Learned Model Compression for Efficient and
Privacy-Preserving Federated Learning

Yiming Chen ‘' | Lusine Abrahamyan

Abstract—Federated learning performs collaborative training
of deep learning models among multiple clients, safeguarding
data privacy, security, and legal adherence by preserving training
data locally. While the training data remains stored in the client
side, instead of being shared with the server and other clients,
recent work has shown that the data can still be reconstructed
by local updates or gradients. Different defense techniques have
been proposed to address this information leakage from the
gradient or updates, including introducing noise to gradients,
performing gradient compression (such as sparsification), and
feature perturbation. However, these methods either impede model
convergence, impose restrictions on model architecture incur, or
entail substantial communication costs. Furthermore, balancing
model performance, communication cost and privacy preservation
remains a challenging trade-off. To tackle the information
leakage during collaborative training, we introduce an adaptive
autoencoder-based method for compressing and, thus, perturbing
the model parameters. The client utilizes an autoencoder to acquire
the representation of the local model parameters within few local
iterations, and then shares the compressed model parameters with
the server, rather than the true model parameters. The use of the
autoencoder for lossy compression serves as an effective protection
against information leakage from the updates. Additionally, the
perturbation is intrinsically linked to the autoencoder’s input,
thereby achieving a perturbation with respect to the parameters
of different layers. Moreover, our approach can reduce 4.1 x
the communication rate compared to federated averaging. We
empirically validate our method using two widely-used models
within the context of federated learning, considering three datasets,
and assess its performance against several well-established defense
frameworks. The results indicate that our approach attains a
model performance nearly identical to that of unmodified local
updates, while effectively preventing information leakage and
reducing communication costs in comparison to other methods,
including noisy gradients, gradient sparsification, and PRECODE.

Index Terms—Deep learning, federated learning, data privacy,
gradient compression, autoencoder.

I. INTRODUCTION

EDERATED learning (FL) [1] is a promising framework
to address the challenges of privacy and data security
when training Al models for applications in, for example,
mobile internet [2f], healthcare [3]], and internet of things [4]],
[S]. In the traditional centralized learning, collecting sensitive

This research received funding from Research Foundation — Flanders (FWO)
research project GO93817N.

Y. Chen, H. Sahli, and N. Deligiannis are with Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussels, Belgium and also with imec, Kapeldreef 75,
B-3001 Leuven, Belgium. (e-mail: {cyiming, hsahli, ndeligia} @etrovub.be).

L. Abrahamyan was with Vrije Universiteit Brussel, Pleinlaan 2, B-1050
Brussels, Belgium and also with imec, Kapeldreef 75, B-3001 Leuven,
Belgium. She is now with BeVi - Best View, Vienna, Austria (e-mail:
lusine.abrahamyan@vub.be).

, Hichem Sahli

, and Nikos Deligiannis , Member, IEEE

data on a central server raises concerns in terms of privacy
and data ownership. Instead, FL enables collaborative model
training across multiple decentralized clients while ensuring the
privacy and security of individual data, as Fig. |1| depicted. For
example, Google improved predictive text suggestions in their
G-keyboard using FL, without uploading users’ information [2].

However, recent studies have shown that private user data can
still be leaked from the exchanged updates of model parameters
in FL, despite being solely kept on individual client devices.
This can happen through the property inference attack [6], [[7],
membership inference attack [8]], and gradient inversion attack
[O]-[11]]. The property inference attack infers the dataset’s
attributes by analyzing the model parameters’ updates. The
membership inference attack speculates whether the sample
exists in the training set and is involved in the training process.
The gradient inversion attack directly reconstructs the input
data using gradients or model parameter updates, resulting in
a lot of sensitive information leaking; especially, it has been
shown that a single input to a fully connected network can
always be reconstructed analytically [10]]. Given the ubiquity of
fully-connected layers in various models, the issue of privacy
leakage becomes particularly grave.

To overcome information leakage, especially by gradient
inversion attacks, some defense methods have been proposed.
Secure multi-party computation (SMC) methods [12]-[14]
collaboratively aggregate their sensitive local updates into
global updates without revealing those updates to the malicious
server. However SMC inflicts a significant computational
overhead, especially on complex systems [15]]. Differential
privacy (DP) methods [9]], [16]—[20] add calibrated noise to
the updates before being shared. The perturbed local updates
ensure that these gradients do not reveal precise information
about any individual training example, thereby providing
privacy guarantees. However, DP faces an inherent tradeoff
between model performance and information leakage and
requires a number of participating clients to ensure model
convergence. Gradient compression-based methods [21]]—[23]]
remove information from the updates of the model parameters,
obstructing the reconstruction of input. This approach, however,
can only achieve acceptable defense with high compression
rates, which might jeopardize the performance of the trained
model. Other studies [24], [25] proposed perturbing the data
representation to protect privacy. However, adversaries can
potentially circumvent the gradient perturbation by discarding
the perturbed layer. Alternatively, PRivacy EnhanCing mODulE
(PRECODE) [25] inserted a variational bottleneck [26] into the
model to perturb the representation by sampling. Nevertheless,
this approach requires modifying the model architecture,

https://orcid.org/0000-0002-0845-6155
https://orcid.org/0000-0002-3232-3029
https://orcid.org/0000-0002-1774-2970
https://orcid.org/0000-0001-9300-5860

breaking the integrity of the network. Therefore, it is imperative
to design an innovative defense framework that effectively
conceals sensitive training data information within gradients
from any layer rather than from the last few layers [24]. Such a
framework should safeguard gradient inversion attacks without
requiring modifications to the model architecture. Furthermore,
it should not harm the final model performance or the training
process, causing, for example, prolonged convergence times or
increasing the communication costs.

Our approach is inspired by our prior work [27]], [28]], which
utilized a lightweight autoencoder to compress gradients in
distributed training of deep learning models. In this work, which
targets federated learning, we use a lightweight autoencoder
to learn compressed representations of local model parameters.
The lossy compression due to the autoencoder reduces the
communication cost associated with the model parameter ex-
change and acts as an adaptive perturbation. This perturbation is
learned directly from the model parameters rather than manually
adjusted as in the DP approach. Moreover, as all layers undergo
compression in our approach, circumventing the perturbed layer
to reconstruct the training data is effectively thwarted [24].
Besides, by sharing the compressed model parameters with the
server, our method significantly reduces the communication rate
(4.1x less with respect to vanilla FL) compared to other defense
approaches. We empirically validate our proposed method
using two classical models in FL. We train the models using
three datasets, both partitioned in independent and identically
distributed (IID) and non-independent and non-identically
distributed (non-IID) manner. Our method’s performance is
compared against several established defense mechanisms,
including DP, gradient sparsification, and PRECODE. The
results indicate that our approach achieves a model performance
nearly identical to unmodified local updates while effectively
preventing the risk of information leakage and significantly
reducing the communication rate compared to other methods
such as noisy gradient, gradient sparsification, and PRECODE.

The remainder of the paper reads as follows: Section
discusses background and reviews related work, Section [III
elaborates on the proposed framework, Section [[V] presents our
experiments, and Section |V| draws our conclusion.

II. BACKGROUND AND RELATED WORK

This section discusses background and related work in
federated learning (Section II{II-A), gradient leakage (Section
II{II-B), defence mechanisms (Section II{[I-C) and compression

in FL (Section II{II-D).

A. THE FEDERATED AVERAGE APPROACH

Assume a collection of decentralized clients participating in
the FL process [[1]], indexed by k£ = 1,2,..., K. Each client
has a local dataset Djy. The objective is to train a global
deep learning model f(6;-), which consists of L layers, by
optimizing its parameters 6. The layer’s parameters are indexed
by the corresponding layer’s id [= 1,..., L. The training
process utilizes data from distributed clients and involves
message exchanges across T' communication rounds. Federated
Averaging (FedAvg) [1] reduces the information transferred

Global model § |

s

— ® o9 |
L

Aggregate
=¥ |
\ o0

A —]
—]

O :01, L}

Client k

Client 2

Client 1

Fig. 1. Tllustration of federated learning, where 6 represents the global model
maintained by the server, and {GQJm\l =1,...,L} denotes a set of model
parameters indexed by the layer id I, which are locally updated on the client
k over m iterations. FL involves the following steps: 1) The server shares the
global model with participants. 2) Each client updates the global model using
its private data for m iterations, as expressed in (2). 3) The clients transmit
the updated model to the server. 4) The server aggregates all received models
to form a global model for the subsequent communication round.

during training by performing multiple stochastic gradient
descent (SGD) updates locally at the client before sending
the aggregated model update to the server. This optimization
problem can be expressed as follows:

o |Dxl
argmin) ﬁ L L(f(6;-); D), 1
k=1
where | - | denotes the cardinality of a set, and L is the loss

function. To facilitate communication, at each training round,
a subset C of ¢% of the total number of clients participates in
collaborative learning. The server shares the global model with
the selected clients in C, which in turn perform local updates
of each layer [in each iteration ¢ = 1,...,m by optimizing
locally the loss function using their local dataset Dy:

0, =6 — Ve L(f({ L =1,... . L}, D}), (@)

with 1 and ¢ denoting the learning rate and the iteration index,
respectively, and D} and {022|l =1,...,L} being the mini-
batch at iteration ¢ and a set of model parameters indexed by
layer’s id . Then, the clients send the set of updated parameters
{Hi;””|i =1,..., L} back to the server, which then updates the
global model parameter of each layer [as follows:

1 m
m;eﬁ; :

B. PRIVACY LEAKAGE IN FEDERATED LEARNING

A malicious server can still recover the local training
data through the clients’ local updates (or the gradient) [9]—
[11]l, [29]-[31]. Deep Leakage from Gradient (DLG) [9]
reconstructs the training data by minimizing the distance
between the true gradient and the gradient backpropagated
using the reconstructed data. This can be formulated as:

'y = (min) d(VL(f(0;-),2,y"), V),
m/’y/

3

“

where 2’ and 3’ are the dummy input data and the dummy label,
L is the model’s loss function, and Vg and VL(f(0;),2,y")
are the received gradient and the gradient obtained with the

dummy data and labels, respectively, and d denotes a distance
metric (the Euclidean distance in DLG [9]), respectively. As
shown in (4), a malicious server could optimize a dummy
input ' and a dummy label 4’ for several iterations, resulting
in the reconstruction of the training data without requiring any
additional information. Improved Deep Leakage from Gradients
(iDLG) [29] derives the true label from the sign of gradients
in the last layer of the model, when the batch size is one. This
approach replaces the dummy label y’ with the true label y
in @), further enhancing the reconstruction quality. The study
in [30]] reported that DLG is highly sensitive to the initialization
of dummy data and showed that using data from the same class
as the dummy input benefits the reconstruction attack. Inverting
Gradient Attack (IGA) [10] showed that most gradients from
a trained model are very close to zero for different inputs,
posing a challenge for DLG to distinguish them when using the
Euclidean distance in {@). Therefore, [10] introduced the cosine
distance, to measure the direction rather than the magnitude
between the true gradient and the dummy gradient, and a total
variation regularizer on the dummy data 2. The authors of [10]
also proved that the input to any fully connected layer can be
recovered analytically, which implies that the Multi-Layered
Perceptron (MLP) is more vulnerable to attacks compared with
other models, such as Convolutional Neural Networks (CNNs).

The aforementioned methods are not effective for large
models with large batch sizes. The study in [11] introduced a
solution, namely, GradInversion, which incorporated a group
consistency regularization term into the optimization to address
this limitation. They utilized multi-seed optimization and image
registration techniques to improve the reconstruction quality.
Some recent studies have also attacked other architectures.
For instance, the authors of [31]] successfully implemented
the inversion of input data by leveraging gradients on Vision
Transformer (ViT) models.

C. DEFENSE AGAINST PRIVACY LEAKAGE

Several defense mechanisms against information leakage
in FL have been proposed. Cryptographic protocols, such as
secure multi-party computation (SMC) [12]—[14]], distribute the
computation across multiple parties while preserving the privacy
of each party’s data. For example, [14] presented an algorithm
that ensures the confidentiality of both the global model and the
local updates. Cryptographic methods ensure that no individual
party can access the data of other parties. However, executing
complex cryptographic operations across multiple parties
requires significant computational resources and results in a
considerable computational overhead. Differential privacy (DP)
methods [[16] add random noise into the gradient, offering
rigorous privacy protection guarantees, establishing a tradeoff
between model performance and information leakage [18]]. The
study in [19] introduced a new DP perturbation mechanism
with a time-varying noise amplitude, aiming to enhance the
privacy protection of FL while simultaneously maintaining
the ability to adjust the learning performance. However, DP-
based methods require a substantial number of participants
in the training to achieve model convergence and achieve a
good trade-off between model performance and information

leakage [18]]. Gradient compression can also prevent leakage
information. Gradient quantization [23|] approximates gradients
using a lower number of bits than full precision. The reduction
in precision can lead to a loss of information, potentially
impacting both the convergence of the model and the possibility
of information leakage. The study of [9]] revealed that using
a half-precision float proposed in [32] failed to protect the
training data adequately. On the other hand, utilizing a low-bit
representation like INT8 successfully prevented data leakage
but resulted in a significant drop in the model’s performance.
Gradient sparsification [21]], [22] aims to reduce the number
of non-zero elements in gradient updates before transmitting.
By identifying and removing these small gradient values,
sparsification effectively reduces the overhead of communi-
cation. However, the authors of [9]] showed that only a high
sparsification rate can achieve desirable defensive performance,
which in turn can hinder the training convergence.

Some works have explored alternative defense approaches.
Soteria [[15] introduced perturbations to the data representation
obtained from fully connected layers to severely degrade
the reconstructed data’s quality while maintaining the FL
performance. However, [24] showed that a malicious server
could bypass the perturbation by simply dropping the perturbed
layer, resulting in a perfect reconstruction of the training data.
The study of [33]] introduced a transformation policy for data
preprocessing, which made it infeasible for the adversary
to extract sensitive information from gradients. However,
the automatic transformation search imposes a significant
computational overhead. The study in [25] introduced a data
representation perturbation method, coined PRivacy EnhanCing
mODulE (PRECODE), which inserts a variational autoencoder
(VAE) [34] into the model architecture between the feature
extractor and the fully-connected layers. The VAE bottleneck
projected the data representation into a sampling space and
produced a similar but distinct representation. PRECODE
aims to prevent information leakage from the training data by
creating a gap between the projected and true representation.
However, it modifies the model architecture to accommodate
the insertion of a VAE bottleneck, resulting in additional
computational complexity. Moreover, [24] showed that the
training data can be perfectly reconstructed from MLP models
irrespective of PRECODE. Furthermore, our experiments show
that the effectiveness of this approach is influenced by the
assumption of non independently and identically distributed
(non-1ID) data. The robustness and performance of PRECODE
are compromised in FL in scenarios where the data does
not satisfy the IID assumption. The work discussed in [35]]
used a combination of compressed sensing and local DP to
prevent information leakage. However, it still contends with
the limitations associated with differential privacy and data
compression strategies.

D. EFFICIENT COMMUNICATION IN FEDERATED LEARN-
ING

FL involves a substantial communication cost across numer-
ous clients and servers, resulting in bandwidth requirements and
delays. Various compression techniques such as quantization

,/’— —————————————— -\\\
e e -
/ Li S G - \
' model ;" Flattened Parameters I ‘l /| 1
—— H 1 1
' Optimize f Flatten [} i ! !
: —_ — > U 5 g » Lo | restane
I [| I) : ! i
Compressed model le'l 1 1]
Re;onstrgcted I?arameters I 1 1
B =0l 4ol P |
—— : 1 1
: Replace Reconstruct 1 : :
\ Client 1 / I 1
B 0 N -7 : :
1 1
. 1 1
: - i
1 : 4= Aggregation 1
. I 1
. 1 :
: New global model :
1
Replace . Reconstruct 1 1
< 1 1
' :
1
1 1
@ Reconstructed Parameters 1 _ Server 1
i = ol o v i -
e — Compressed model Z,l('l : U
Optimize Flatten] - : U
— — | - : = 1 I Reshape U
1
1i 1 1
model 6); Flattened Parameters l 7~ 1 1
3) - /
o\

Fig. 2. Illustration of the proposed federated learning approach. It involves the following steps: 1) The server shares the global model with participants. 2)
Each client updates the global model using its private data for m iterations and uses the pre-trained autoencoder to perturb (compress) the model parameters in
every iteration, as expressed in eq. @) 3) The clients share the compressed model with the server per egs. @) and @) 4) The server reconstructs the model
and aggregates all received models to form a global model for the subsequent communication round.

and sparsification are commonly applied on top of FedAvg []1]]
to reduce the information rate further. The method in [36]
proposed quantizing the clients’ updates before uploading to
the parameter server. Alternatively, the study in [37] proposed
moving momentum and error accumulation from clients to
the central aggregator using a count sketch randomized data
structure. Therefore, the gradients can be randomly projected
several times to lower-dimensional spaces, such that high-
magnitude elements can later be approximately recovered.

In our earlier research on distributed training, denoted as
Learned Gradient Compression (LGC) [27], [28], we introduced
a machine-learning method for compressing gradients before
transmission. LGC involved training an autoencoder as the
compression model using a representative set of gradients,
preserving crucial information while reducing update sizes.
Our work demonstrated the autoencoder’s ability to compress
gradients without compromising model performance, even
when training deep convolutional neural networks (CNNs) like
ResNet-101 [38]] on large-scale datasets such as ImageNet [39].
Moreover, our work showed that an autoencoder could achieve
rapid convergence with a minimal number of training iterations
(around 200) in the distributed training approach. LGC focuses
on enhancing communication efficiency through gradient
compression in distributed training scenarios. In contrast, our
emphasis in this work lies in privacy preservation achieved
through lossy compression. This involves perturbing local
model parameters within an autoencoder framework explicitly
designed for FL.

ITIT. PROPOSED METHOD

This section elaborates on the proposed privacy-preserving
FL framework, describing the learned parameter compression
method (Section III, the architecture of the autoencoder
we consider (Section III{III-B)), and the way we apply learned
parameter compression into FL (Section III{III-C). Figure [2]
depicts the overview of our method.

A. LEARNED PARAMETER COMPRESSION

In the classical FL system, discussed in Section II{II-A] con-
sider a set of model parameters, denoted as {0;’1|l =1,...,L},
each representing the parameters of the [*" layer of the model
in the *” iteration at client k. In our approach, these parameters
are initially transformed into 1D vectors, that is:

@Qi = flatten(@i’i), 5)

where flatten(-) denotes the flattening function and ©%" is
the resulting parameter vector. At client & an autoencoder,
comprising an encoder ¢% and a decoder ¢%, is used to
compress the model parameters per local iteration. Specifically,
the encoder ¢%, compresses the flattened model parameter @2”
into a lower-dimensional representation,

V= 0h(0)) = eh(flatten(d)’)), ©®

Depending on the training stage (see Section IIIHIII-C)), the
compressed representation is either sent to the server, where it
is decoded and aggregated with the decoded parameters from

the other clients, or decoded locally at client k, leading to a
perturbed version that is used in the subsequent local iteration.
Concretely, in the latter case, the decoder at client k performs
lossy reconstruction of the flattened model parameters:

Al k(i Ly Ly

O =op((") =0 + €, @)
where €/’ denotes the reconstruction error with respect to the
input ©;". The reconstructed parameters are then reshaped
back and replace the original, uncompressed, parameters:

éfj =re shape(égi),

li Al
0, « 0,

(8a)
(8b)

The compression error eﬁcl by the autoencoder acts as a perturba-
tion on the model parameters applied per local iteration, serving
as a method to obscure the real update information and hinder
an attacker’s ability to reconstruct the training data. As we will
show in Section this compression error does not hinder
training convergence and model performance. Moreover, as the
clients exchange low-dimensional (compressed) representation
of the model parameters the communication cost across the
clients and the server is reduced.

B. AUTOENCODER ARCHITECTURE

We propose using an one-dimensional (1D) convolutional
kernel for the construction of the autoencoder model, operat-
ing on flattened parameter tensors. Following this approach,
enables compressing the parameters of various deep learning
models irrespective of the size of the model. Furthermore,
using an 1D convolutional kernel offers a reduction in the
autoencoder parameters by approximately 60% compared to
a 2D convolutional kernel [27]], thereby mitigating the risk
of overfitting and reducing encoding and decoding latency,
complexity and memory footprint. In this work, the encoder
of the autoencoder compresses the parameter vectors through
a series of five 1D convolutional kernels, each followed by a
leaky-ReLU [40] activation function (see Table . The decoder
(whose architecture is given in Table [[) consists of five 1D
deconvolutional kernels, each also followed by a leaky-ReLU
activation function, and concludes with a 1D convolutional
kernel of size one.

C. PROPOSED FEDERATED LEARNING PROCESS

Consider a decentralized environment comprising K clients,
indexed by k, the objective is to train a deep learning model
(with layers [= 1,..., L) using FL, specifically FedAvg as
detailed in Section IHI-Al In each communication round ¢ =
1,...,T, the server selects a subset C' clients to participate the
training. The client £ € C trains the global model disseminated
by the server across m local iterations.

In the first communication rounds, each client experiences
rapid changes in the model parameters during its initial local
iterations [41]. We use the terms warming-up rounds and
warming-up iterations to refer to the initial communication
rounds and the local iterations therein, respectively. Applying
compression to the parameters updated during the warming-up

TABLE I
ARCHITECTURE OF THE CONVOLUTIONAL LAYERS OF THE ENCODER.
Layer | Filters | Kernel Size | Stride
convl 64 3 2
conv2 128 3 2
conv3 256 3 2
conv4 64 3 2
conv5s 4 1 1
TABLE I
ARCHITECTURE OF THE CONVOLUTIONAL LAYERS OF THE DECODER.
Layer Filters | Kernel Size | Stride
deconvl 4 3 2
deconv2 32 3 2
deconv3 64 3 2
deconv4 128 3 2
deconv5 32 3 1
conv 1 1 1

iterations may detrimentally affect model performance. There-
fore, in line with alternative decentralized training methods [27],
[41]], [42], we do not apply compression during the warming
up iterations. Instead, during the warming-up iterations each
client trains (in the first communication round that the client
participates) or fine-tunes (in subsequent communication rounds
that the client participates) its client-specific autoencoder to be
used for parameter compression in the subsequent iterations. In
what follows, we describe how we train and use the autoencoder
in the different stages, namely, initialization, warming-up
communication rounds, and regular communication rounds,
of the FedAveg process.

1) INITIALIZATION: Before initiating the FL process, the
server initializes a global model, and each client k initializes an
autoencoder per the architecture outlined in Section III{III-B]
This initial version of the autoencoder is stored locally at the
client.

2) WARMING-UP COMMUNICATION ROUNDS: During
the warming-up communication rounds, ¢t = 1,...,7,,—1, and
for a number of warming-up iterations, ¢ = 1,...,m,, —1, each
participating client loads and fin-tunes the local autoencodelﬂ
This fine-tuning process utilizes each layer of model parameters
021 at every iteration and is described as follows:

(ble = d)% -)\V¢’};3Lrec(¢%v (bll%’ 921’)7
¢kD = QS]B -)\v(ﬁ'ijrec((b%v(b]B’e;cﬂ)’

where A\ represents the learning step of the autoencoder
training. The loss function for the autoencoder training is the
mean squared error (MSE) between the actual and predicted
parameters:

(9a)
(9b)

1,0 Alyi l,i
Lrec((bEh(bDvek) = ||®k - ®k ||§

As will be shown in Section My = 30 warming-up
iterations per client can lead to a well-trained autoencoder.
After these iteration, the autoencoder is stored locally for usage
in future rounds. Algorithm [1| depicts the proposed FL process
during the warming-up iterations.

(10)

I'We use T}, and m., to denote the number of warming-up communication
rounds and iterations, respectively.

Algorithm 1 Warming-up Iteration Training by the Client

Algorithm 2 Regular Iteration Training by the Client

Require: Pre-saved autoencoders ¢%, ¢% for each client k;
received model parameters 92’0 indexed by layer | from
the server; learning step of the model 7; model’s loss
function £(+); learning step of autoencoder A; loss function
of autoencoder L.; the mini-batch D; at iteration ¢,
respectively.

1: for each client k& do

2. Load pre-saved autoencoders ¢k, ¢

3: for 7 in warming-up iterations do

4 loss = L(f({, "l=1,...,L};-);Di)

5: for /l=1to L do

6

7

8

9

0l7<—9“ 1—77V17 11oss

(bE A ¢E)‘V¢k Lrec((bEa(bDaell)

l,i
(bD «— ¢D)\V¢IBLrec(¢E7¢D79)
end for
10 end for
11: Store the fine-tuned autoencoder ¢%, %, locally
12: end for

Ensure: Fine-tuned autoencoders ¢%,, ¢%,

In the rest of the local iterations during the warming-up
communication rounds, ¢ = My,,...,m, the local model
updates become stable and are effectively learned by the
autoencoder. Thus, the autoencoder is capable of perturbing the
model parameters without compromising model performance.
After each training iteration, the original model parameter Gl !
is replaced with the reconstructed parameter 6" . » Obtained from
the autoencoder as detailed in (3), (6), (7), and (8)). Concretely,
the client estimates the next iteration’s model parameters using
the reconstructed model parameters from the previous iteration
92’, rather than the original parameters Gk , that is:

' HAZL = reshape((blfj(qb%(flatten(@ﬁc’i)))); (11a)
6, =0y =V L(F({0 L =1,..., L};), D}), (11b)

where 7 and D}, denote the learning rate of the model and the
mini-batch at iteration 4, respectively. Algorithm 2]illustrates the
training process during the regular iterations in the warming-up
communication rounds.

At the end of each warming-up communication round, that
is, after completing m local training iterations, the clients
share the perturbed parameters éém with the server. The server
then updates the parameters per layer per (3) and shares the
updated model with the clients. Note that during the warming-
up communication rounds the model parameters change rapidly
thereby sending the compressed representations (instead of the
perturbed version) does not lead to good model performance.

3) REGULAR COMMUNICATION ROUNDS: At the conclu-
sion of the warming-up rounds, specifically at ¢ = T;, — 1, the
clients share the trained decoders ¢% of the local autoencoder
with the server. After participating in training for 7, rounds,
the change in the model parameters at the clients becomes
stable, and the autoencoders have been effectively trained.
Therefore, in the remaining regular communication rounds,
t =Ty, ..., T, the clients only need to transmit the compressed

Require: Pre-saved autoencoders ¢%, ¢% for each client k;
model parameters 620 indexed by layer [; learning step
of the model 7; learning step of autoencoder A; loss
function of the model £(-); the mini-batch D} at iteration
1, respectively.

1: for each client k& do

2: Load pre-saved autoencoders qﬁ%, (b’fj

3: for ¢ in regular iterations do

4: for [=11to L do 4
5: 6‘2’2 — reshape((b’f)(qS’E(flatten(@é’Z))))
6: end for ,

7: loss = L(f({0L' 1 =1,...,L};),Di)
8: for ll =1 t?_leo

9: 0, < 0" —nV,i-1loss

10: endkfor * "

11: end for

12: end for

Ensure: Locally Trained model

Algorithm 3 Global Model Aggregation by the Server

Require: Pre-received decoders ¢4, and received compressed
model parameters (k indexed by layer [from each client
k; C is the total set of participants, where k € C, the set
of new model parameters 6,,.,,, respectively.
1: for each layer [do
2 0=0
3: for each client & do _
4: 0 =o' + reshape(gb%((,i’l))
5.
6
7

end for
o' =0'/|C]|
: Bpey.append(8)
8: end for
Ensure: a set of new global model parameters 6., indexed
by layer’s id

model parameters, allowing the server to reconstruct the model
on the server side meanwhile reducing the communication
costs.

Specifically, during the local iterations ¢ = 1,...,m of a
regular communication round, the original model parameters
921 are replaced and by the locally reconstructed (perturbed)
parameters 6", aligning with the process described in Section
I-C [I-C2] (see Algorithm [2). After the completion of m
local training iterations, the clients share their compressed
model parameters C,i’m with the server. Once the server receives
the compressed model parameters C,lc’m, for the participating
clients £ = 1,...,K, it reconstructs them utilizing the
corresponding decoders ¢ [see (T0) and (8)]. The server
then updates the global model parameters of layer [to:

57 3 resnape(6h(¢t) (12

keC

Algorithm (3| elaborates on the process of reconstructing and
aggregating the model parameters by the server.

IV. EXPERIMENTS

In this section, we evaluate our approach in terms of model
performance, information leakage, and communication rate.

A. EXPERIMENTAL SETUP

The experiments were conducted on a single machine
equipped with two GeForce RTX 3090 Ti GPUs and 128
GB of RAM. Random seeds were set to 1234 for repro-
ducibility. We follow the experimental setup in [9]], [15]],
[25], [29], [43]]. Specifically, We evaluate our framework
regarding model performance and privacy with two classic
architectures, LeNet [29] and Multilayer Perceptron (MLP) [44],
across 100 clients through 7' = 500 communication rounds.
The LeNet architecture is widely utilized for evaluating the
information leakage of convolutional neural network (CNN)
models. The MLP model consists of three layers, with a
hidden dimension of 256, widely used in assessing model
convergence. Since the input to any fully connected layer can
be recovered analytically [10], we use the MLP model to
show the upper bound of privacy leakage. We follow the work
of [25] and compare our method with three established methods,
noisy gradient (NG) [[16]], gradient sparsification (GS) [9],
and PRECODE [25]. We did not include Soteria [[15]] in the
comparisons, as it induces high computational complexity when
searching for the perturbation position of gradients. We also
excluded the defenses proposed in [33]], [43]], [45] because they
modify the training protocol. Regarding NG, we incorporate
two levels of Gaussian noise into the gradients, generated
by considering zero means and standard deviations of 107!
and 1072. These levels are respectively denoted as NG-10~!
and NG-10~2. Regarding GS, we retain the top 10% and
30% of significant gradients, while assigning zero to the
remaining gradients; we refer to these configurations as GS-
90% and GS-70%, respectively. Concerning PRECODE, we
adopt the same configurations as described in [25] and append
a variational bottleneck after the feature extractor. Concerning
our methodology, as detailed in Section[[TI} we set the warming-
up rounds 7y, to 35 for each client, and the fine-tuning process
for the client’s autoencoder entails using updates twice over a
span of 30 iterations (m,, = 30).

We conduct experiments on the FashionMNIST [46]], CIFAR-
10 [47]], and CIFAR-100 [47|] datasets. Fashion-MNIST contains
a collection of 70,000 grayscale clothing images, divided into a
training set of 60,000 samples and a test set of 10,000 samples.
Each image has a resolution of 28 x 28 pixels and belongs
to one of 10 classes. CIFAR-10 consists of a collection of
60,000 color images, divided into a training set with 50,000
images and a test set with 10,000 images. Each image has a
resolution of 32x32 pixels and is labeled with one out of ten
different classes. CIFAR-100 has 60,000 color images, with
a resolution of 32x32 pixels, divided into a training set with
50,000 images and a test set with 10,000 images. CIFAR-100
has 100 classes with 20 superclasses. We evaluate the model
performance on both IID and non-IID data partition settings,
where the partitions are the same as in [1]].

To evaluate privacy leakage, we attempt reconstructing the
training data by using two well-established gradient inversion

attacks, DLG [9] and IGA [10]. Our defense evaluation
primarily focuses on establishing a lower bound for assessing
information leakage. We set a small batch size to make the
reconstruction process easier and more susceptible to potential
attacks. By narrowing our focus to small batch sizes, we can
effectively evaluate the vulnerabilities and effectiveness of our
defense mechanisms in scenarios where the risk of information
leakage is higher. We have not considered attacks such as
GradInversion [11]], which requires the additional statistics of
data that contrary to the basic concept of FL. We conducted
random sampling to obtain a total of 128 images from the
training set and attacked them using the publicly available
PyTorch implementations of DLG and IGA taken from [[10]].
The attack configuration aligns with the settings described in
prior work [9], [10], [15]], [25]], [29]. Specifically, randomly
initializing the dummy input using samples from a Gaussian
distribution, utilizing the Adam optimizer [48] with a learning
rate of 0.01. DLG uses the Euclidean distance to constrain the
true gradients and dummy gradients, while IGA utilizes the
cosine similarity distance. The total variation regularization of
IGA is set to 1076, The dummy data was optimized for 7,000
iterations with three times restarts. We assumed that the attacker
knows the label, which can be inferred from the gradients in the
final layer [29]. To quantitatively assess the quality of image
reconstructions, similar to [9], [[10], [25], [30], we calculated the
mean squared error (MSE), peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) [49], and attack success rate (ASR)
between the original and reconstructed images. The dummy
images were defined as successful reconstructions when the
SSIM value was equal to or exceeded the value of 0.6 [25],
[30]. A high MSE, low PSNR, low SSIM, and low ASR of
the reconstructed images indicate effective privacy protection.

B. MODEL PERFORMANCE EVALUATION

Tables and [V] report the top-1 accuracy achieved
by the MLP and LeNet with different defense methods
on the Fashion-MNIST, CIFAR-10, and CIFAR-100 dataset,
respectively. Bold numbers denote the best performance and
underlined numbers indicate the second-best performance. B
and E refer to the batch size and local number of epochs.
To demonstrate the impact of the different defenses on model
performance, we utilize two different batch sizes: a small batch
size of 8 and a large batch size of 64. Our framework shows
competitive performance across various models and partitions.
The accuracy achieved by our approach is nearly close to the
baseline (FedAvg). Consistent with the observations reported
in [16], noisy gradient with a high noise level (o = 1071)
leads to a considerable decrease in accuracy; for example, in
the case of the MLP model trained on the non-IID partition of
Fashion-MNIST with a batch size of 64 and 8, the accuracy
drops by 18.73% and 15.39%, respectively. In contrast, our
proposed method exhibits only a marginal decrease of 1.14%
and 0.51% in accuracy. When applying high sparsification
(90%), we observe a significant degradation in the performance
of LeNet on CIFAR-10 and CIFAR-100. Specifically, when
using a batch size of 64, the accuracy of LeNet drops by 6.27%
and 6.34% on CIFAR-10 for the IID and non-IID partitions,

TABLE III
ToOP-1 ACCURACY IN FEDERATED LEARNING OF THE MLP AND LENET ON BOTH THE IID AND NON-IID FASHION-MNIST DATASET.

B=64,FE =10 B=8E=1
LeNet MLP LeNet MLP
11D non-IlD | 11D non-11D | 11D non-11D | 11D non-11D
FedAvg 89.02 79.78 89.89 85.06 87.85 80.53 89.70 85.13
DP (10~ 1) 86.68 (-2.34) 76.20 (-3.58) | 84.79 (-5.10) 66.33 (-18.73) 86.97 (-0.88) 79.18 (-1.35) 84.70 (-5.0) 69.74 (-15.39)
NG (102) 89.00 (-0.02) 79.67 (-0.11) | 89.53 (-0.36) 85.12 (+0.06) 88.14 (+0.29) 80.62 (+0.09) 89.43 (-0.27) 85.29 (+0.16)
GS (90%) 87.28 (-1.74) 76.85 (-2.93) | 89.29 (-0.60) 84.43 (-0.63) 86.28 (-1.57) 77.45 (-3.08) 88.93 (-0.77) 84.33 (-0.80)
GS (70%) 88.41 (-0.61) 79.44 (-0.34) | 89.85 (-0.04) 85.15 (+0.09) 87.65 (-0.20) 80.02 (-0.51) 89.44 (-0.26) 84.89 (-0.24)
PRECODE 89.17 (+0.15) 73.24 (-6.54) | 89.33 (-0.56) 82.25 (-2.81) 85.17 (-2.68) 10.91 (-69.62) | 88.84 (-0.86) 80.27 (-4.86)
Our work 88.24 (-0.78) 77.64 (-2.14) | 89.76 (-0.13) 83.92 (-1.14) | 87.05 (-0.80) 77.83 (-2.70) | 89.22 (-0.48) 84.62 (-0.51)
TABLE IV
ToP-1 ACCURACY IN FEDERATED LEARNING OF THE MLP AND LENET ON BOTH THE IID AND NON-IID CIFAR-10 DATASET.
B =64,FE =10 B=8E=1
LeNet MLP LeNet MLP
11D non-IID | 11D 11D non-lID | 11D
FedAvg 60.75 46.73 52.88 56.99 46.18 50.59
NG (10~ 1) 5448 (-6.27) 37.27 (-9.46) 38.73 (-14.15) | 51.09 (-5.90) 41.22 (-4.96) 24.62 (-25.59)
NG (1072) 60.66 (-0.09) 48.20 (+1.47) 52.06 (-0.82) 56.21 (-0.78) 47.16 (+0.98) 49.87 (-0.72)
GS (90%) || 54.48 (-6.27) 40.39 (-6.34) | 52.41 (-047) | 50.14 (-6.85) 40.85 (-5.33) | 47.81 (-2.78)
GS (70%) 59.94 (-0.84) 47.62 (+0.89) | 53.07 (+0.19) | 54.00 (-2.99) 45.97 (-0.21) 49.96 (-0.63)
PRECODE 56.07 (-4.68) 39.26 (-7.47) 50.22 (-2.66) 52.16 (-4.83) 10.87 (-35.31) 48.52 (-2.07)
Our work 60.43 (-0.32) 4523 (-1.50) | 52.87 (-0.01) | 54.82 (-2.17) 41.65 (-4.53) | 46.77 (-3.82)
TABLE V TABLE VII
TOP-1 ACCURACY IN FEDERATED LEARNING OF LENET ON IID COMPRESSION RATIO (CR) OF VARIOUS MODELS ON DIFFERENT
CIFAR-100. DATASETS USING PRECODE
LeNet H LeNet-FashionMNIST ‘ LeNet-CIFAR10 ‘ LeNet-CIFAR100 ‘ MLP-FashionMNIST ‘ MLP-CIFAR10
B=64,F =10 [B=8,E=1 CR || 0.0288x | 0.0260x | 01258x | 0.5771x | 0.8125x
FedAvg 27.63 24.71
NG (10~ 1) 22.57 (-0.51) 17.41 (-7.30)
NG (10~2) 27.87 (+0.24) 25.27 (+0.56) : . .
GS (90%) 2244 (.5.19) 20.36 (-4.35) defenses as an ancillary evaluation. CR is defined as
GS (70%) 23.58 (-4.05) 24.97 (+0.26) s original . compressed
PRECODE 25.25 (-2.38) 25.28 (+0.57) CR = size(0)/size(d), (13)
O k 27.02 (-0.61 23.69 (-1.02 -
Hrwor 27.02 (06D ¢1.02) where §°1igindl apd geompressed are the uncompressed model and
the compressed model by each defense approaches, respectively;
TABLE VI the size(-) function computes the size of the parameters. The

COMPRESSION RATIO (CR) OF VARIOUS DEFENSES

H FedAvg
CR || 1.00x

NG (10~ 1)
1.00%

NG (10~2)
1.00x

GS (90%)
3.33%x

GS (70%)
1.11x

Our work

4.10 x

respectively. In contrast, our framework experiences only a
minimal loss of 0.32% and 1.50% in accuracy for the same
setting. The results reveal that applying gradient sparsification
of (70%) and noisy gradient with a low noise level (¢ = 1072)
leads to the best model training performance most of the
times. However, as we will see in Section IV]IV-C] and Section
IVIV-D] these configurations do not effectively prevent the
reconstruction of training data from local updates. Furthermore,
PRECODE exhibits limited accuracy robustness, particularly
when dealing with non-IID data and smaller batch sizes. When
training LeNet on the Fashion-MNIST and CIFAR-10 datasets
with a batch size of 8, PRECODE achieves accuracy levels of
only 10.91% and 10.87%, respectively, underlying its inability
to maintain satisfactory performance under these conditions.

Table [VI] and report the compression ratio (CR) of all

number of parameters of the decoder ¢p of our autoencoder
is 72,352, resulting to a size of 289,408 bytes, which is only
transmitted once. The compression ratio results in Table [VI|
and indicate that our framework can achieve a 4.1x
compression ratio compared to the FedAvg method while at the
same time maintaining privacy (as we will discuss in Section I'V-
and Section IVIV-D). On the contrary, PRECODE incurs
a communication rate that is 34.8 times greater than FedAvg
when employed to LeNet on the Fashion-MNIST dataset. Fig.
depicts the top-1 accuracy of LeNet trained with a batch size of
64 plotted against the CR for various datasets (IID splits). Our
work achieves the best trade-off between communication rate
reduction and model accuracy compared to all other methods.

C. INFORMATION LEAKAGE FROM UNTRAINED MODELS

When machine learning models are trained from scratch in
FL, the magnitude of the gradient is generally large, making it
easier to infer the training data [[10]. Therefore, following the
settings in [9]], [[10], [15], [25], we first evaluate the privacy-
preserving capability of our approach for untrained, randomly
initialized models. For a given test data sample, we perform a

40 & FedAvg 40 & FedAvg
-1 -1
a5 A NG00 a5 | A& NGO
4 NG (1072) L] a4 NG(107%)
30w Gs(90%) 30 m Gs@0%)
25 . m GS(70%) 25 | m GS(70%)
. # PRECODE w # PRECODE
o 20 @ Our Work O 20 ® Our Work
15 15
10 A o 10
05 05
00 x 00
&2 8 84 8 8 8 8 89 50 52 54

Top-1 classification accuracy

(a) Fashion-MNIST

Top-1 classification accuracy

(b) CIFAR-10

L] 40 4 FedAvg L
NG (1071
35 A ()
L] 4 NG (1072)]
30 - g GS(90%)
25 W GS(70%)
o ’ » PRECODE
O 20 ® Our Work
15
| |
A > 1.0 a B @
05
¥ 0.0 x
56 58 60 18 20 2 24 2% 28

Top-1 classification accuracy

(c) CIFAR-100

Fig. 3. The top-1 accuracy of LeNet, trained with a batch size of 64, is plotted against the compression ratio (CR). The CR is calculated as per (I3). The
results are presented for (a) Fashion-MNIST, (b) CIFAR-10, and (c) CIFAR-100, where the data is split IID in the participating clients.

TABLE VIII
EVALUATION OF THE DEFENSE EFFECTIVENESS OF UNTRAINED MODELS ON THE FASHION-MNIST DATASET.

Untrained model on the Fashion-MNIST dataset
Defense LeNet (DLG/IGA) MLP (DLG/IGA)
MSE 1t PSNR | SSIM | ASR | [MSE 1t PSNR | SSIM | ASR |

FedAvg 0.00/0.00 60.46/36.08 0.99/0.95 100/100 | 0.00/0.00 102.65/83.82 1.00/1.00 100/100
NG (10— 1) 18.14/0.46 -6.11/9.67 0.05/0.27 0/1 0.34/0.29 10.79/11.38 0.32/0.29 0/0
NG (10—2) 0.03/0.02 22.51/24.66 0.81/0.84 98/100 0.00/0.01 30.55/28.76 0.92/0.92 100/100
GS (90%) 13.12/0.68 -4.76/7.68 0.03/0.12 0/0 0.08/0.05 17.23/19.42 0.60/0.64 49/63
GS (70%) 1.74/0.23 4.29/12.53 0.26/0.43 0/1 0.00/0.00 33.55/35.58 0.97/0.97 100/100
PRECODE 2.18/1.01 2.66/6.00 0.01/0.04 0/0 0.91/1.47 6.53/4.36 0.06/0.00 0/0
Our work 32.67/0.74 -7.91/7.34 0.027/0.072 0/0 0.48/0.40 9.45/9.97 0.06/0.03 0/0

TABLE IX

EVALUATION OF THE DEFENSE EFFECTIVENESS OF UNTRAINED MODELS ON THE CIFAR-10 DATASET.

Untrained model on the CIFAR-10 dataset
Defense LeNet (DLG/IGA) MLP (DLG/IGA)
MSE 4 PSNR| SSIM| ASR} | MSE? PSNR| SSIM| ASR

FedAvg 0.38/0.29 18.95/19.01 0.62/0.60 58/56 | 0.00/0.01 52.89/49.34 1.00/0.99 100/100
NG (10~1) || 4.98/1.47 5.31/10.63 0.10/0.18 0/0 0.48/0.48 15.30/15.32 0.34/0.33 0.02/0
NG (1072) 0.73/0.50 17.13/17.35 0.56/0.53 54/48 | 0.01/0.01 33.86/33.67 0.96/0.95 100/100
GS (90%) 5.27/1.93 5.03/9.22 0.04/0.08 0/0 0.12/0.07 21.97/24.22 0.72/0.76 91/93
GS (70%) 2.90/1.05 7.63/11.92 0.13/0.21 0/0 0.00/0.00 37.07/37.43 0.98/0.98 100/100
PRECODE || 2.34/1.90 843/931 0.01/0.04 00 | 0.66/3.10 14.22/7.14 0.19/0.05 0/0
Our work 6.50/1.71 4.05/9.86 0.02/0.03 0/0 0.60/0.66 14.89/14.34 0.14/0.10 0/0

TABLE X Tables and [X] report information leakage results

EVALUATION OF THE DEFENSE EFFECTIVENESS OF UNTRAINED MODELS
ON THE CIFAR-100 DATASET.

Untrained LeNet on CIFAR-100
Untrained model DLG IGA
MSET PSNR| SSIM| ASR| | MSEY PSNR| SSIM| ASR]
FedAvg 0.4684 15.156 0.399 3 0.5639 142303 0.3044 1
NG (1074 3.7914 5.7627 0.0702 0 1.271 10.5457 0.1178 0
NG (10~2) 0.5094 14.7163 0.381 0 0.6138 13.8747 0.2783 0
GS (90%) 3.0733 6.7929 0.0432 0 1.3862 102143 0.0624 0
GS (70%) 1.739 9.2713 0.1294 0 0.9316 11.9544 0.154 0
PRECODE 2.1969 8.203 0.0066 0 1.6899 9.3411 0.0331 0
Our work 5.2635 4.3801 0.0153 0 1.3550 103967 0.0442 0

single training iteration of a randomly initialized model (LeNet
or MLP) using this data sample and obtain the updated model
parameters. Then, we use the updated model parameters to
train the autoencoder using 100 SGD iterations. Subsequently,
we employ the trained autoencoder to compress the model
parameters and then attempt to reconstruct the training data
using the decompressed model parameters. It is clear that the
autoencoder is overfitting in this case, resulting in a lower
bound for privacy preservation.

when attacking LeNet and MLP using DLG and IGA on
the Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets,
respectively. The first number represents the metric achieved
using DLG, and the second number corresponds to the
metric obtained using IGA. The bold numbers denote the
best performance and the underlined numbers indicate the
second-best performance. The results show that without privacy
protection (FedAvg), both attacks can effectively reconstruct
the data. When using high sparsification (90%) with gradient
sparsification or high noise level within noisy gradient (NG-
10~1), the data can be effectively protected. However, as
discussed in Section IV{IV-B] these methods significantly
impact the model’s performance. Conversely, the data can
be attacked when using low noise level (NG-1072) with
noisy gradient. In the case of MLP, neither high sparsification
(90%) in gradient sparsification nor noisy gradient with a
significant noise level (NG-10"!) effectively prevent data
leakage. PRECODE is acknowledged as one of the most

GT Basellne NG 10~ NG 10-2 ngo% GS 70% PRECODE our work

CIFAR100 CIFAR10 FashionMNIS

(a) Attack on untrained LeNet by DLG
Fig. 4.

Our work

- E

Fig. 5. Reconstruction results on the CIFAR-10 by using Bayesian Framework
for Gradient Leakage [24].

effective defense approaches against information leakage.
Nevertheless, as discussed in Section IVIIV-B] PRECODE
induces modifications to the model architecture and leads to
non-convergence for non-IID data when employed with small
batch sizes, particularly when training CNN models. Moreover,
as elaborated in Section[[T} in the event that the malicious server
manages to access the model’s architecture and the model is
fully connected, it can lead to an impeccable reconstruction
of the training data by circumventing PRECODE using attack
proposed in [24]. The training data can be analytically reversed
by multiplying the gradient of weights and biases in the first
layers.

Fig. @] depicts visual examples of reconstructed data samples.
noisy gradient and gradient sparsification techniques are ineffec-
tive in concealing information from the gradients. However, our
framework successfully removes nearly all useful information,
resulting in the attacker being able to reconstruct only a highly
blurred dummy image. Fig. [5] depicts the reconstruction results
using the attack in [24]], which successfully circumvents the
PRECODE defense mechanism in the MLP model. Contrarily,
our work demonstrates effective countermeasures against such
forms of attacks.

D. INFORMATION LEAKAGE FROM TRAINED MODELS

We also investigate the privacy leakage prevention of the
various defenses in the middle of the training stage, which is
more close to the real FL environment. The models are attacked
after five communication rounds of training. We randomly
select a client and randomly obtain 128 local training data
samples. These data samples are then grouped into batches of
size 8, and used to obtain the updated model parameters. The
model parameters are compressed and decompressed by the
autoencoder and used to reconstruct the data batch using the
corresponding attack.

GT Basellne NG 10 1 NG 10 2 GS90% GS70%

PRECODE our work

(b) Attack on untrained LeNet by IGA

Reconstruction results on the Fashion MNIST, CIFAR10, and CIFAR100 datasets for the initialized LeNet model and different defense mechanisms.

TABLE XI
EVALUATION OF THE DEFENSE EFFECTIVENESS ON TRAINED MLP
MODELS FOR THE FASHION-MNIST AND CIFAR DATASETS BY USING IGA

Defense Fashion-MNIST CIFAR
MSEt PSNR| SSIM| ASRJ | MSET PSNRJ SSIM| ASR|

FedAvg 0.00 35.97 097 100 197 14.58 037 2875
NG (10-Y) || 169 3.94 0.03 0 4.10 628 0.03 0
NG (10-2) || 033 10.90 029 0 3390 1018 022 635
GS (90%) 0.66 1436 045 425 2.05 11.28 023 s
GS (70%) 091 928 029 1875 | 216 13.70 037 275
PRECODE 1.58 452 0.04 125 1.84 10.40 0.05 25
Our work 1.69 377 0.00 0 152 10.82 0.00 0

Table reports the results of information leakage when
attacking the locally trained MLP model using IGA on
the Fashion-MNIST and CIFAR-10, respectively. The results
obtained with noisy gradient and gradient sparsification are
consistent with those reported in Section IV{IV-C| while our
approach is the most effective in protecting information. Fig. [f]
depicts visual examples of data reconstructed from attacking the
MLP model. It is evident that PRECODE does not effectively
protect against information leakage. This could be due to that
after training, the variational bottleneck has learned a much
smaller sampling space, thereby limiting its ability to provide
effective perturbations on the representation. In contrast, after
undergoing actual local training, our method does not exhibit
information leakage.

Fig. [7)illustrates the top-1 accuracy of MLP, which is trained
using a batch size of 64, plotted against the Structural Similarity
Index Measure (SSIM) of the reconstructed training data by
using IGA for various IID datasets. Notably, our work secures
the highest level of privacy protection while simultaneously
preserving the model’s performance.

V. CONCLUSION

We proposed an autoencoder-based method to safeguard
neural network models against the risk of information leakage
during the exchange of model updates in federated learning.
The autoencoder’s lossy compression mechanism applies a
perturbation to the updates. We assessed our method through
experiments on two classical neural network architectures and
three datasets, considering scenarios with both and non-iid
data partitions. The evaluation encompassed two well-known
gradient inversion attacks. When contrasted with other defense
strategies, including differential privacy, data compression, and
PRECODE, our approach stands out due to its ability to achieve
a good privacy-performance trade-off, avoid prolonged con-
vergence associated with these methods, and evade perturbed

GT Baseline NG 107! NG 1072 GS90% GS70% PRECODE our work

"

(a) Fashion-MNIST data reconstructed by IGA

NG 1072 GS90% GS70% PRECODE our work

] g]

Fig. 6. Reconstructed training data including, (a) Fashion-MNIST and (b) CIFAR-10, from the gradient of trained MLP

10 & FedAvg L 2
= A NG(1071)
@
@ gg a4 NG(107?)
Z m GS(30%)
© 0
2 m GS(70%) -
< 06 % PRECODE
g ® Our Work
o
&
=< 04 H A
K
[=
8
]
g 02 x®
£

00 4 °

85 86 87 88 89 90
Top-1 classification accuracy
(a) Fashion-MNIST

05 & FedAvg *
= 4 NG(l0H []
7]
7] NG (1072
2 04 A ()
a m GS(30%)
8 m GS(70%)
€93 % PRECODE u
] A
S ® Our Work
o
(]
o
£
< 02
@
c
=]
©
E 01
£ x
[=
- A

0.0 @

40 42 44 45 48 50 52

Top-1 classification accuracy

(b) CIFAR-10

Fig. 7. The top-1 accuracy of MLP, trained with a batch size of 64, is plotted
versus the Structural Similarity Index Measure (SSIM) of the reconstructed
training data across various datasets (IID splits), which includes (a) Fashion-
MNIST and (b) CIFAR-10 datasets.

layers as opposed to PRECODE. Our method achieves accuracy
levels comparable to those obtained during unprotected training
and less communication cost with a compression ratio of at
least four times less rate compared to federated averaging,
while simultaneously preventing information leakage.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized

[2

—

[3

[t}

[6]

[7

—

[8

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

data,” in International Conference on Artificial Intelligence and Statistics,
2016.

A. AbhishekV, S. Binny, R. JohanT, N. Raj, and V. Thomas, “Federated
learning: Collaborative machine learning without centralized training
data,” international journal of engineering technology and management
sciences, 2022.

J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated
learning for healthcare informatics,” Journal of Healthcare Informatics
Research, vol. 5, pp. 1-19, 2021.

D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. V. Poor, “Federated learning for internet of things: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1622-1658, 2021.

X. Liu, J. Yu, Y. Liu, Y. Gao, T. Mahmoodi, S. Lambotharan, and D. H.-
K. Tsang, “Distributed intelligence in wireless networks,” /EEE Open
Journal of the Communications Society, vol. 4, pp. 1001-1039, 2023.
L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning: Revisited and enhanced,” in International
Conference on Applications and Techniques in Information Security,
2017.

K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permutation
invariant representations,” Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018.

A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou, “White-
box vs black-box: Bayes optimal strategies for membership inference,”
in International Conference on Machine Learning, 2019.

L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Neural
Information Processing Systems, 2019.

J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients - how easy is it to break privacy in federated learning?” ArXiv,
vol. abs/2003.14053, 2020.

H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov,
“See through gradients: Image batch recovery via gradinversion,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021, pp. 16 337-16 346.

R. Canetti, “Security and composition of multiparty cryptographic
protocols,” Journal of CRYPTOLOGY, vol. 13, pp. 143-202, 2000.

R. Canetti, U. Feige, O. Goldreich, and M. Naor, “Adaptively secure
multi-party computation,” in Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, 1996, pp. 639-648.

J. Zhao, H. Zhu, F. Wang, R. Lu, Z. Liu, and H. Li, “Pvd-fl: A privacy-
preserving and verifiable decentralized federated learning framework,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
2059-2073, 2022.

J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable
defense against privacy leakage in federated learning from representation
perspective,” 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9307-9315, 2020.

H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differ-
entially private recurrent language models,” in International Conference
on Learning Representations, 2017.

R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” ArXiv, vol. abs/1712.07557, 2017.
K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farhad, S. Jin,
T. Q. S. Quek, and H. V. Poor, “Federated learning with differential
privacy: Algorithms and performance analysis,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 3454-3469, 2019.
[Online]. Available: https://api.semanticscholar.org/CorpusID:207847853
X. Yuan, W. Ni, M. Ding, K. Wei, J. Li, and H. V. Poor,
“Amplitude-varying perturbation for balancing privacy and utility

https://api.semanticscholar.org/CorpusID:207847853

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

in federated learning,” IEEE Transactions on Information Forensics
and Security, vol. 18, pp. 1884-1897, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:257405067

Z.Liang, P. Yang, C. Zhang, and X. Lyu, “Secure and efficient hierarchical
decentralized learning for internet of vehicles,” IEEE Open Journal of
the Communications Society, vol. 4, pp. 1417-1429, 2023.

A.F Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” in Conference on Empirical Methods in Natural Language
Processing, 2017.

Y. Tsuzuku, H. Imachi, and T. Akiba, “Variance-based gradient compres-
sion for efficient distributed deep learning,” ArXiv, vol. abs/1802.06058,
2018.

J. Konecny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” ArXiv, vol. abs/1610.05492, 2016.

M. Balunovi’c, D. I. Dimitrov, R. Staab, and M. T. Vechev, “Bayesian
framework for gradient leakage,” ArXiv, vol. abs/2111.04706, 2021.

D. Scheliga, P. Méder, and M. Seeland, “Precode - a generic model
extension to prevent deep gradient leakage,” 2022 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), pp. 3605-3614,
2021.

D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” CoRR,
vol. abs/1312.6114, 2013. [Online]. Available: https://api.semanticscholar
org/CorpusID:216078090

L. Abrahamyan, Y. Chen, G. Bekoulis, and N. Deligiannis, “Learned
gradient compression for distributed deep learning,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 33, no. 12, pp. 7330—
7344, 2021.

——, “Autoencoder-based gradient compression for distributed training,”
in 2021 29th European Signal Processing Conference (EUSIPCO). 1EEE,
2021, pp. 2179-2183.

B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and
Y. Wu, “A framework for evaluating client privacy leakages in federated
learning,” in European Symposium on Research in Computer Security.
Springer, 2020.

A. Hatamizadeh, H. Yin, H. R. Roth, W. Li, J. Kautz, D. Xu, and
P. Molchanov, “Gradvit: Gradient inversion of vision transformers,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022, pp. 10021-10030.

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,”
2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1051-1056, 2017.

W. Gao, X. Zhang, S. Guo, T. Zhang, T. Xiang, H. Qiu, Y. Wen,
and Y. Liu, “Automatic transformation search against deep leakage
from gradients,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 1-18, 2023.

A. A. Alemi, 1. S. Fischer, J. V. Dillon, and K. P. Murphy, “Deep
variational information bottleneck,” ArXiv, vol. abs/1612.00410, 2016.
Y. Miao, W. Zheng, X. Li, H. Li, K. R. Choo, and R. H.
Deng, “Secure model-contrastive federated learning with improved
compressive sensing,” IEEE Transactions on Information Forensics
and Security, vol. 18, pp. 3430-3444, 2023. [Online]. Available:
https://api.semanticscholar.org/CorpusID:259062442

A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with
periodic averaging and quantization,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021-2031.

D. Rothchild, A. Panda, E. Ullah, N. Ivkin, I. Stoica, V. Braverman, J. E.
Gonzalez, and R. Arora, “Fetchsgd: Communication-efficient federated
learning with sketching,” ArXiv, vol. abs/2007.07682, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol.
115, pp. 211-252, 2015.

B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” ArXiv, vol. abs/1505.00853, 2015.
[Online]. Available: https://api.semanticscholar.org/CorpusID: 14083350
Y. Lin, S. Han, H. Mao, Y. Wang, and W. Dally, “Deep
gradient compression: Reducing the communication bandwidth for
distributed training,” in Proceedings of the International Conference

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

on Learning Representations (ICLR), 2018. [Online]. Available: https:
/lopenreview.net/pdf?1d=SkhQHMWOW

J. Ma, T. Zhou, G. Long, J. Jiang, and C. Zhang, “Structured federated
learning through clustered additive modeling,” in Thirty-seventh
Conference on Neural Information Processing Systems, 2023. [Online].
Available: https://openreview.net/forum?1d=2XT3UpOv48

W. Wei, L. Liu, Y. Wu, G. Su, and A. Iyengar, “Gradient-leakage
resilient federated learning,” 2021 IEEE 41st International Conference
on Distributed Computing Systems (ICDCS), pp. 797-807, 2021.

Q. Li, B. He, and D. X. Song, “Model-contrastive federated learning,”
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 10708-10717, 2021.

H. Lee, J. Kim, S. Ahn, R. Hussain, S. Cho, and J. Son, “Digestive
neural networks: A novel defense strategy against inference attacks in
federated learning,” Comput. Secur., vol. 109, p. 102378, 2021.

L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp.
141-142, 2012.

A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” in Advances in Neural Information Processing Systems,
20009.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.

https://api.semanticscholar.org/CorpusID:257405067
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:216078090
https://api.semanticscholar.org/CorpusID:259062442
https://api.semanticscholar.org/CorpusID:14083350
https://openreview.net/pdf?id=SkhQHMW0W
https://openreview.net/pdf?id=SkhQHMW0W
https://openreview.net/forum?id=2XT3UpOv48

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	THE FEDERATED AVERAGE APPROACH
	PRIVACY LEAKAGE IN FEDERATED LEARNING
	DEFENSE AGAINST PRIVACY LEAKAGE
	EFFICIENT COMMUNICATION IN FEDERATED LEARNING

	PROPOSED METHOD
	LEARNED PARAMETER COMPRESSION
	AUTOENCODER ARCHITECTURE
	PROPOSED FEDERATED LEARNING PROCESS
	INITIALIZATION
	WARMING-UP COMMUNICATION ROUNDS
	REGULAR COMMUNICATION ROUNDS

	EXPERIMENTS
	EXPERIMENTAL SETUP
	MODEL PERFORMANCE EVALUATION
	INFORMATION LEAKAGE FROM UNTRAINED MODELS
	INFORMATION LEAKAGE FROM TRAINED MODELS

	CONCLUSION
	References

