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SIR Meta Distribution Analysis of a Narrow-Beam
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Abstract—We analyze a narrow-beam low earth orbit (NB
LEO) terrestrial-satellite uplink from the perspective of the
typical satellite base station. The user equipment (UEs) are
located on the earth’s surface according to a homogeneous
Poisson point process (PPP). We present a simplified planar
system model and focus on the point process of the approximate
antenna gains of each UE in the satellite base station’s antenna
pattern and analyze the signal-to-interference ratio (SIR), the
SIR meta distribution (MD), the signal-to-interference-plus-noise
ratio (SINR) and the throughput. We present simple analytical
results, some in closed form, for the performance metrics. We
validate the approximate system model by comparing the results
to the Monte Carlo simulated performance metrics using the
more accurate system model incorporating the earth’s curvature.
The paper includes insightful results that help to understand
the quantitative and qualitative nature of the NB LEO satellite
uplink.

Index Terms—Satellite uplink, low earth orbit, stochastic
geometry, meta distribution, Poisson point process, throughput.

I. INTRODUCTION

A. Motivation

Fifth-generation (5G) and beyond wireless communication
systems are setting new standards of reliability and connec-
tivity [1], [2]. The emerging Low Earth Orbit (LEO) satellite
networks have the potential to significantly increase coverage,
especially in far-flung areas: incorporating such networks with
terrestrial networks can facilitate a seamless coverage contin-
uum [3]. Several large LEO constellation projects have been
designed and planned, including Kuiper, LeoSat, OneWeb,
SpaceX and Telesat.

3GPP aims to adapt existing satellite and terrestrial net-
works to provide direct connectivity from hand-held equip-
ment to LEO satellites using frequencies assigned to mo-
bile satellite services or those assigned to legacy terrestrial
networks [4]. Either way, interference from other co-channel
transmitters significantly impacts the performance of LEO
communication systems, especially as network density in-
creases. We characterize the signal-to-interference ratio (SIR)
at a satellite base station (SBS) using the meta distribution
(MD). It allows for the reliability of the SBSs to be addressed
by describing the percentage of successful transmissions over
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a period of use, given a SIR threshold. The SIR distribution
can be derived from the SIR MD by averaging over the
SBSs. Furthermore, we study the distributions of signal-to-
interference-plus-noise ratio (SINR) and throughput.

In this paper, we balance accuracy and simplicity. We
present a simplified LEO uplink model that models the user
equipment transmitters (UE) on the plane, assuming a narrow
antenna beam (NB) for the receiving SBS. We derive simple
analytical results, including closed-form, for various perfor-
mance metrics. Simple expressions provide more insight and
allow us to exploit the results of well-known functions and
distributions established in the literature.

B. Related work

The analysis of SIR MDs is based on stochastic geometry,
which is a branch of mathematics that studies random spatial
patterns. Numerous papers have applied stochastic geometry
to wireless network models for terrestrial networks. Recently,
stochastic geometry has also been used in satellite networks.
A comprehensive literature review in [5] addresses various
scenarios of fading and satellite distributions, including ho-
mogeneous point processes (p.p.).

In the case of ergodic point processes, the MD [6] of the
SIR is a performance metric that gives information about the
fraction of transmitters that reach a certain SIR threshold for
at least a fraction of realizations of the fading gains. First
introduced in [7], the analysis of SIR MDs for terrestrial
networks has been well established in the literature. In [8],
the SINR meta distribution was studied in urban, suburban,
and rural areas with drones as aerial base stations (ABSs),
but satellite communications were also addressed. The results
are based on simulations and, unlike our paper, no analytical
results were presented. An analytic expression for the SINR
MD moments in a LEO downlink under Nakagami fading was
derived in [9]. The SIR MD in a LEO downlink was also
studied in [10]. To the best of our knowledge, the SIR MDs
for the LEO uplink are yet to be explored.

Using the PPP for the satellite location and interferers, the
throughput in a LEO uplink scenario with a fading environ-
ment that approximates Rician fading [11]. The analysis is
based on a numerical inversion of the Laplace transform of
the interference and is thus rather cumbersome. In [12], the
satellites were modeled as a PPP on a sphere, and downlink
and uplink performance were studied in a LEO backhaul link.
In [13], the probability of outages was studied in a PPP
constellation, and the results were compared with those of
the Walker-Star and Walker-Delta constellations. Similarly to
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our paper, they found an optimal density that minimizes the
outage probability under certain conditions. The modeling of
transmitters and satellites as a p.p. was also addressed in
[14]. [15] presents a LEO uplink performance analysis by
modeling the transmitters as a PPP on the earth’s surface. A
framework for modeling the uplink performance for a massive
internet-of-things-over-satellite network was presented in [16].
The optimal beamwidth and altitude for maximum coverage
were studied in [17]. Using the PPP for the interferers,
the terrestrial-satellite uplink interference, including interfer-
ence from terrestrial base stations, is analyzed in [18] using
Rayleigh fading. An expression for the mean interference from
the terrestrial interferers at the satellite was derived, and the
coverage was studied through the mean interference – this is
not accurate in the case of NB antennas, when the variation
in the interference from the main lobe is considerable, partic-
ularly for low altitudes or small densities of interferers.

The performance metrics in all the cited papers typically
involve numerous integrals and infinite sums. The results are
exact, but the expressions are difficult to evaluate and lack
insight. In [19], analytical expressions in terms of Marcum Q-
function for the LEO uplink outage probabilities were derived
by modeling the interferers as the PPP in the plane and using
Rician-K fading. The interference was considered solely from
the satellite’s side lobes, which may be unrealistic in dense
networks. Furthermore, the interference side lobe component
may be modeled as a constant power because of its relatively
small variance. In the paper, the SIR distribution is exponential
in the Rayleigh fading case when K = 0. In [20], it was
observed that the SIR follows a gamma distribution in a
Rician-K faded LEO uplink channel. With K = 0, the
distribution is exponential. The results of our paper support
the observations from both papers (namely, the distribution
of SIR (30) can be tightly bounded from below with the
exponential distribution for the large UE densities). In this
paper, we concentrate on the interference from the main lobe
by considering that the served UE is part of the homogeneous
PPP of all UEs and give an exact and general characterization
of the SIR distribution, which, having a heavy tail, differs
significantly from the gamma distribution and is given by the
Lomax distribution in the case of Rayleigh faded UEs.

C. Contribution

We present a simplified approximate system model for the
NB LEO uplink and derive multiple analytical results for the
SIR MD and the SIR, SINR and throughput distributions.
To lubricate the analysis, we use Rayleigh fading for all
transmitters. The results also describe performance metrics
in the Nakagami-m and line-of-sight (LOS) fading scenar-
ios, particularly the expected SIR, SINR and throughput, as
well as the SIR and SINR tail distributions (for the SINR
tail distribution, for small m). We validated the analysis by
comparing it with Monte Carlo simulations with varying power
fading distributions. The main contributions of this paper are
as follows.

• We propose an approximate system model based on
modeling the UEs on the plane and focus on the random

Glossary of principal symbols
Symbol Explanation

h Altitude of the SBSs.
ϵ Elevation angle of the SBSs.

G[·] The SBS antenna gain.
φRX Width of the SBSs 3 dB gain.

Θ ⊂ E Poisson p.p. on the earth’s surface E ⊂ R3.
Φ ⊂ R2 Poisson p.p. on the plane.

x0 Nearest point to the origin in Φ.
λ Density parameter of Φ and Θ.
κ Parameter that reflects the approximate mean number of UEs

inside a SBS’s 3 dB footprint; κ = h2πλφ2
RX/ sin

4(ϵ).
κ̃ κ/ log(2).
gx Exponential (unless stated otherwise) random fading gain of

a transmitter x.
θ SIR or SINR threshold for a successful transmission.
I Interference at the typical SBS in the plane model.
S The signal power of the served UE at the typical SBS in the

plane model.
I̊ Interference at the typical SBS in the spherical model.
S̊ The signal power of the served UE at the typical SBS in the

spherical model.
d̂h,ϵ The distance between the SBS and the center of the footprint

in the plane model.
d0 Normalizing distance.
W Constant noise power.
γ Power path loss exponent.

process of approximate gains of each UE in the SBS’s
antenna (the plane model). By comparing it with Monte
Carlo-simulated more accurate metrics (we also call these
the actual performance metrics) by modeling the UEs on
the surface of a spherical earth (the spherical model), we
show that the plane model is sensible in the NB LEO.

• Using the model, we derive the moments of the SIR
MD. For the first two moments, we derive closed-form
expressions. By matching the first two moments, we
approximate the SIR MD with the beta distribution.
Furthermore, for general moments, we acquire two alter-
native analytical expressions. Using the first 15 moments,
we find Chebyshev-Markov (CM) inequalities [21] for the
SIR MD.

• From the SIR MD, we derive the SIR distribution and
its mean and the variance. The latter two are infinite if
there are less than log(2) UEs inside the 3 dB footprint
on average. Further convergence results for the moments
are also presented.

• We analyze the SINR distribution and conclude that
(when the served UE belongs to the underlying PPP of
all UEs), there exists a UE density that maximizes the
expected SINR and the probability of coverage for a given
altitude and elevation angle.

• We analyze the distribution of the network throughput
and conclude that, with a large SNR (interference-limited
channel), the expected normalized bit rate is given by the
inverse of the mean number of UEs inside a SBS’s 3 dB
footprint. For small SNRs, there is an UE density that
maximizes the expected throughput.

II. SYSTEM MODEL

A. Approximate plane model of the NB LEO uplink

A terrestrial-satellite uplink Rayleigh block fading channel
in a single-tier network is considered. We assume that UEs
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Fig. 1. The simplified NB LEO uplink system model. The SBS’s antenna
boresight is oriented towards o, the center of the footprint. The omnidirec-
tionally transmitting UEs {xi} are distributed according to the homogeneous
PPP on the plane, and each transmitter has an Euclidean norm ∥ · ∥. In the
figure, the transmitters are projected into the line (0,∞) by their norm. The
closest transmitter x0 is the served UE.

form a homogeneous PPP Φ ⊂ R2 of density λ. We study the
SIR distribution at the typical SBS of a uniform constellation
serving the terrestrial UE from which it receives the maximum
mean signal power. The omnidirectionally radiating UEs can,
e.g., represent mobile cell phones. They are transmitting at the
normalized power P = 1. The typical SBS is at altitude h, and
its antenna’s G[·] gain boresight is directed towards a point on
the earth’s surface for which the SBS is at the elevation angle
ϵ. We call this the center of the footprint, which is considered
the origin o ∈ R2. The values of h and ϵ together determine
the distance to the satellite, which is given by the geometric
relation d̂h,ϵ ≜ h/ sin(ϵ). The served UE is formally defined
as

x0 ≜ argmin{x ∈ Φ : ∥x∥}, (1)

where ∥ · ∥ is the Euclidean distance.
We write f(x) ∼ g(x), as x → a, if the limit

limx→a f(x)/g(x) = 1. For each angle φx between the
transmitter x ∈ Φ and the typical SBS’s antenna boresight
we have

φx ∼ Dh,ϵ∥x∥, ∥x∥ → 0, (2)

where Dh,ϵ ≜ sin2(ϵ)/h is the derivative of the function
∥x∥ 7→ φx at x = o. Let us define the path loss law by

ℓ(x) ≜
G[φx]

(dx/d0)γ
, γ ≥ 0, (3)

where d0 is a normalizing distance. Combining (2) with (3),

ℓ(x) ∼ G[Dh,ϵ∥x∥]
(dx/d0)γ

, ∥x∥ → 0. (4)

Furthermore, we assume a NB and the relevant transmitters
are located in a small region close to each other around o
and dx ≈ d̂h,ϵ for the relevant x ∈ Φ. Along these lines, the
random process of path losses {x ∈ Φ : ℓ(x)} is approximated
with the gain process (GP)

G = {x ∈ Φ : G[Dh,ϵ∥x∥]} (5)

multiplied by the constant (d0/d̂h,ϵ)
γ . In the system model,

the p.p. of the spatial locations of the UEs and the corre-
sponding path losses is approximated by the one-dimensional
GP reflecting the approximate UEs signal gains at the typical
SBS’s antenna.

In addition, for each UE x ∈ Φ, the transmit power is
multiplied by an independent exponentially distributed random
fading gain gx of mean 1 adding another random layer in the
received signal strength.

In this work, we focus on LEO altitudes of h ∈ [200, 2000]
km. The antenna gain G[·] : [0,∞) → (0, 1] is assumed to be
Gaussian, i.e.,

G[φ] = 2−φ2/φ2
RX , (6)

where φRX is the width of the 3 dB antenna gain. Throughout
this paper, we will use the value φRX = 1.6°, which corre-
sponds to the LEO antenna pattern proposed in the Interna-
tional Telecommunication Union Recommendations (ITU-R)
[22]. Furthermore, we will consider that the SBS is at least at
the elevation angle 45° w.r.t. the satellite (with an exception
in Figures 2a, 2b and 3).

B. The plane model as an approximation of the spherical
model

The system model presented in II-A approximates the spher-
ical model where the UEs are located on the earth’s surface.
We denote the homogeneous PPP of density λ on the earth’s
surface by Θ ⊂ E. We define x̊0 ≜ argmin{x ∈ Θ : dx},
and oE ∈ E is the center of the footprint on E. The angles
{φx} and the distances {dx}, and consequently the path losses
{ℓ(x)}, are accurate for x ∈ Θ in the spherical model.

The total total power received from the UEs in Θ is defined
as

P̊tot ≜ I̊ + S̊ =
∑
x∈Θ

gxℓ(x) =
∑
x∈Θ

gxG[φx]

(dx/d0)γ
, (7)

where S̊ is the signal strength at the receiver of x̊0, and I̊ is
the interference component consisting of the received signal
powers from Θ \ {x̊0}. We call P̊tot the actual total received
power. For the distance between the SBS and oE , we have

dh,ϵ ≜ doE =
√
R2

⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ),

(8)

where R⊕ = 6378 km is the earth’s mean radius, and ξ = ξ(ϵ)
is the central angle between oE and the sub-satellite point (the
details are given in Appendix A). The difference between d̂h,ϵ
and dh,ϵ and the approximation (2) of the angle φx causes
an error in the received total power. The error increases for
smaller ϵ. For ϵ = π/2, when ξ = 0, dh,ϵ = h = d̂h,ϵ –
furthermore, (2) holds also in the spherical model. As will be
seen, the error does not noticeably affect the received total
power for γ = 2.

We validate the approximate system model by studying the
convergence properties of the mean and the second moment
of the simulated P̊tot to the theoretical mean and the second
moment of

Ptot ≜
1

(d̂h,ϵ/d0)γ

∑
x∈Φ

gxG[Dh,ϵ∥x∥]. (9)
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The fading models are equal in the plane and spherical
models, and the difference is in the geometry. Hence, we focus
on the geometric accuracy of the approximate model and set
gx ≡ 1 in this subsection. The fading does not affect the first
moment of the received total power. For gx ≡ 1, [23, Cor. 4.8]
gives the expected value and the variance of Ptot

E(Ptot) =

(
d0

d̂h,ϵ

)γ ∫
R2

G[Dh,ϵ∥x∥]λdx

=

(
d0

d̂h,ϵ

)γ ∫ 1

0

rλG(r)dr =
dγ0h

2−γπλφ2
RX

sin4−γ(ϵ) log(2)
,

(10)

var(Ptot) = E(P 2
tot)− E(Ptot)

2

=

(
d0

d̂h,ϵ

)2γ ∫
R2

G[Dh,ϵ∥x∥]2λdx

=

(
d0

d̂h,ϵ

)2γ ∫ 1

0

r2λG(r)dr =
dγ0 sin

γ(ϵ)

2hγ
E(Ptot),

(11)

respectively. The density λG(r) = κ̃/r and the Poisson
property of the GP (which is needed for the variance) follow
from Corollary 1.

An immediate observation from (10) and (11) is that for the
free-space path loss exponent γ = 2, for given λ, ϵ and φRX,
the mean of the total received power does not depend on the
altitude of the typical SBS; the path loss becomes increasingly
prominent, but there are more UEs present in the main lobe as
we increase h. Furthermore, var(Ptot) rapidly increases when
we decrease the altitude. On the other hand, Ptot approaches
a constant for large h. For γ > 2, the expected total received
power decreases as the altitude increases and vice versa. For
γ = 4, E(Ptot) does not depend on the elevation angle of the
SBS.

Figures 2a and 2b show the total received powers P̊tot and
Ptot for γ ∈ {2, 4} for multiples ϵ and h. One can see that the
insights of the theoretical model apply to the spherical model,
especially for γ = 2.

Figure 3 shows the ratio of the second moments
E(P̊ 2

tot)/E(P 2
tot) w.r.t. φRX for different values of h and γ. The

density λ = 1/km2 and the elevation angle ϵ = 35°, which
is the minimum elevation angle in a LEO system proposed in
[24]. Due to the geometry, it is the worst-case scenario for the
error between the models. The ratios for ϵ > 35° are closer
to 1 for each h. The ratios tend to 1 for γ = 2 as φRX → 0.
There is a threshold after which E(P̊ 2

tot) becomes exponentially
larger than E(P 2

tot). The differences in the geometry cause this.
However, the horizon restricting the energy from the UEs in
the spherical model limits this exponential increase for larger
φRX. For γ = 4, convergence to 1 does not happen: this is
due to the difference in the average of {dx}x∈Θ and {dx}x∈Φ,
which gets canceled for γ = 2. The theoretical model could
be improved using the more complicated dh,ϵ instead of d̂h,ϵ
in (9). However, the theoretical SIR (13) is independent of
the path loss exponent, which also holds (up to the precision
we are interested in) in the spherical model. We will validate
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Fig. 2. The expected total received power. The theory and the actual simulated
values are compared. The parameters φRX = 1.6°, P = 1, λ = 1/km2, γ ∈
{2, 4}, h ∈ [200, 2000] km, ϵ ∈ (35, 90)° are used.

this using both path loss exponents in the Sections III and IV
simulations.

Similar but faster convergence to 1 was observed for the
first moments E(P̊tot)/E(Ptot) than for E(P̊ 2

tot)/E(P 2
tot).

Based on these observations, we put forth that, for γ = 2
or ϵ = π/2;

E(Ptot) ∼ E(P̊tot),

E(P 2
tot) ∼ E(P̊ 2

tot), φRX → 0. (12)

Furthermore, it is natural to conjecture that the convergence
holds for any moment and thus for the distribution. Throughout
this paper, we will validate the simplified system model by
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quantitatively comparing the theoretical and the actual SIR,
the SINR, the throughput distributions and the SIR MDs.

III. THE SIGNAL-TO-INTERFERENCE RATIO AND ITS META
DISTRIBUTION

A. The definition of the SIR MD

We begin by defining the signal-to-interference ratio at the
typical SBS:

SIR ≜
S

I
=

Pgx0
G[Dh,ϵ∥x0∥]/(d̂h,ϵ/d0)γ∑

x∈Φ\{x0}
PgxG[Dh,ϵ∥x∥]/(d̂h,ϵ/d0)γ

=
gx0

G[Dh,ϵ∥x0∥]∑
x∈Φ\{x0}

gxG[Dh,ϵ∥x∥]
. (13)

The terms (d̂h,ϵ/d0)
γ cancel each other out, and the path

loss exponent does not affect the SIR. This property follows
from the simplified system model of the NB LEO. However,
this also holds for the actual performance metrics using the
spherical model, namely for S̊IR ≜ S̊/I̊; this is a substantial
difference from the usual terrestrial models, where the SIR
depends strongly on the path loss exponent.

The SIR MD is the distribution of the random variable

P(θ) ≜ P(SIR > θ|Φ). (14)

The probability P(θ) is interpreted as the fraction of time
that the SIR exceeds θ at the typical SBS when the fading
varies. Furthermore, because Φ is ergodic, the fractions can be
interpreted to be taken over all spatial locations on the plane,
given a realization of Φ. In this sense, the SIR MD describes
the reliability of the typical SBS in a uniform constellation of
SBSs.

B. Relative gain process

Definition 1 (Relative gain process (RGP)). The relative gain
process is defined as

G ≜

{
x ∈ Φ \ {x0} :

G[Dh,ϵ∥x∥]
G[Dh,ϵ∥x0∥]

}
, (15)

where x0 is the closest transmitter to the origin, i.e., the served
UE (1).

Lemma 1. The RGP is a PPP on (0, 1) ∋ r with the density
function

λG(r) = κ̃/r, (16)

where κ̃ = κ/ log(2) and

κ ≜
h2πλφ2

RX

sin4(ϵ)
(17)

is approximately the mean number of UEs inside any SBS’s
3 dB footprint. The interpretation of κ is exact in the limit
φRX → 0 and is tighter for large ϵ, given λ, h and φRX.

Proof. Given in Appendix B.

For any measurable function v(·) : Rd → [0, 1] such
that

∫
Rd | log v(x)|λΨ(x)dx < ∞, the probability generating

functional (PGFL) G(·) of a p.p. Ψ is defined by

GΨ[v] ≜ E
∏
x∈Ψ

v(x). (18)

We use Lemma 1 to derive the PGFL of the RGP [25, Eq.
3.30]

GG [v] = exp

{
−
∫
R
(1− v(r))λG(r)dr

}
= exp

{
−κ̃

∫ 1

0

(1− v(r))/rdr

}
. (19)

Corollary 1 (GP = RGP). G is independent of the distribution
of x0. Furthermore, the GP is equivalent to the RGP.

Proof. One can see from the reasoning given in Appendix B
that the conditioned p.p. (G|(∥x0∥ = r)) is equivalent to G
for any r ∈ [0,∞). In particular, we may condition x0 = o,
and by Slivnyak’s theorem, we retrieve the GP (5).

C. Moments of the SIR MD

Proposition 1 (Moments of the SIR MD). The first and the
second moments of the SIR MD in a NB LEO uplink when all
transmitters experience Rayleigh fading, are given by

M1(θ) = (1 + θ)−κ̃, (20)

M2(θ) = e−κ̃θ/(1+θ)(1 + θ)−κ̃, (21)

respectively. The general moments b ∈ C are given by

Mb(θ) = exp {−θbκ̃ 3F 2(1, 1, 1 + b; 2, 2;−θ)} , (22)

where 3F2(·) is the hypergeometric function. Furthermore, for
b ∈ N,

Mb(θ) = exp

{
κ̃

(b− 1)!

b∑
k=1

[
b

k

]
Li2−k(−θ)

}
, (23)
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where
[
n
k

]
is the first kind’s unsigned Stirling number, and

Li2−k(·) is the polylogarithm.

Proof. Given in Appendix E.

Remark 1. The hypergeometric series representation

3F2(1, 1, 1 + b; 2, 2;−θ) =

∞∑
n=0

(1)n(1)n(1 + b)n
(2)n(2)n

(−θ)n

n!
,

(24)
where (a)n ≜ a(a+1) · · · (a+n−1) is the rising Pochhammer
factorial, is divergent for θ > 1. Hence, the expression (22)
is the analytic continuation of the hypergeometric series (i.e.,
the hypergeometric function). Equation (23) may be advanta-
geous because the polylogarithm has better software support
than the generalized hypergeometric function. Alternatively,
Mb(θ) may be evaluated by integrating the exponent in (58)
numerically.

We denote the random variable SIR = SIRκ to emphasize
that the properties of the SIR are solely determined by κ. We
denote the SIR MD by

F
[κ,θ]
SIR MD(y) ≜ P(P(SIRκ > θ|Φ) > y). (25)

In words, F [κ,θ]
SIR MD(y) gives the fraction of SBSs that reach the

reliability y.

D. Chebyshev-Markov inequalities
Given a moment sequence (Mk)

n
k=0, the order n CM

inequalities give the pointwise infimum and supremum

inf
F∈Fn

F (y), sup
F∈Fn

F (y) (26)

for any y ∈ [0, 1], where Fn is the set of the distributions that
agree with the moment sequence. The inequalities established
by the infima and suprema are called the CM inequalities [21,
Thm. 1]. We use the CM inequalities to validate the theory
by comparing the CM inequalities derived from the moments
(23) to the simulated SIR MD in the spherical model.

E. Approximation of the SIR MD
In many cases, the beta distribution effectively approximates

the SIR MD [7], [26], [27]. If α and β are the shape parameters
of the beta distribution, the first and the second moments are
given by α/(α + β) and α(α + 1)/((α + β)(α + β + 1)),
respectively. Using the expressions (20) and (21) for the
first two moments and matching them to the corresponding
moments of the beta distribution, we can solve for α and β:

Proposition 2 (Approximation of the SIR MD with the beta
distribution). The parameters α and β for the beta distribution
are given as

α =

(
M1(θ)(1−M1(θ))

M2(θ)−M1(θ)2
− 1

)
M1(θ)

=
eκ̃θ/(1+θ) − 1

(1 + θ)κ̃ − eκ̃θ/(1+θ)
, (27)

β =

(
M1(θ)(1−M1(θ))

M2(θ)−M1(θ)2
− 1

)
(1−M1(θ))

= α(1 + θ)κ̃ − α. (28)
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Fig. 4. The simulated actual SIR MD and the corresponding beta distribution
for θ ∈ {−10,−3, 0, 3, 10} dB (from top to bottom). The parameters γ = 2,
λ = 7 · 10−5/km2, h = 2000 km, ϵ = 90° and φRX = 1.6° were used that
correspond to κ = log(2). Order 15 CM inequalities are depicted for θ = 0
dB.

The SIR MD can be approximated by the beta distribution:

F
[κ,θ]
SIR MD(y) ≈


1− Iy(α, β), y ∈ [0, 1]

1, y < 0

0, y > 1,

(29)

where I·(α, β) is the regularized incomplete beta function.

In Figures 4−6, we compare the simulated actual SIR MD
P(P(S̊IR > θ|Θ) > y) to the beta distribution approximation
(29) for various κ and θ. Order 15 CM inequalities are
drawn for θ ∈ {0,−3,−13} to the respective figures. Other
inequalities are omitted to avoid cluttering the figures. For the
simulations, we use different values of ϵ, γ and h. The density
λ is scaled accordingly to meet the given κ. In particular, in
Figure 6, one can see that for the low elevation angles, the
plane model is less accurate than for large elevation angles
– this is due to the spherical shape of the earth that becomes
increasingly prevalent in the spherical model, but also because
κ does not correspond accurately to the actual mean number
of UEs inside the 3 dB footprint.

IV. SIR, SINR AND THROUGHPUT DISTRIBUTIONS

A. SIR distribution

The SIR distribution is easy to obtain from the SIR MD
since the first moment M1(·) is just the complementary
cumulative distribution function (CCDF) F

[κ]
SIR(·) of SIR. We

have

F
[κ]
SIR(θ) ≜ P(SIRκ > θ) = EΦP(SIRκ > θ|Φ) = M1(θ)

= (1 + θ)−κ̃. (30)

If θ is the SIR threshold needed for a successful transmission,
(30) is called the transmission success probability.
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Fig. 5. The simulated actual SIR MD and the corresponding beta distribution
for θ ∈ {−10,−3, 0, 3, 10} dB (from top to bottom). The parameters γ = 4,
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used that correspond to κ = 2 log(2). Order 15 CM inequalities are depicted
for θ = −3 dB.
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Fig. 6. The simulated actual SIR MD and the corresponding beta distribution
for θ ∈ {−20,−17,−13,−10,−3} dB (from top to bottom). The parame-
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The mean and the variance of the SIR are given by

E(SIRκ) =

∫ ∞

0

F
[κ]
SIR(y)dy =

1

κ̃− 1
, κ̃ > 1, (31)

var(SIRκ) = 2

∫ ∞

0

yF
[κ]
SIR(y)dy −

(∫ ∞

0

F
[κ]
SIR(y)dy

)2

=
κ̃

(κ̃− 2)(κ̃− 1)2
, κ̃ > 2, (32)

respectively. The mean and variance are divergent for κ̃ ≤ 1,
that is, κ ≤ log(2): Having fewer than log(2) UEs inside the 3
dB footprint on average, a large fraction of SBSs have a very
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Fig. 7. The simulated actual SIR distribution and the corresponding theoretical
distribution for κ ∈ {log(2), 2 log(2), 3 log(2)} dB (from top to bottom).
The parameters γ = 4, h = 600 km, ϵ = 80°, φRX = 1.6° and λ ∈
{7.4 · 10−4, 1.5 · 10−3, 2.2 · 10−3}/km2 were used to match the respective
κ.

high SIR, and, on the other hand, a significant fraction has a
low SIR, and consequently, the expected SIR and its variance
are infinite. Under this threshold, the channel is essentially
noise-limited. In the regime log(2) < κ ≤ 2 log(2), the SIR
converges in mean but exhibits unbounded variance.

The decay rate of a random variable Y is defined as ρ(y) ≜
− log(P(Y > y))/y [28, Eq. 66]. The asymptotic decay rate
for the SIR is given by

ρ ≜ lim
y→∞

ρ(y) = lim
y→∞

−
F

[κ]
SIR(y)

y

= lim
y→∞

− log((1 + y)−κ̃)

y
= 0. (33)

The SIR distribution has, in fact, a slowly decaying tail
for any κ. The condition (33) is equivalent to the distribution
being heavy-tailed in the sense that the exponential moment
E(etSIRκ) is divergent for any t > 0 [29, Thm. 2.6]. It is
worth noting that (30) is Burr distribution, i.e., Pareto Type
II (Lomax) distribution. Its nth moment exists if and only if
κ̃ > n.

In Figure 7, we plot the theoretical SIR distribution and the
actual simulated success probability P(S̊IR > θ) for various
κ.

B. SINR distribution

The tail behavior observed in the model is due to the
lack of sidelobes or noise. In this section, we add a constant
(normalized scalar) noise power term W > 0 to I and analyze
the SINR.
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Fig. 8. The decay rates of F
[κ]
SIR(y) and F

[κ,W ]
SINR (y) and the corresponding

simulated decay rates in the spherical model. We use the parameters γ = 2,
W = (d0/d̂h,ϵ)

γ (for the SINR), ϵ = 45°, φRX = 1.6° and h = 700 km.
The density λ = 1.4 · 10−4/km2 was used to match κ = log(2).

Proposition 3 (SINR distribution). The transmission success
probability is given by

F
[κ,W ]
SINR (θ) ≜ P(SINRκ,W > θ) = P

(
S

I +W
> θ

)

= P

gx0 >
∑

x∈Φ\{x0}

G[Dh,ϵ∥x∥]θ
G[Dh,ϵ∥x0∥]

gx +
W (d̂h,ϵ/d0)

γθ

G[Dh,ϵ∥x0∥]


(a)
= EΦEg exp

{
−θ
∑
x∈Φ

G[Dh,ϵ∥x∥]gx

}
·

EΦ exp
{
−W (d̂h,ϵ/d0)

γθ/G[Dh,ϵ∥x0∥]
}

(b)
= E

∏
x∈Φ

1

1 + θG[Dh,ϵ∥x∥]
Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
κ̃

= κ̃(1 + θ)−κ̃Eκ̃+1

(
W (d̂h,ϵ/d0)

γθ
)
, (34)

where Eκ̃+1(·) is the generalized exponential integral.

Proof. In (a), we used Corollary 1. In (b) we used the Laplace
transform of the inverse largest gain (52).

One can derive the asymptotic decay rate

ρ = − lim
y→∞

log
(
F

[κ,W ]
SINR (y)

)
y

= W (d̂h,ϵ/d0)
γ . (35)

The mean and the variance

E(SINRκ,W ) =

∫ ∞

0

F
[κ,W ]
SINR (y)dy,

= κ̃

∫ ∞

0

(1 + y)−κ̃Eκ̃+1

(
W (d̂h,ϵ/d0)

γy
)
dy, (36)

var(SINRκ,W )

= 2

∫ ∞

0

yF
[κ,W ]
SINR (y)dy −

(∫ ∞

0

F
[κ,W ]
SINR (y)dy

)2

(37)
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Fig. 9. The simulated actual SINR distribution and the corresponding
theoretical distribution for κ ∈ {log(2), 5 log(2), 0.3 log(2)} dB (from top
to bottom). The parameters γ = 2, h = 200 km, ϵ = 50°, φRX = 1.6°,
W = (d0/d̂h,ϵ)

γ and λ ∈ {2.4 · 10−3, 1.2 · 10−2, 7.3 · 10−4}/km2 were
used to match the respective κ.

are difficult to evaluate other than numerically. Asymptotically
(the proof is given in Appendix D),

E(SINRκ,W ) ∼ 1/(κ̃− 1), as κ → ∞. (38)

1) Upper bound of the SINR: We may derive an upper
bound for the expected SINR by solving the expected value
of the SINRκ,W with the condition I = 0, i.e., SNRκ,W .

E(SINRκ,W ) ≤ E(SNRκ,W ) =

∫ ∞

0

P(S/W > y)dy

= κ̃

∫ ∞

0

Eκ̃+1

(
W (d̂h,ϵ/d0)

γy
)
dy

= κ̃

∞/
0

−Eκ̃+2

(
W (d̂h,ϵ/d0)

γy
)

=
κ̃

W (d̂h,ϵ/d0)γ (κ̃+ 1)
. (39)

The term W suppresses the tails, and consequently,
E(SINRκ,W ) is finite for all κ ≥ 0.

The function κ 7→ E(SNRκ,W ) is monotonically increasing,
and we have

lim
κ→0

E(SNRκ,W ) = 0, (40)

and

lim
κ→∞

E(SNRκ,W ) =
dγ0

d̂γh,ϵW
. (41)

This is not surprising because x0 is likely close to o for high
densities; in the limit κ → ∞, the randomness is solely
in the fading, resulting in the exponential variable of rate
(d̂h,ϵ/d0)

γW .
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Fig. 10. The simulated actual expected SINR and SIR with the theoretical
values for W ∈ {0.3, 1, 3} · (d0/d̂h,ϵ)γ (from top to bottom) and κ ∈
[0, 10]. The parameters γ = 4, h = 1500 km, ϵ = 80°, φRX = 1.6° and
λ ∈ [0, 1.7 · 10−3]/km2 were used to match the respective κ.

Because E(SINRκ,W ) ≤ E(SIRκ), the expectation of the
SINR has to go to 0 in the limit κ → ∞. By the mean value
theorem, there exists a maximum 0 < κ

[W ]
E ≜ argmax{κ :

E(SINRκ,W )} < ∞. Similarly, a maximizing κ for the
coverage probability κ

[W,θ]
P ≜ argmax{κ : F

[κ,W ]
SINR (θ)} exists

for any given θ and W > 0.
In Figure 8, we plot the decay rates ρ(y) of the SINR and

SIR distributions. The actual SINR is defined by ˚SINR ≜
S̊/(I̊ + W ), and the actual decay rate is accordingly. The
noise is of the form W = (d0/d̂h,ϵ)

γ . Also, we plot the decay
rates of S̊IR and ˚SINR with Nakagami-2 fading variables, i.e.,√
gx ∼ Nakagami(2, 1) for all x ∈ Θ and with the LOS, when

no fading is present. Notably, the tail of the SIR is similar in
all fading settings. In the LOS case with noise, because P = 1,
the SINR is at most 0 dB and, therefore, ρ(y) = ∞ for y > 1.
The error in theory is due to the low elevation angle ϵ = 45°,
which causes a difference in the geometry. Also, κ does not
correspond accurately to the mean number of UEs inside the
3 dB footprint with low elevation angles.

In Figure 9, we plot the theoretical SINR distribution and
the simulated actual distribution for various κ and W . Contrary
to the SIR distribution, smaller κ do not necessarily produce
better coverage probabilities: With small densities, the served
UE is likely to be far away from the SBS, and because of
the path loss, the noise at the SBS’s receiver will restrict the
SINR.

Figure 10 plots the theoretical and the simulated actual
expected SINR and SIR for various κ and W . The observed
maximizing densities are approximately κ

[W ]
E ∈ {0.5, 0.9, 1.2}

for W ∈ {0.3, 1, 3} · (d0/d̂h,ϵ)γ , respectively. The expected
SIR is an upper bound for the expected SINR for κ > log(2),
and there is no upper bound if κ ≤ log(2). To demonstrate
that the theory describes the expected SIR and SINR in a
generalized fading setting, we also plot the simulated values
for Nakagami-2 fading and LOS.
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Fig. 11. The simulated actual coverage probabilities and the theoretical values
with θ = 1 for W ∈ {0.01, 0.3, 1} · (d0/d̂h,ϵ)γ (from top to bottom) and
for κ ∈ [0, 5]. The parameters γ = 2, h = 1500 km, ϵ = 90°, φRX = 1.6°
and λ ∈ [0, 9.1 · 10−4]/km2 were used to match the respective κ.

In Figure 11, we plot the theoretical coverage probabilities
with θ = 1 and the actual coverage probabilities P( ˚SINR > θ)
and P(S̊IR > θ) for various κ and W . We also plot the
coverage probabilities for the LOS and Nakagami-2 fading
settings. The observed maximizing densities are given approx-
imately by κ

[W,θ]
P ∈ {0.7, 0.5, 0.4} for W ∈ {1, 0.3, 0.01} ·

(d0/d̂h,ϵ)
γ , respectively. Comparing Figures 10 and 11, it can

be seen that within roughly 50 percent difference marginal,
κ
[W ]
E ≈ κ

[W,θ]
P ≈ log(2) for every W studied. However, this

approximation of κ
[W,θ]
P cannot be accurate for general W

because, for W → 0, the SINR approaches the SIR and the
maximizing κ

[W,θ]
P → 0. Similarly, κ

[W ]
E depends on W . If

W is in the proximity of (d0/d̂h,ϵ)
γ (i.e., the maximal SNR

averaged over the fading is in the proximity of 0 dB; in Figures
10 and 11, between −20 dB and 4.8 dB), the maximizing κ
is given roughly by log(2), which also is the threshold for the
expected SIR being infinite.

Remark 2 (Power control). If we denote with Pu the power
of the served UE, it is easy to see that FSINR(θ) is derived from
(34) by the scaling θ 7→ θ/Pu. Therefore, the power control
of the served UE scales the magnitude of E(SINRκ,W ) by a
constant Pu. However, it does not affect the maximizing κ.

C. Throughput distribution

If we assume a Gaussian waveform for all transmissions,
the normalized (Shannon) throughput, normalized bit rate, or
the spectral efficiency of the communication channel without
the noise is defined by τ

[κ]
SIR ≜ log(1 + SIRκ)/ log(2). The

Laplace transform of the random variable τ
[κ]
SIR is given in the

positive half-plane of C by

E(e−sτ
[κ]
SIR ) = E(1 + SIRκ)

−s/ log(2)

=
1

log(2)

∫ ∞

0

F
[κ]
SIR(v)

1 + v
dv =

κ

κ+ s
, (42)
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Fig. 12. The simulated actual and the theoretical expected throughput for
κ ∈ [0, 30] and W = (d0/d̂h,ϵ)

γ . The parameters γ = 4, h = 1200 km,
ϵ = 45°, φRX = 1.6 and λ ∈ [0, 2.1 · 10−3]/km2 were used to match the
respective κ.

which is the Laplace transform of the exponential distribution
with mean

E(τ [κ]SIR) = 1/κ. (43)

Similarly, with the noise component, the expectation of
τ
[κ,W ]
SINR ≜ log(1 + SINRκ,W )/ log(2) is given by

E(τ [κ,W ]
SINR ) =

1

log(2)

∫ ∞

0

F
[κ,W ]
SINR (v)

1 + v
dv

=
κ̃

log(2)

∫ ∞

0

(1 + v)−κ̃−1Eκ̃+1

(
W (d̂h,ϵ/d0)

γv
)
dv. (44)

The exact expression for (44) is complicated. However (the
proof is given in Appendix D),

E(τ [κ,W ]
SINR ) ∼ 1/κ, as κ → ∞. (45)

As for the expected SINR and the coverage probability, a
maximizing κ

[W ]
T ≜ argmax{κ : E(τ [κ,W ]

SINR )} exists. In
Figure 12, we plot the expected throughput for various κ and
compare the theoretical E(τ [κ]SIR) and E(τ [κ,W ]

SINR ) to the simulated
E log(1+S̊IR) and E log(1+ ˚SINR), respectively. We also plot
the simulated values in Nakagami-2 fading and the LOS cases.
All fading cases are almost identical. The error in the theory
is because of the small elevation angle ϵ = 45° that causes a
significant difference in the geometry and because κ does not
correspond accurately to the mean number of UEs inside the
3 dB footprint. Again, the optimal κ[W ]

T ≈ log(2).

V. CONCLUSIONS

We presented a novel approximate system model for a low
earth orbit (LEO) uplink. The model is accurate for high
elevation angles and low altitudes. We introduced the gain
process (GP), a heterogeneous Poisson point process (PPP)
consisting of the approximate signal gains of the user equip-
ments (UEs) inside the typical satellite base station’s (SBS’s)

Gaussian antenna pattern. The relative gain process (RGP),
which consists of the gains relative to the served UE, was
shown to be equivalent to the GP. This point process follows by
modeling the UEs on the two-dimensional plane, significantly
simplifying the analysis compared to working with a point
process on a sphere. We derived analytical expressions, some
in closed form, for various performance metrics. The analysis
matches the Monte Carlo simulated spherical system model.
We derived the SIR, SINR, throughput distributions, and the
SIR meta distribution (MD). We used an exponential power
fading gain, i.e., Rayleigh fading, in the analysis. However,
quantitatively, the results apply to Nakagami-2 fading and the
LOS for the tail distribution of the SIR, as well as for the first
moments of the SIR, the SINR and the throughput. Qualitative
insights go even further.

We showed that the critical parameter affecting the per-
formance metrics is the mean number of co-channel UEs
inside the SBS’s 3 dB footprint; κ. For the SIR MD, we
obtained closed-form expressions for the first two moments.
Furthermore, we derived two analytical expressions for general
complex and integer moments. The beta distribution can
reliably approximate the SIR MD by matching the first two
moments. We observed that the variance in the reliability
of a SBS is highly dependent on the density of the UEs;
to maintain a consistent user experience, we have to make
the network dense. The distribution of SIR is a heavy-tailed
Lomax distribution, but the SINR distribution has a thinner
tail. With the noise, we found a density for which the expected
SINR, coverage probability and throughput are maximized.
In the interference-limited channel, the inverse of the mean
number of UEs within the 3 dB footprint gives the expected
spectral efficiency measured in bits. For small user densities
(κ < log(2)), the channel is essentially noise-limited, and one
has to carefully address how the noise affects the performance
(the interference energy component from the sidelobes can
also be incorporated into the noise power constant because of
its relatively small variance).

As a mathematical curiosity, the asymptotics of the expected
SINR and the expected throughput revealed exciting asymptot-
ical behavior of the exponential integral summarized in (57).
In addition, an interesting representation of the generalized
hypergeometric function was derived in (62).

The presented framework can be extended to other point
processes. For example, one natural extension would be to
randomize the elevation angle or the altitude of the SBS,
leading to a random density parameter of the RGP and a
Cox process. The presented framework may be helpful in
other aerial base station (ABS) models in addition to the LEO
setting. It would also be interesting to extend the analysis
to other fading distributions. Because of the planar formu-
lation of the analysis, one may directly exploit many results
for two-dimensional stochastic geometry models of wireless
networks. The quantitative and qualitative results enhance the
understanding of dense LEO networks and hold mathematical
importance in studying wireless networks using stochastic
geometry.
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APPENDIX A
GEOMETRY OF THE SPHERICAL SYSTEM MODEL

Directly from the law of cosines, we have

dh,ϵ = dh,ϵ(ξ)

=
√
R2

⊕ + (R⊕ + h)2 − 2R⊕(R⊕ + h) cos(ξ). (46)

Furthermore, we may derive the relation between ϵ and ξ:
The law of cosines states that

(R⊕+h)2 = dh,ϵ(ξ)
2+R2

⊕−2dh,ϵ(ξ)R⊕ cos(π/2+ϵ), (47)

which is analytically solvable for ξ.

APPENDIX B
PROOF OF LEMMA 1

First, we derive the density function λG(·) for the RGP, and
after that, we will show that the RGP is a PPP.

For a PPP Φ = {xk}∞k=1 of intensity λ on the plane, we
consider that the interferer distances {∥xk∥}∞k=1 are ordered
according to their distances to the origin. It follows that

P(G[Dh,ϵ∥xk∥]/G[Dh,ϵ∥x0∥] ≤ r)

= P(2−((Dh,ϵ∥xk∥)2−(Dh,ϵ∥x0∥)2)/φ2
RX ≤ r)

= P(−((Dh,ϵ∥xk∥)2 − (Dh,ϵ∥x0∥)2)/φ2
RX ≤ log2(r))

= P(∥xk∥2 − ∥x0∥2 ≥ −φ2
RX log2(r)/D

2
h,ϵ,

where Dh,ϵ is given in (2). We define yk ≜ ∥xk∥2 − ∥x0∥2.
The distances {yk}∞k=1 are Poisson distributed on [0,∞) with
density πλ, and the distance yk is Erlang distributed with
parameters k and πλ, i.e.,

P(yk ≥ −φ2
RX log2(r)/D

2
h,ϵ)

= 1−
γ(k,−πλφ2

RX log2(r)/D
2
h,ϵ)

(k − 1)!
.

The corresponding density is

−r
−1+

πλφ2
RX

D2
h,ϵ

log(2)

log(r)

(
−πλφ2

RX log(r)

D2
h,ϵ log(2)

)k

/(k − 1)!,

and the density function follows as

λG(r) = −r
−1+

πλφ2
RX

D2
h,ϵ

log(2)

log(r)

∞∑
k=1

(
−πλφ2

RX log(r)

D2
h,ϵ log(2)

)k

/(k − 1)!

(a)
= −r

−1+
πλφ2

RX
D2

h,ϵ
log(2)

log(r)

−πλφ2
RXr

− πλφ2
RX

D2
h,ϵ

log(2) log(r)

D2
h,ϵ log(2)

=
πλφ2

RX

D2
h,ϵ log(2)

r−1 = κ̃r−1,

where (a) follows from the identity x
∑∞

k=1 x
k−1/(k −

1)! ≡ xex. For small φRX, the term κ = πλφ2
RX/D

2
h,ϵ =

πλφ2
RX/(sin

4(ϵ)/h2) in the constant κ̃ = κ/ log(2) is ap-
proximately the mean number of transmitters inside the 3 dB
footprint, which can be seen by using the equation (2) and
evaluating E

∑
x∈Φ 1(φx < φRX) ≈ κ = E

∑
x∈Φ 1(||x|| <

hφRX/ sin
2(ϵ)) = 2λπ

∫ hφRX/ sin2(ϵ)

0
rdr, where 1(·) is the

indicator function.
Next, we will derive the void probability of the RGP to

show that it is a PPP. The cumulative density function (CDF)
of the largest-gain is given by

P(G[Dh,ϵ∥x0∥] ≤ r) = P(2−D2
h,ϵ∥x0∥2/φ2

RX ≤ r)

≤ P(∥x0∥2 ≥ − log2(r)h
2φ2/D2

h,ϵ)

= rπλφ
2
RX/(Dh,ϵ log(2)) = rκ̃. (48)

Let Φ1 = {∥x∥2}x∈Φ. The void probability P[G((a, b)) = 0]
is given by

ERP[(G|(G[Dh,ϵ∥x0∥] = R))((a, b)) = 0]

= ERP[(G|(2−((Dh,ϵ∥x0∥)2/φ2
RX) = R))((a, b)) = 0]

= ERP
[
Φ1

((
− log(bR)φ2

RX

Dh,ϵ log(2)
,− log(aR)φ2

RX

Dh,ϵ log(2)

))
= 0

]
(a)
=

∫ 1

0

κ̃rκ̃−1

· P
[
Φ1

((
− log(br)φ2

RX

Dh,ϵ log(2)
,− log(ar)φ2

RX

Dh,ϵ log(2)

))
= 0

]
dr

=

∫ 1

0

κ̃rκ̃−1eκ̃(log(ar)−log(br))dr

=

∫ 1

0

κ̃rκ̃−1(a/b)κ̃dr

= (a/b)κ̃. (49)

In (a), we de-conditioned on R by using the probability density
function (PDF) of the largest gain process derived from the
CDF (48).

Further,

exp

{
−
∫ b

a

λG(r)dr

}
= exp

{
−
∫ b

a

κ̃/rdr

}
= (a/b)κ̃,

(50)
hence by Rényi’s theorem G is Poisson [23, Thm. 2.24].
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APPENDIX C
INVERSE LARGEST GAIN PROCESS

Using the CCDF of the largest gain (48), the CCDF of the
inverse largest gain process is given by

F (r) = E(1/G[Dh,ϵ∥x0∥] ≥ r) = 1− (1/r)κ̃. (51)

Let u = 1/r. By the chain rule, the PDF is given by

f(r) = F ′(r) =
duC

du

du

dr
= C

(
1

r

)κ̃−1

r−2 =
κ̃

r1+κ̃
,

and the Laplace transform of the inverse largest gain is given
directly in terms of the exponential integral

E(e−s/G[Dh,ϵ∥x0∥])

=

∫ ∞

1

f(r)e−rsdr = κ̃

∫ ∞

1

e−rs

r1+κ̃
dr

= κ̃Eκ̃+1(s). (52)

APPENDIX D
ASYMPTOTIC BEHAVIOR OF E(SINRκ,W ) AND τ

[κ,W ]
SINR

All mass of the largest-gain distribution (48) is concentrated
at r = 1 when κ → ∞. Hence, by Corollary 1, the Laplace
transform of the sum X ≡

∑
x∈Φ\{x0} G[Dh,ϵ∥x∥] in the limit

κ → ∞ is given by substituting v = e−sr, s > 0, to 19.
Furthermore, we may take a first-order Taylor expansion of
the exponent of the Laplace transform at s = 0, which yields

LX(s) ∼ e−κ̃s, as s → 0. (53)

When κ → ∞, the tail of (53) goes to 0. Hence, for the
first negative moment it holds that [30, Eq. 1]

E (1/X) =

∫ ∞

0

LX(s)ds

∼
∫ ∞

0

e−κ̃sds = 1/κ̃ as κ → ∞. (54)

Consequently,

1 ≤ E(SIRκ)

E(SINRκ,W )
=

E(S/I)
E(S/(I +W ))

=
E (1/X)

E(1/(X +W (d̂h,ϵ/d0)γ))
(a)

≤ E (1/X)

1/(E (X) +W (d̂h,ϵ/d0)γ)

= E (1/X)E (X) + E (1/X)W (d̂h,ϵ/d0)
γ

(b)
= 1/κ̃ · κ̃+ 1/κ̃ ·W (d̂h,ϵ/d0)

γ = 1, as κ → ∞, (55)

i.e., E(SINRκ,W ) ∼ E(SIRκ) = 1/(κ̃− 1), as κ → ∞. In (a),
we use Jensen’s inequality, and in (b) we use (54), and E(X)
is derived as in (10).

Furthermore,

1 ≤
E(τ [κ]SIR)

E(τ [κ,W ]
SINR )

=
E log(1 + SIRκ)

E log(1 + SINRκ,W )

(c)

≤ E(SIRκ)

E(SINRκ,W )/(E(SINRκ,W ) + 1)

=
E(SIRκ)

E(SINRκ,W )
(E(SINRκ,W ) + 1) = 1, (56)

i.e., E(τ [κ,W ]
SINR ) ∼ E(τ [κ]SIR) = 1/κ, as κ → ∞. In (c), we exploit

the inequality log(1+x) > x/(x+1) and Jensen’s inequality.
Write out the asymptotic limits according to (36) and (44),

then for any c ≜ W (d̂/d0)
γ > 0

κ̃

∫ ∞

0

(1 + y)−κ̃Eκ̃+1 (cy) dy ∼ 1

κ̃− 1
,

κ̃

∫ ∞

0

(1 + y)−κ̃−1Eκ̃+1 (cy) dy ∼ 1

κ̃
,

(57)

as κ̃ → ∞.

APPENDIX E
MOMENTS OF THE SIR MD

We have

P(θ) = P

gx0 > θ
∑

x∈Φ\{x0}

G[Dh,ϵ∥x∥]
G[Dh,ϵ∥x0∥]

gx

∣∣∣Φ


=
∏

x∈Φ\{x0}

1

1 + θ
G[Dh,ϵ∥x∥]
G[Dh,ϵ∥x0∥]

=
∏
x∈G

1

1 + θx
.

The bth moment follows as

Mb(θ) = E
∏
x∈G

1

(1 + θx)b
.

Using the PGFL (19) of the RGP for v(x) = 1/(1 + θx)b;

Mb(θ) = exp

{
−κ̃

∫ 1

0

(
1− 1

(1 + θr)b

)
/rdr

}
. (58)

For b = 1, the integral has the value

=

∫ 1

0

(
1− 1

1 + θr

)
/rdr

=

∫ 1

0

θ

1 + θr
dr =

∫ 1+θ

1

1

u
du = log(1 + θ). (59)

For b = 2,∫ 1

0

(
1− 1

(1 + θr)2

)
/rdr

=

∫ 1

0

(
2θ

(1 + θr)2
+

θ2r

(1 + θr)2

)
dr

(a)
=

∫ 1

0

(
2θ

(1 + θr)2
− θ

(1 + θr)2
+

θ2

θ + θ2r

)
dr

=

∫ 1+θ

1

1

u2
du+ v

∫ θ+θ2

θ

1

v
dv =

θ

1 + θ
+ log(1 + θ).

(60)

In (a), we used the partial fraction expansion for the latter
term in the integrand.

For b ∈ C, the integral can be expressed with the generalized
hypergeometric function∫ 1

0

(
1− 1

(1 + θr)b

)
/rdr = θb3F2(1, 1, 1 + b; 2, 2;−θ).

(61)
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Using the definition of the hypergeometric series, for |θ| < 1
and b ∈ N;

3F2(1, 1, 1 + b; 2, 2;−θ) =

∞∑
n=0

(1)n(1)n(1 + b)n
(2)n(2)n

(−θ)n

n!

=

∞∑
n=0

(1 + b)n
(n+ 1)2n!

(−θ)n =
1

b!

∞∑
n=0

(n+ 1)b
(n+ 1)2

(−θ)n

(a)
=

1

b!

∞∑
n=0

∑b
k=1

[
b
k

]
(n+ 1)k

(n+ 1)2
(−θ)n

=
1

b!

b∑
k=1

[
b

k

] ∞∑
n=0

(−θ)n

(n+ 1)2−k

(b)
= − 1

b!

b∑
k=1

[
b

k

]
Li2−k(−θ)

θ
.

(62)

In (a), we used the expansion of the rising Pochhammer facto-
rial; in (b) we used the definition of the polylogarithm. Further-
more, the polylogarithm can be extended to |θ| ≥ 1 by analytic
continuation. In particular, for θ > 0, we have Li1(−θ) =
− log(1 + θ). We acquire the order 2− k polylogarithm, e.g.,
through the recursive relation Lis+1(−θ) = −

∫ θ

0
Lis(−t)/tdt,

which shows that Li2−k(−θ) is well-defined for all θ > 0.
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