References
Acuña‐Rodríguez, I. S., Newsham, K. K., Gundel, P. E., Torres‐Díaz, C.
and Molina‐Montenegro, M. A. 2020. Functional roles of microbial
symbionts in plant cold tolerance. — Ecol. Lett. 23: 1034-1048.
Ballesteros, G. I., Acuña-Rodríguez, I. S., Barrera, A., Gundel, P. E.,
Newsham, K. K. and Molina-Montenegro, M. A. 2022. Seed fungal endophytes
promote the establishment of invasive Poa annua in Maritime
Antarctica. — Plant Ecol. Divers. 15: 199-212.
Bertness, M. D. and Callaway, R. M. 1994. Positive interactions in
communities. Trends Ecol. Evol. — 9: 191-193.
Blumenthal, D., Mitchell, C. E., Pyšek, P. and Jarošík, V. 2009. Synergy
between pathogen release and resource availability in plant invasion.
— Proc. Natl. Acad. Sci. U.S.A 106: 7899-7904.
Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G.
and Prati, D., et al. 2008. Novel weapons: invasive plant suppresses
fungal mutualists in America but not in its native Europe. — Ecology
89: 1043-1055.
Cavieres, L. A., Quiroz, C. L., Molina-Montenegro, M. A., Muñoz, A. A.
and Pauchard, A. 2005. Nurse effect of the native cushion plantAzorella monantha on the invasive non-native Taraxacum
officinale in the high-Andes of central Chile. — Perspect. Plant
Ecol. Evol. Syst. 7: 217-226.
Coats, V. C. and Rumpho, M. E. 2014. The rhizosphere microbiota of plant
invaders: an overview of recent advances in the microbiomics of invasive
plants. — Front. Microbiol. 5: 368.
Dawson, W. and Schrama, M. 2016. Identifying the role of soil microbes
in plant invasions. — J. Ecol. 104: 1211-1218.
De Deyn, G. B., Raaijmakers, C. E. and van der Putten, W. H. 2004. Plant
community development is affected by nutrients and soil biota. — J.
Ecol. 92: 824-834.
De Frenne, P., Graae, B. J., Rodríguez-Sánchez, F., Kolb, A., Chabrerie,
O., Decocq, G., et al. 2013. Latitudinal gradients as natural
laboratories to infer species’ responses to temperature. — J. Ecol.
10: 784-795.
Di Castri, F. and Hajek, E. 1976. Bioclimatología de Chile. —
Ediciones de la Pontificia Universidad Católica de Chile, Santiago. 129
pp.
Dickie, I. A., Bufford, J. L., Cobb, R. C., Desprez-Loustau, M. L.,
Grelet, G., Hulme, P. E., Klironomos, J., Makiola, A., et al. 2017. The
emerging science of linked plant–fungal invasions. — New Phytol. 215:
1314-1332.
Eppinga, M. B., Rietkerk, M., Dekker, S. C., De Ruiter, P. C. and van
der Putten, W. H. 2006. Accumulation of local pathogens: a new
hypothesis to explain exotic plant invasions. — Oikos 114: 168–176.
Flory, S. L. and Clay,
K. 2013.
Pathogen accumulation and long-term dynamics of plant invasions. — J.
Ecol. 101: 607-613.
Geng, Y. P., Pan, X. Y., Xu, C. Y., Zhang, W. J., Li, B., Chen, J. K.,
Lu, B. R. and Song, Z. P. 2007. Phenotypic plasticity rather than
locally adapted ecotypes allows the invasive alligator weed to colonize
a wide range of habitats. — Biol. Invasions 9: 245-256.
Gentili, R., Ambrosini, R., Augustinus, B. A., Caronni, S., Cardarelli,
E., Montagnani, C., Müller-Schärer, H., Schaffner, U. and Citterio, S.
2021. High phenotypic plasticity in a prominent plant invader along
altitudinal and temperature gradients. — Plants 10: 2144.
Goh, C-H., Veliz-Vallejos, D. F., Nicotra, A. B. and Mathesius, U. 2013.
The impact of beneficial plant-associated microbes on plant phenotypic
plasticity. — J. Chem. Ecol. 39: 826–839.
Hartmann, M. and Six, J. 2023. Soil structure and microbiome functions
in agroecosystems. — Nat. Rev. Earth Environ. 4: 4-18.
Holm, L., Doll, L., Holm, E., Pacheco, J. and Herberger, J. 1997. World
Weeds. Natural Histories and Distributions. — John Wiley & Sons, Inc.
New York. 1129 pp.
Kalske, A., Blande, J. D. and Ramula, S. 2022. Soil microbiota explain
differences in herbivore resistance between native and invasive
populations of a perennial herb. — J. Ecol. 110: 2533-2796
Liu, H., Brettel, L. E., Qiu, Z. and Singh, B. K. 2020.
Microbiome-mediated stress resistance in plants. — Trends Plant Sci.
25: 733-743.
Matesanz, S., Gianoli, E. and Valladares, F. 2010. Global change and the
evolution of phenotypic plasticity in plants. — Ann. N. Y. Acad. Sci.
1206: 35-55.
Marchini, G. L., Maraist, C. A. and Cruzan, M. B. 2019. Trait
divergence, not plasticity, determines the success of a newly invasive
plant. — Ann Bot. 123: 667–679.
Mathakutha, R., Steyn, C., le Roux, P. C., Blom, I. J., Chown, S. L.,
Daru, B. H., Ripley, B. S., Louw, A. and Greve, M. 2019. Invasive
species differ in key functional traits from native and non‐invasive
alien plant species. — J. Veg. Sci. 30: 994–1006.
Matos, C. C., Costa, M. D., Silva, I. R. and Silva, A. A. 2019.
Competitive capacity and rhizosphere mineralization of organic matter
during weed-soil microbiota interactions. — Planta Daninha 37:
e019182676
Mitchell, C. E. and Power, A. G. 2003. Release of invasive plants from
fungal and viral pathogens. — Nature 421: 625-627.
Molina-Montenegro, M. A., Atala, C. and Gianoli, E. 2010. Phenotypic
plasticity and performance of Taraxacum officinale (dandelion) in
habitats of contrasting environmental heterogeneity. — Biol. Invasions
12: 2277-2284.
Molina-Montenegro, M. A. and Naya, D. E. 2012. Latitudinal patterns in
phenotypic plasticity and fitness-related traits: Assessing the climatic
variability hypothesis (CVH) with an invasive plant species. — PLoS
ONE 7: e47620.
Molina-Montenegro, M. A., Quiróz, C. L., Torres-Díaz, C. and Atala, C.
2011. Ecophysiological traits suggest local adaptation rather than
plasticity in the invasive Taraxacum officinale (dandelion) from
native and introduced habitat range. — Plant Ecol. Divers. 4: 36-42.
Molina-Montenegro, M. A., Cleland, E. E., Watts, S. M. and Broitman, B.
R. 2012a. Can a breakdown in competition-colonization tradeoff help
explain the success of exotic species in the California flora? — Oikos
121: 389-395.
Molina-Montenegro, M. A., Peñuelas, J., Munné-Bosh, S. and Sardans, J.
2012b. Higher plasticity in ecophysiological traits enhances the
performance and invasion success of Taraxacum officinale(dandelion) in alpine environments. — Biol. Invasions 14: 21-33.
Molina-Montenegro, M. A., Palma-Rojas, C., Alcayaga-Olivares, Y., Oses,
R., Corcuera, L. J., Cavieres, L. A. and Gianoli, E. 2014.
Ecophysiological plasticity and local differentiation help explain the
invasion success of Taraxacum officinale (dandelion) in South
America. — Ecography 36: 718-730.
Molina-Montenegro, M. A., Oses, R., Torres-Díaz, C., Atala, C., Núñez,
M. A. and Armas, C. 2015. Fungal endophytes associated with roots of
nurse cushion species have positive effects on native and invasive
beneficiary plants in an alpine ecosystem. — Perspect. Plant Ecol.
Evol. Syst. 17: 218–226.
Molina-Montenegro, M. A, del Pozo, A. and Gianoli, E. 2018.
Ecophysiological basis of the Jack-and-Master strategy: Taraxacum
officinale (dandelion) as an example of a success invader. — J. Plant
Ecol. 11: 147-157.
Muñoz, A. A. and Cavieres, L. A. 2008. The presence of a showy invasive
plant disrupts pollinator service and reproductive output in native
alpine species only at high densities. — J. Ecol. 96: 459-467.
Petipas, R. H., Geber, M. A. and Lau, J. A. 2021. Microbe-mediated
adaptation in plants. — Ecol. Lett. 24: 1302-1317.
Pyšek, P. and Richardson, D. M. 2007. Traits associated with
invasiveness in alien plants: Where do we stand? In: Nentwig, W. (ed.),
Biological invasions, Ecological Studies 193, pp. 97-126. —
Springer-Verlag, Berlin.
Ramirez, K. S., Snoek, L. B., Koorem, K., Geisen, S., Bloem, L. J.,
Hooven, F., Kostenko, O., et al. 2019. Range-expansion effects on the
belowground plant microbiome. — Nature Ecol. Evol. 3: 604-611.
Reinhart, K. O. and Callaway, R. M. 2006. Soil biota and invasive
plants. — New Phytol. 170: 445-457.
Rejmánek, M., Richardson, D. M., Higgins, S. I., Pitcairn, M. J. and
Grotkopp, E. 2005. Ecology of invasive plants: State of the art. In:
Mooney, H.A., Mack, R.N., McNeely, J.A., Neville, L.E., Schei, P.J.,
Waage, J.K. (eds.), Invasive alien species a new synthesis, pp. 104-161.
— Island Press, Washington DC.
Rosner, B. 2010. Fundamentals of Biostatistics. — Duxbury Press, 7th
edition. Boston. 849 pp.
Shelby, N., Duncan, R. P., van der Putten, W. H., McGinn, K. J., Weser,
C. and Hulme, P. E. 2016. Plant mutualisms with rhizosphere microbiota
in introduced versus native ranges. — J. Ecol. 104: 1259–1270
Traveset, A. and Richardson, D. M. 2014. Mutualistic interactions and
biological invasions. — Annu. Rev. Ecol. Evol. Syst. 45: 89-113.
Trognitz, F., Hackl, E., Widhalm, S. and Sessitsch, A. 2016. The role of
plant–microbiome interactions in weed establishment and control. —
FEMS Microbiol. Ecol. 92: 138.
van Kleunen, M., Weber, E. and Fisher, M. 2010. A meta-analysis of trait
differences between invasive and non-invasive plant species. — Ecol.
Lett. 13: 235-245.
Figure 1 : Performance variables of Taraxacum officinaleplants originated from seeds collected in both (Native [France] and
Introduced [Chile]) range and that were grown in soils either from
native or introduced range. Plants of T. officinale were
subjected to manipulated microbiome treatments: control
(M+, green), sterilized (M-, orange)
or sterilized and reinoculated (Mr, yellow).
Performance was estimated in terms of: survival (%), biomass (g) and
number of flowers (n). Similar letters between bars denoted
non-significant differences (p > 0.05) between a
given column pair according to the pair-wise comparison of their
marginal means. Each bar is an average ±S.E.