameters were adjusted based on the validation data. The linear re-399

gressor is slightly better calibrated, but the gradient-boosting regressor has lower vari-400

ation in performance across folds and lower mean quantile loss for all models in both val-401

idation and testing.402

Figure 6 shows the target RMSE as a function of the predicted median RMSE with403

the predicted 90% confidence interval the background for the test dataset. A 1:1 line is404

plotted to show how the median prediction either over or underestimates with growing405

RMSE magnitude. The confidence interval widens as the target RMSE values increase.406

The kernel density estimation for the target values as a function of the median predicted407

RMSE is shown in cyan contours. The kernel density contours show that the median pre-408

dictions slightly underestimate the RMSE. The scatter points depict the target RMSE409
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Table 2. Cross Fold Validation and Test Results a

Validation Test

Mean QL Std QL Mean FO Std FO QL FO

GB α =0.05 0.100 0.013 0.104
GB α =0.50 0.456 0.040 0.111 0.015 0.454 0.120
GB α =0.95 0.189 0.020 0.199

L α =0.05 0.110 0.018 0.115
L α =0.50 0.474 0.044 0.102 0.020 0.483 0.105
L α =0.95 0.208 0.018 0.215
aResults for quantile loss (QL) and fraction of outliers (FO) for both
gradient-boosting (GB) and linear (L) regressor models. Validation results
include the mean and standard deviation across folds.

values, the red indicates values outside and blue indicates values inside the 90% confi-410

dence interval.411

4 Discussion412

4.1 When and where are sub-hourly MRMS precipitation estimates trust-413

worthy in the mountains of Colorado?414

To better understand the quality of MRMS in the mountains of Colorado, sub-hourly415

MRMS precipitation estimates were compared to gage records from 2018 through 2023416

during warm months. The gage record comparison shows a wide distribution of nRMSE417

with a median of 42% and a standard deviation of 40% of the maximum MRMS 15-minute418

intensity. A gradient-boosting regressor was used to interpolate error estimates where419

no gages exist and provide a spatiotemporally varying record of error in Colorado. The420

model predictions of nRMSE and RQI aggregated through time at each coordinate show421

some spatial agreement for high error and uncertainty, shown in Figures 3a and 7a. Ac-422

cording to our model results, these areas still see lower error values, perhaps when longer-423

duration storms occur higher in the atmosphere rather than during orographically en-424

hanced or smaller convective disturbances. Figure 7b shows that areas with the lowest425

median RQI minimum (high uncertainty) remain low even in the upper quartile. This426

contrasts with the model results, shown in Figure 3b. The lower variability in RQI is caused427

by the essentially fixed beam blockage factor. The model shows that MRMS error in re-428

mote areas with poor radar coverage and complex terrain is not as consistently unreli-429

able as suggested by RQI or the study by Maddox et al. (2002).430

4.2 What are the circumstances that lead to low error?431

The standard deviation and median of intensity were unsurprisingly the most im-432

portant predictors of RMSE. Although, the RQI minimum and duration of rainfall did433

add some predictive skill, see Figure 4. Separation of very low and very high RMSE pre-434

dictions for the state dataset, shown in Figure 5, indicates that longer duration precip-435

itation tends to have lower predicted error. This suggests that radar is more skilled at436

estimating precipitation for storms producing continuous rainfall. Permutation impor-437

tance is lower for features associated with the terrain and spatiotemporal attributes of438

storms, meaning that the model did not find these features useful in determining the RMSE.439
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Figure 6. The target values as a function of the median predicted RMSE for the test dataset.

Each data point represents an 8-hour sample RMSE between gage and MRMS plotted on the

predicted. The predicted 90% confidence interval (CI) is plotted. Truth values in range are green,

those that fall outside the cutoff are red. The kernel density estimation for the target values as a

function of the median predicted RMSE is shown in cyan contours.
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4.3 How well can error be predicted by the physical aspects of the re-440

gion, rainfall patterns, and storm characteristics?441

Given the features we developed, the model is well calibrated to the 90% confidence442

interval and the mean quantile error is low for the test results, shown in Table 2. Model443

predictions can be used to evaluate the reliability of historic sub-hourly MRMS time se-444

ries and identify where more observations are needed. This method also provides an ap-445

proach to estimate error without making assumptions on the sources of uncertainty that446

are most important or the distribution of error. The type of algorithm used to model447

the error does not appear to be critical, as evidenced by the marginal performance gains448

of the gradient-boosting regressor over the linear quantile regressor.449

Model results are limited by the assumption that the gage network is a reliable ground450

truth for MRMS. The difference in spatial sampling scale (point versus 1 km2 grid) as451

well as the estimation of surface precipitation from a high radar beam height is known452

to cause significant uncertainty in error estimates (Tang et al., 2018; Villarini et al., 2008;453

Ciach & Krajewski, 1999). Several studies have avoided the ground truth uncertainty454

by comparing multiple QPEs. For example, Bytheway (2022) created a probabilistic QPE455

by combining multiple high resolution precipitation estimates, including MRMS and fore-456

casts. As satellite data and forecasts increase in temporal resolution this type of prob-457

abilistic precipitation estimate might be possible at sub-hourly resolutions.458

5 Conclusion459

In mountainous regions, high-resolution data is often lacking but necessary to quan-460

tify the unique hydrometeorology and its related hazards. In this study, we evaluate MRMS461

sub-hourly precipitation estimates in the mountains of Colorado to understand general462

trends in performance. We also evaluate the physical attributes that are most impor-463

tant in determining error and the characteristics that are associated with various error464

values. The performance and feature evaluation are enhanced by a novel method for pre-465

dicting radar-based QPE error that can be used to predict error where gages are sparse.466

The spatial patterns of performance generally align with RQI; however, gage compar-467

isons and model predictions show that the error is highly variable throughout the state.468

The feature importance and predictions show that duration of rainfall is a useful indi-469

cator of the performance of MRMS.470

Given a sub-hourly and spatially continuous reference dataset, a logical next step471

would be to improve the QPE accuracy and reliability, rather than estimate error. Re-472

cent studies have successfully improved satellite and radar based QPEs using more com-473

plex machine learning methods such as a convolutional neural network (CNN). CNNs474

excel in identifying spatial dependencies by scanning parts of an image, with matrix weights,475

rather than ingesting all data as does a fully connected network (Géron, 2021). Osborne476

et al. (2023) used a CNN with the radar-only MRMS QPE and other reflectivity param-477

eters as input and a gage network as the target precipitation to obtain more accurate478

hourly precipitation. The CNN QPE showed some improvement over the radar-only QPE,479

a valuable result in operational forecasting where the latency of the multi-sensor QPE480

hinders its usefulness. Hilburn et al. (2021) used a CNN to create synthetic MRMS radar481

reflectivity images from GOES-R that preserves the spatial resolution of MRMS using482

a U-NET architecture. The approach outperformed traditional data assimilation tech-483

niques and has the potential to generate more precise reflectivity estimates from satel-484

lites in regions where ground radar blockage is notable, such as the western United States.485

Model architectures such as visual transformers may be used to leverage spatial as well486

as temporal context during learning. Our analysis shows that the error of MRMS is of-487

ten high in several regions of Colorado, and likely unacceptable for many applications.488

It is worth exploring the potential of more advanced algorithms to enhance high reso-489

lution QPEs in areas of complex terrain.490
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Open Research Section491

The statewide RMSE prediction results and features used to make predictions, along492

with the training dataset features and intensity time series, can be accessed at http://www.hydroshare.org493

/resource /95aa5dbcb9ab4345ae589b28d95582c2 (White & Nelson, 2024a). Code used494

for the development of the datasets and results in this study can be accessed at https://doi.org/495

10.5281/zenodo.10734150 (White & Nelson, 2024b). Three additional USGS gages used496

in the study cited in the text as Rengers et al. (2023) can be accessed directly at https://www.sciencebase.gov497

/catalog/item/63617bebd34ebe4425065664.498
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