References
Acuña‐Rodríguez, I. S., Newsham, K. K., Gundel, P. E., Torres‐Díaz, C. and Molina‐Montenegro, M. A. 2020. Functional roles of microbial symbionts in plant cold tolerance. — Ecol. Lett. 23: 1034-1048.
Ballesteros, G. I., Acuña-Rodríguez, I. S., Barrera, A., Gundel, P. E., Newsham, K. K. and Molina-Montenegro, M. A. 2022. Seed fungal endophytes promote the establishment of invasive Poa annua in Maritime Antarctica. — Plant Ecol. Divers. 15: 199-212.
Bertness, M. D. and Callaway, R. M. 1994. Positive interactions in communities. Trends Ecol. Evol. — 9: 191-193.
Blumenthal, D., Mitchell, C. E., Pyšek, P. and Jarošík, V. 2009. Synergy between pathogen release and resource availability in plant invasion. — Proc. Natl. Acad. Sci. U.S.A 106: 7899-7904.
Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G. and Prati, D., et al. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. — Ecology 89: 1043-1055.
Cavieres, L. A., Quiroz, C. L., Molina-Montenegro, M. A., Muñoz, A. A. and Pauchard, A. 2005. Nurse effect of the native cushion plantAzorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. — Perspect. Plant Ecol. Evol. Syst. 7: 217-226.
Coats, V. C. and Rumpho, M. E. 2014. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. — Front. Microbiol. 5: 368.
Dawson, W. and Schrama, M. 2016. Identifying the role of soil microbes in plant invasions. — J. Ecol. 104: 1211-1218.
De Deyn, G. B., Raaijmakers, C. E. and van der Putten, W. H. 2004. Plant community development is affected by nutrients and soil biota. — J. Ecol. 92: 824-834.
De Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie, O., Decocq, G., et al. 2013. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. — J. Ecol. 10: 784-795.
Di Castri, F. and Hajek, E. 1976. Bioclimatología de Chile. — Ediciones de la Pontificia Universidad Católica de Chile, Santiago. 129 pp.
Dickie, I. A., Bufford, J. L., Cobb, R. C., Desprez-Loustau, M. L., Grelet, G., Hulme, P. E., Klironomos, J., Makiola, A., et al. 2017. The emerging science of linked plant–fungal invasions. — New Phytol. 215: 1314-1332.
Eppinga, M. B., Rietkerk, M., Dekker, S. C., De Ruiter, P. C. and van der Putten, W. H. 2006. Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. — Oikos 114: 168–176.
Flory, S. L. and Clay, K. 2013. Pathogen accumulation and long-term dynamics of plant invasions. — J. Ecol. 101: 607-613.
Geng, Y. P., Pan, X. Y., Xu, C. Y., Zhang, W. J., Li, B., Chen, J. K., Lu, B. R. and Song, Z. P. 2007. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. — Biol. Invasions 9: 245-256.
Gentili, R., Ambrosini, R., Augustinus, B. A., Caronni, S., Cardarelli, E., Montagnani, C., Müller-Schärer, H., Schaffner, U. and Citterio, S. 2021. High phenotypic plasticity in a prominent plant invader along altitudinal and temperature gradients. — Plants 10: 2144.
Goh, C-H., Veliz-Vallejos, D. F., Nicotra, A. B. and Mathesius, U. 2013. The impact of beneficial plant-associated microbes on plant phenotypic plasticity. — J. Chem. Ecol. 39: 826–839.
Hartmann, M. and Six, J. 2023. Soil structure and microbiome functions in agroecosystems. — Nat. Rev. Earth Environ. 4: 4-18.
Holm, L., Doll, L., Holm, E., Pacheco, J. and Herberger, J. 1997. World Weeds. Natural Histories and Distributions. — John Wiley & Sons, Inc. New York. 1129 pp.
Kalske, A., Blande, J. D. and Ramula, S. 2022. Soil microbiota explain differences in herbivore resistance between native and invasive populations of a perennial herb. — J. Ecol. 110: 2533-2796
Liu, H., Brettel, L. E., Qiu, Z. and Singh, B. K. 2020. Microbiome-mediated stress resistance in plants. — Trends Plant Sci. 25: 733-743.
Matesanz, S., Gianoli, E. and Valladares, F. 2010. Global change and the evolution of phenotypic plasticity in plants. — Ann. N. Y. Acad. Sci. 1206: 35-55.
Marchini, G. L., Maraist, C. A. and Cruzan, M. B. 2019. Trait divergence, not plasticity, determines the success of a newly invasive plant. — Ann Bot. 123: 667–679.
Mathakutha, R., Steyn, C., le Roux, P. C., Blom, I. J., Chown, S. L., Daru, B. H., Ripley, B. S., Louw, A. and Greve, M. 2019. Invasive species differ in key functional traits from native and non‐invasive alien plant species. — J. Veg. Sci. 30: 994–1006.
Matos, C. C., Costa, M. D., Silva, I. R. and Silva, A. A. 2019. Competitive capacity and rhizosphere mineralization of organic matter during weed-soil microbiota interactions. — Planta Daninha 37: e019182676
Mitchell, C. E. and Power, A. G. 2003. Release of invasive plants from fungal and viral pathogens. — Nature 421: 625-627.
Molina-Montenegro, M. A., Atala, C. and Gianoli, E. 2010. Phenotypic plasticity and performance of Taraxacum officinale (dandelion) in habitats of contrasting environmental heterogeneity. — Biol. Invasions 12: 2277-2284.
Molina-Montenegro, M. A. and Naya, D. E. 2012. Latitudinal patterns in phenotypic plasticity and fitness-related traits: Assessing the climatic variability hypothesis (CVH) with an invasive plant species. — PLoS ONE 7: e47620.
Molina-Montenegro, M. A., Quiróz, C. L., Torres-Díaz, C. and Atala, C. 2011. Ecophysiological traits suggest local adaptation rather than plasticity in the invasive Taraxacum officinale (dandelion) from native and introduced habitat range. — Plant Ecol. Divers. 4: 36-42.
Molina-Montenegro, M. A., Cleland, E. E., Watts, S. M. and Broitman, B. R. 2012a. Can a breakdown in competition-colonization tradeoff help explain the success of exotic species in the California flora? — Oikos 121: 389-395.
Molina-Montenegro, M. A., Peñuelas, J., Munné-Bosh, S. and Sardans, J. 2012b. Higher plasticity in ecophysiological traits enhances the performance and invasion success of Taraxacum officinale(dandelion) in alpine environments. — Biol. Invasions 14: 21-33.
Molina-Montenegro, M. A., Palma-Rojas, C., Alcayaga-Olivares, Y., Oses, R., Corcuera, L. J., Cavieres, L. A. and Gianoli, E. 2014. Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. — Ecography 36: 718-730.
Molina-Montenegro, M. A., Oses, R., Torres-Díaz, C., Atala, C., Núñez, M. A. and Armas, C. 2015. Fungal endophytes associated with roots of nurse cushion species have positive effects on native and invasive beneficiary plants in an alpine ecosystem. — Perspect. Plant Ecol. Evol. Syst. 17: 218–226.
Molina-Montenegro, M. A, del Pozo, A. and Gianoli, E. 2018. Ecophysiological basis of the Jack-and-Master strategy: Taraxacum officinale (dandelion) as an example of a success invader. — J. Plant Ecol. 11: 147-157.
Muñoz, A. A. and Cavieres, L. A. 2008. The presence of a showy invasive plant disrupts pollinator service and reproductive output in native alpine species only at high densities. — J. Ecol. 96: 459-467.
Petipas, R. H., Geber, M. A. and Lau, J. A. 2021. Microbe-mediated adaptation in plants. — Ecol. Lett. 24: 1302-1317.
Pyšek, P. and Richardson, D. M. 2007. Traits associated with invasiveness in alien plants: Where do we stand? In: Nentwig, W. (ed.), Biological invasions, Ecological Studies 193, pp. 97-126. — Springer-Verlag, Berlin.
Ramirez, K. S., Snoek, L. B., Koorem, K., Geisen, S., Bloem, L. J., Hooven, F., Kostenko, O., et al. 2019. Range-expansion effects on the belowground plant microbiome. — Nature Ecol. Evol. 3: 604-611.
Reinhart, K. O. and Callaway, R. M. 2006. Soil biota and invasive plants. — New Phytol. 170: 445-457.
Rejmánek, M., Richardson, D. M., Higgins, S. I., Pitcairn, M. J. and Grotkopp, E. 2005. Ecology of invasive plants: State of the art. In: Mooney, H.A., Mack, R.N., McNeely, J.A., Neville, L.E., Schei, P.J., Waage, J.K. (eds.), Invasive alien species a new synthesis, pp. 104-161. — Island Press, Washington DC.
Rosner, B. 2010. Fundamentals of Biostatistics. — Duxbury Press, 7th edition. Boston. 849 pp.
Shelby, N., Duncan, R. P., van der Putten, W. H., McGinn, K. J., Weser, C. and Hulme, P. E. 2016. Plant mutualisms with rhizosphere microbiota in introduced versus native ranges. — J. Ecol. 104: 1259–1270
Traveset, A. and Richardson, D. M. 2014. Mutualistic interactions and biological invasions. — Annu. Rev. Ecol. Evol. Syst. 45: 89-113.
Trognitz, F., Hackl, E., Widhalm, S. and Sessitsch, A. 2016. The role of plant–microbiome interactions in weed establishment and control. — FEMS Microbiol. Ecol. 92: 138.
van Kleunen, M., Weber, E. and Fisher, M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. — Ecol. Lett. 13: 235-245.
Figure 1 : Performance variables of Taraxacum officinaleplants originated from seeds collected in both (Native [France] and Introduced [Chile]) range and that were grown in soils either from native or introduced range. Plants of T. officinale were subjected to manipulated microbiome treatments: control (M+, green), sterilized (M-, orange) or sterilized and reinoculated (Mr, yellow). Performance was estimated in terms of: survival (%), biomass (g) and number of flowers (n). Similar letters between bars denoted non-significant differences (p > 0.05) between a given column pair according to the pair-wise comparison of their marginal means. Each bar is an average ±S.E.