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Abstract11

This study addresses the modeling of deep-seated landslides, focusing on the El Forn12

landslide in Andorra, using remote sensing and data-driven approaches to create risk maps.13

A temperature-based model is adjusted with data from an instrumented borehole to de-14

termine material properties and conditions. The calibrated model is compared to Inter-15

ferometric Synthetic Aperture Radar (InSAR) data, using the data for spatial analysis16

and creating a correlation map through kriging. This map leads to a physics-informed17

risk map indicating areas of instability. An uncertainty analysis of the model highlights18

its limitations but underscores the utility of such maps for policy and planning in areas19

prone to landslides. This approach provides a novel tool for assessing landslide risks, com-20

bining in-situ and remote sensing data for effective risk management.21

Plain Language Summary22

In this research, remote sensing and data-driven methods are combined to model23

deep-seated landslides, focusing on the El Forn landslide in Canillo, Andorra. A temperature-24

driven physics-based model is calibrated using in-situ data from a borehole in the land-25

slide. The calibrated model was compared with Interferometric Synthetic Aperture Radar26

(InSAR) data to analyze displacement. InSAR data was also used for spatial interpo-27

lation to create a correlation map for the landslide, forming the basis of a physics-based28

risk map. Despite uncertainties, this risk map, based on a factor of safety, can be a valu-29

able tool for decision-makers in vulnerable regions, providing insights for policy and de-30

velopment initiatives.31

1 Introduction32

Deep-seated landslides involve the movement of large, slow-moving, masses of soil33

creeping at often imperceivably slow speeds before catastrophically collapsing(Haque et34

al., 2019; McColl, 2022; Shuster & Highland, 2001). Driven by a combination of natu-35

ral and anthropogenic factors, these extreme slope failures events pose significant soci-36

etal risks, manifesting in both economic losses and human casualties(Haque et al., 2019;37

Shuster & Highland, 2001). These mass movements slip along a heavily-deformed shear-38

ing surface, known as the shear band(Smalley, 1978; Segúı et al., 2020). Because these39

sliding surfaces are typically made up of clay, they are especially sensitive to pressure40

and temperature changes(Ghuman & Lal, 1985; Rice, 2006; Veveakis et al., 2007; Segúı41

et al., 2020; Segúı & Veveakis, 2022; Vardoulakis, 2002; Veveakis et al., 2010). For sev-42

eral decades, these landslides were monitored via borehole instrumentation, which mea-43

sured parameters such as pore pressure, displacement, and temperature(Uhlemann et44

al., 2016; Francioni et al., 2021; Gladwin & Hart, 1985). However, drilling and instru-45

menting these boreholes are invasive, labor-intensive, and expensive – assuming that it46

is logistically feasible to access these sites, which are often remote and difficult to reach(Francioni47

et al., 2021; Wasowski & Pisano, 2020). This has motivated a rise in interest in remote48

sensing techniques for landslide monitoring over the past few decades(Piciullo et al., 2018;49

Casagli et al., 2023; Scaioni et al., 2014; Zan & Guarnieri, 2006). Light Detection and50

Ranging (Lidar) and unmanned aerial vehicles (UAV) have been used over the past few51

decades to build a knowledge bases of remote regions (Kasai et al., 2009). Lidar has helped52

create topographic maps, creating digital elevation models and understanding potential53

landslide areas (Baldo et al., 2009; Perski et al., 2014; Ventura et al., 2011; Tiwari et al.,54

2020). Similarly, UAV have been employed to produce high-resolution image acquisition55

in photogrammetry, noting areas of risk by comparing changes in aerial images(Mora et56

al., 2003; Cascini et al., 2009; Mohan et al., 2020). In the last decade, Interferometric57

Synthetic Aperture Radar (InSAR) has increased in popularity for deep-seated landslide58

modeling(Bellotti et al., 2014; Bekaert et al., 2020; Jia et al., 2022; Armas, et al., 2021).59
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InSAR specifically has gained popularity in recent years, with reliable InSAR data60

available for download and processing via several newly-introduced InSAR processing61

softwares(Gens & Logan, 2003; Yunjun et al., 2019). InSAR uses radar signals from satel-62

lites – in this case, Sentinel-1 – to measure ground surface deformations with high pre-63

cision (up to 1-2mm of displacement in some cases)(Zhao & Lu, 2018; Lissak et al., 2020).64

InSAR depends on the principle of interferometry, which compares the phase differences65

of radar signals between two or more satellite passes over the same area and thereby cal-66

culating possible ground displacement values(Osmanoğlu et al., 2016; Bamler & Hartl,67

1998; Burgmann et al., 2003). Moreover, InSAR’s ability to provide regional perspec-68

tive with large-scale swaths of radar data makes it an attractive option for regional plan-69

ning for risk, especially for remote regions who may, in the face of increased risk and ex-70

posure to deep-seated landslides, be unable to financially or logistically support the drilling71

of boreholes for insitu monitoring(Zhang et al., 2018, 2020). As a non-intrusive form of72

monitoring, InSAR helps remove the need for on-site access to sites of interest. This also73

removes the risk of drilling excess boreholes in already-deemed unstable regions and fur-74

ther triggering the landslide towards collapse(Hashemi, 2015). Lastly, since radar sig-75

nals can penetrate clouds, it offers to be a suitable option for monitoring through all weather76

conditions, as opposed to satellite images(Colesanti & Wasowski, 2006; Samsonov et al.,77

2013; Wang et al., 2019). The implications of this are particularly notable for commu-78

nities that experience monsoon seasons in which cloud cover is ever-present and shear79

bands are being loaded due to rainfall(Meena et al., 2021; Kashyap et al., 2021).80

In this paper, we propose an approach that integrates InSAR with insitu borehole81

data against the backing of a mathematical model in order to create a physics-based risk82

map for the case study of the El Forn landslide in Andorra. We employ a physics-based83

model that is driven by temperature evolution in the shear band and calibrate it against84

insitu borehole data from the El Forn landslide (Segúı et al., 2020, 2021; Segúı & Veveakis,85

2021, 2022). The fine-tuned parameters of the model serve as inputs for generating a physics-86

based blueprint, subsequently compared with ascending track Interferometric Synthetic87

Aperture Radar (InSAR) data. Additionally, we employ ordinary kriging to create a high-88

fidelity correlation map for the landslide using the average velocity derived from a time-89

series inversion of InSAR data during the summer of 2019(Cressie, 1988). We use this90

correlation map to act as the foundation for a physics-based risk map, established by nor-91

malizing the map relative to the pixel containing the location of the instrumented bore-92

hole in question. The resulting risk map highlights spatial variations in critical instabil-93

ity based on the underlying predictive physics-based model. Finally, we conduct an un-94

certainty analysis to understand the limitations of the assumptions inherent to the physics-95

based approach and linking it with remote sensing data.96

2 Materials and Methods97

This work considers both physics-based and data-driven approaches to understand-98

ing the stability of deep-seated landslides to build out a more holistic understanding of99

landslide stability assessment. The use of the physics-based model, explained in the next100

subsection leans on a physics-based approach, while the work of remote sensing is inher-101

ently data-driven. We work to merge these two approaches in fine-tuning the physics-102

based model with insitu and InSAR data.103

2.1 Site Overview104

The landslide considered in this work is the El Forn deep-seated landslide, nestled105

in the Pyranees and situated just above the ski town of Canillo in Andorra(Segúı et al.,106

2020; Torrebadella et al., 2013). The landslide has been the subject of several studies107

in the past because of its imminent threat to the town of Canillo, and as one of the largest108

landslides in the Pyrenees(Torrebadella et al., 2011). The landslide’s 300Mm3 sliding109
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mass creeps at an average rate of 0.5−2cm/year and is equipped with 12 boreholes dis-110

tributed over the entirety of the landslide(Segúı et al., 2021; Segúı & Veveakis, 2021).111

However, as noted in Segúı and Veveakis (2021), the Cal Ponet-Cal Barronet lobe is a112

subsection of the sliding mass (approximately 1Mm3 sliding mass) that, because it is113

thought to be moving independently of the larger sliding mass (moving at a faster rate114

of 1−4 cm/year), is equipped with more extensive instrumentation. The primary bore-115

hole of interest in this study is referred to as ”S10”, and is equipped with an extensome-116

ter, thermometer, and three piezometers. Note that the instrument readings of interest117

for this work are located at or below the 29m depth sliding surface (Segúı et al., 2020).118

Most notably, the piezometer located below the sliding surface accounts for the fact that119

this landslide is loaded by a sub-surface aquifer(Segúı et al., 2021). The sliding surface120

is comprised of 80% Silurian shales and 20% quartz. Figure 1 details the layout of the121

Cal Ponet-Cal Barronet lobe with respect to the larger El Forn landslide and the town122

of Canillo (Segúı et al., 2020). More information on the minerology of the sliding sur-123

face can be found in Segúı et al. (2020).124

Figure 1. Overview of the El Forn landslide with the encased Cal Ponet–Cal Borronet lobe

above Canillo, Andorra. White arrow indicates direction of motion and borehole S10 is marked.

(Earth, 2024).

2.2 Physics-based model125

The physics-based model considered in this work is a temperature-based approach126

to forecasting and assessing deep-seated landslide stability, developed by Vardoulakis (2002)127

and Veveakis et al. (2007) and furthered by Segúı and Veveakis (2022). The constitu-128

tive equations for the mathematical model, following the work of (Vardoulakis, 2002),129

consider a clay material within the shear band of a deep-seated landslide (which moves130

as a rigid block atop the shear band) experiencing thermal softening (Segúı & Veveakis,131

2021, 2022) – equations previously applied to and examined for the case studies of the132
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Vaiont landslide (Italy) and the Shupping landslide (China)(Segúı et al., 2020; Segúı &133

Veveakis, 2022; Veveakis et al., 2007) as well as the Reunion landslide in the Italian Alps134

(Morcioni et al., 2023a, 2023b). The model is presented here briefly for completeness,135

and the reader is encouraged to refer to the aforementioned works for the full details and136

assumptions involved.137

For this work, key assumptions presented by Segúı et al. (2021) detail that the stress138

equilibrium inside the shear band necessitates constant profile for the effective stress within139

the shear band and shear and normal stresses equivalent to the external values, such that140

δσ′
xz

δz =
δσ′

zz

δz = 0, σ′
xz = τd(t), and σ′

zz = σ′
n(t), respectively. Also, assuming that the141

clay is at critical state thereby deforming under constant volume, mass balance neces-142

sitates a zero volumetric strain. Thus, the main equation then describing the response143

of the basal material must be the energy equation, such that:144

∂θ

∂t
= cth

∂2θ

∂z2
+

σ′
xz ϵ̇xz
ρCm

, (1)145

with the initial temperature θ being equivalent to the background temperature in146

the shear band, such that θ = θboundary . We assume that z = −ds
2 , ds

2 , where ds is147

the thickness of the shear band material and z is the direction perpendicular to the slid-148

ing direction. ρCm is the heat capacity of the shear band material, cth is the thermal149

diffusivity and can be characterized as cth = jkm

ρCm
, where jkm is the thermal conduc-150

tivity. Since El Forn is fed primarily by an aquifer below the shear band, it is assumed151

that water pressure variations below the shear band directly impact the loading of the152

landslide (Segúı & Veveakis, 2021). Per the considerations in Segúı and Veveakis (2021)153

it is then possible to reduce evolution of basal temperature and its relationship with the154

temperature created through frictional heating by:155

∂θ∗

∂t∗
=

∂2θ∗

∂z∗2 + Greθ
∗
, z∗ϵ[−1, 1], t > 0 (2)156

where length z, time t, and temperature θ have been respectively non-dimensionalized,157

such that:158

z∗ =
z
ds
2

, t∗ =
cth

(ds
2 )2

t, θ∗ = m(θ − θboundary) (3)159

In this case, m is the relationship between the rate sensitivity coefficient N and the160

thermal sensitivity coefficient M , such that m = M
N . However, Segúı and Veveakis (2021)161

notes that the minerology of the shear band is the primary driver of the rate sensitiv-162

ity N , and is the primary considered variable between M and N . The dimensionless group,163

Gr, commonly known as the Gruntfest number (Segúı et al., 2020), is defined as164

Gr = G0

(
1 +

pf
pf0

)(1+1/N)

, (4)165

with166

G0 = m
γ̇ref
jkm

ds2

4
τd,ref (5)167

The Gruntfest parameter expresses the ratio of the mechanical work converted into168

heat over the heat diffusion capabilities of the material and captures many of the phys-169

ical properties of the shear band, including thermal conductivity (jkm), thermal rate sen-170

sitivity N , references shear stress (τd,ref ), thickness of the shear band (ds), and the shear171

stress applied from external loading sources (Segúı et al., 2020; Gruntfest, 1963). This172
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parameter is the fundamental parameter considered in understanding the critical sta-173

bility of the deep-seated landslide (Segúı & Veveakis, 2022). For the purposes of being174

used in conjunction with surface remote sensing data, the model can be furthered reduced175

by depth averaging inside the shear band, thereby dropping the requirement of depth-176

related information. Thus, by assuming a parabolic profile of temperature in the shear177

band via depth averaging leads to:178

∂2θ∗

∂z2
= −θ∗ (6)179

Equation 2 is then simplified to the following ode:180

dθ∗

dt∗
= −θ∗ + Greθ

∗
(7)181

This equation is the guiding equation used to tune the physics-based model with182

insitu data. However, in order to translate the mathematical model assessment of sta-183

bility to data derived from InSAR and insitu readings, velocity (and thereby displace-184

ment) must also be derived from the strain rate. The work done by Segúı et al. (2020)185

suggests a visco-plastic flow law for clay-like materials, such that the deviatoric strain186

rate within the shear band, γ̇, can be described as:187

γ̇ ≈ V − V0

ds
≈ V

ds
= γ̇

(
τno
σref

)1/N

(1 + p∗)1/Neθ
∗

(8)188

or equivalently189

V = V0(1 + p∗)1/Neθ
∗
, V0 = γ̇ds

(
τno
σref

)1/N

(9)190

In order to understand the overall stability of the deep-seated landslide with re-191

spect to temperature, the fixed points (steady state solutions) of Equation 7 is resolved192

(Veveakis et al., 2010; Segúı et al., 2020), such that the Gruntfest parameter can be solved193

as a function of temperature:194

Gr = θ∗e−θ∗
(10)195

Performing a bifurcation analysis on the mathematical model using Equation 2 (see196

Segúı et al. (2020), for details), stability of various points on a landslide (and thereby197

the stability of the landslide itself) can be understood on a Temperature-Gruntfest phase198

space, as seen in Figure 2. Thermal rate sensitivity, N must be considered nonzero, per199

Segúı et al. (2021)) in order to have an acceptable reference shear stress of 60 and 180kPa200

for the 30m depth of the shear band. Using this assumption, for N ̸= 0, Gruntfest and201

dimensionless temperature interact along the lower branch of the conditionally stable curve202

shown in Figure 2, suggesting that if Gr were to pass the critical value at the inflection203

point on the lower curve, the landslide would become unstable and collapse. Thermal204

sensitivity necessitates that the mathematical response of the physics-based model will205

create an option of instability, in which the landslide would transition from stable to ter-206

tiary creep and then collapse.207

With this model in mind, it is possible to compare insitu data from the S10 bore-208

hole with model outputs by comparing temperature data from the thermometer in the209

borehole with temperature solved from the ordinary differential equation expressed in210

Equation 7, and tuning values for G0 and N to determine the best values to use in com-211

paring model outputs – non-dimensionalized and theoretical in nature – with InSAR and212

insitu data types.213
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Figure 2. Temperature-Gruntfest phase space, with stable zone shaded in and critical Grunt-

fest value marked.

2.3 Tuning the physics-based model with insitu data214

In order to tune the physics-based model with insitu data values to determine the215

appropriate N and G0 value to select to eventually solve for Gruntfest, insitu pore pres-216

sure (kPa), temperature (C), and displacement (mm) were selected and non-dimensionalized.217

Note that, while S10 borehole had multiple piezometers, the piezometer below the shear218

band was selected in order to reflect the load created by the sub-surface aquifer; there219

is also only one thermometer in the shear band. Assuming the relationship for Gr(t) re-220

flected in Equation 4, Equation 7 was solved for dimensionless temperature, assuming221

an initial condition of θ0 = 0. This ordinary differential equation was iterated over 400222

combinations of G0 and N and compared with the non-dimensionalized temperature read-223

ings from S10. Goodness of fit for each combination of G0 and N were assessed based224

off of the error criteria:225

Error =
∑

|θ∗field − θ∗model| (11)226

Note that, instrument constraints within the S10 borehole necessitated that the months227

of May-July 2019 are used for comparative analysis in this work. In order to visualize228

how error behaves in the system, a mesh of errors was produced, comparing the error229

of the model and field temperatures for 400 combinations of G0 and N inputs into the230

model. As seen in the error mesh in Figure 3, error is minimized along a visible 2-D path231

(see Figure 3). Local error minima along this path were independently extracted and are232

seen in Table 1.233

In order to narrow down to a single combination G0 and N , the local minima op-234

tions (labeled ”C1”- ”C10”) described in Table 1 were each used to solve Equation 7 for235

non-dimensional temperature θ∗. Through the temperature solution and the pore pres-236

sure input, the velocity (derived from the strain rate in the model) can be calculated as:237
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Figure 3. (left) Mesh grid of error results of 400 comparisons between non-dimensionalized

field temperature of S10 borehole and solved model for various values of N and G0.(right)2-D

path of local error minima for various G0 and N combinations.

Table 1. Local error for tuning temperature of model to field, S10

Option Label G0 Value N Temperature Error

C1 1.474 × 10−7 6.105 × 10−2 1.901
C2 3.368 × 10−7 6.526 × 10−2 1.915
C3 3.842 × 10−7 6.632 × 10−2 1.907
C4 4.637 × 10−7 6.842 × 10−2 1.883
C5 4.789 × 10−7 7.053 × 10−2 1.891
C6 5.263 × 10−7 7.263 × 10−2 1.930
C7 5.737 × 10−7 7.474 × 10−2 1.919
C8 5.737 × 10−7 7.579 × 10−2 1.929
C9 6.210 × 10−7 7.789 × 10−2 1.875
C10 6.210 × 10−7 7.894 × 10−2 1.945
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V ∗
model = (1 + p∗)1/Neθ

∗
(12)238

with V ∗
model being the non-dimensional velocity, p∗ being the non-dimensional pore pres-239

sure from the in-situ data, and θ∗ being the non-dimensional temperature output from240

the model.241

From this point, the velocity is integrated in time to solve for non-dimensional model242

displacement. These displacement time series were then compared against non-dimensional243

displacement data from the borehole in S10. Visual comparisons of all 10 iterations of244

both temperature and displacement comparisons for the model and field optimal fits can245

be found in Figure 4 and Figure 5. While there are slight differences in error between246

optimized temperature and displacement combinations for G0 and N , differences in er-247

ror for all options is relatively negligible. Based off of the fits of both the temperature248

and displacement readings, we selected option C4, with values G0 = 4.637×10−7 and249

N = 6.842 × 10−2, and the temperature and displacement outputs for this combina-250

tion are highlighted in red and the dashed line for temperature and displacement, respec-251

tively. This combination aligns with the values that Segúı and Veveakis (2021) retrieved252

for G0 and N through laboratory experiments on material collected from the shear band253

of the landslide and insitu monitoring, and will be used henceforth in the rest of this work.254

Note, however, that in the absence of constraining information from the site, any G0 and255

N value along this line, when used as the two inputs to the physics-based model, will256

have close alignment with field data. The temperature and displacement comparison plots257

for the chosen G0 and N values can be seen in Figures 4 and 5, respectively.258

Figure 4. Overall comparison of temperature evolution over time for physics-based model

for varying G0 and N combinations with field data from S10 borehole. The red line reflects the

chosen G0 and N combination, and the blue line indicates the field temperature reading.
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Figure 5. Overall comparison of displacement evolution over time for physics-based model for

varying G0 and N combinations with field data from S10 borehole. Option C4 most closely aligns

with the field and is selected moving forward.

2.4 InSAR data collection259

For the InSAR data considered in this work, open-access Sentinel-1 C-band (∼5.6260

cm radar wavelength) data was retrieved via the Alaska Satellite Facility’s (hereinafter261

referred to as ASF) Vertex Platform’s On Demand toolbox (Gens & Logan, 2003; ASF,262

[Dataset]. Retrieved 2 February 2022). Single Look Complex (SLC) scenes with a beam263

mode of Interferometric Wide (IW) were selected over the El Forn landslide for the pe-264

riod of the no-snow periods from 2019 with a 6-day acquisition interval on an ascend-265

ing track (PlanetLab, Retrieved 2019; Gens & Logan, 2003). Once the data has been pre-266

processed via the ASF Vertex Platform’s On Demand toolbox, the resulting stack of in-267

terferograms were downloaded via Python script from the ASF Vertex Platform and pro-268

cessed on a computing cluster. Interferograms with visible discontinuities were manu-269

ally identified and removed from the stack(Gens & Logan, 2003). Each interferogram was270

then clipped to the same size of overlap using the ASF Hybrid Pluggable Processing Pipeline271

(Hyp3) toolbox in order to standardize the size of each interferogram for eventual time272

series inversion. The resulting cleaned, standardized interferogram stack was inverted273

using the open-source Miami InSAR time-series software for Python (hereinafter referred274

to as MintPy), using a weighted least squares inversion with a coherence threshold value275

of 0.4 (Yunjun et al., 2019; Armas, et al., 2021; ASF, [Software]; Yunjun, [Software]). The276

result of which is a 40x40 meter grid. Note that this data was processed using a high-277

precision, low-accuracy approach, as opposed to other InSAR retrieval processes (Copernicus,278

[Dataset]. Retrieved 8 August 2023) in order to ensure higher coverage for the later pur-279

poses of spatial data analysis over the lobe (Lau et al., 2024). Further information on280

this can be found in (Lau et al., 2024) Both individual time series and average veloci-281
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ties were extracted using the Geospatial Data Abstraction Library (GDAL) and MintPy.282

The output Tag Image File Format (TIFF) file of the average velocity of the no-snow283

period of 2019 was retrieved and kept aside for spatial data interpolation, and the time284

series output was deconstructed from a Hierarchical Data Format (in this case, HDF5)285

file. The time series HDF5 file was deconstructed, with the time series at the index of286

the S10 borehole extracted, non-dimensionalized, and aligned in time to be compared287

to the May-July insitu and model readings.288

From there, high-resolution (n = 2000 sample points) ordinary-kriging was conducted289

over the landslide’s surface using InSAR average velocity data during the no-snow pe-290

riods of 2019. The ordinary kriging processes allowed for the creation of a selection of291

relative values for pixels over the landslide scarp that, because this kriging was conducted292

at such high-resolution, provides a high-fidelity look at how pixels on the landslide re-293

late to each other solely through the lens of remote sensing (Cressie, 1988). Demonstra-294

tion of the TIFF file imagery (and the kriged recreation) can be seen in Figure 6. Or-295

dinary kriging was conducted by first creating a grid of x- and y- coordinates and cor-296

responding velocity values at these points. Distances between the random observations297

and each individual grid point were calculated, such that:298

d1 =
√

(xg − xT
obs)

2 + (yg − yTobs)
2, (13)299

where xg and yg are the grid coordinates, and xobs and yobs are the random observation300

coordinates. The covariance matrix were determined using the range τ and variance σ2
301

from the semivariogram, such that:302

C = σ2(e(−d1/τ)
T

) (14)303

The euclidean distances between the random observations and each other were calcu-304

lated, as well as the corresponding covariance matrix Σ, such that:305

d2 =
√

(xobs − xT
obs)

2 + (yobs − yTobs)
2 (15)306

307

Σ = σ2(e(−d2/τ)
T

) (16)308

The covariance matrices were appended into two matrices that would be used La-309

grange Multipliers, into matrices Σ′ and C ′, respectively. The weights were calculated310

by solving the linear equations created by the Σ and C matrices. From there, a predic-311

tive correlation matrix Z∗ was calculated by taking the values velocity values at the ran-312

dom observations, zt, multiplying them by the corresponding weights matrix W , such313

that:314

Z∗ = Σ(W × zt) (17)315

3 Results316

3.1 G0 Correlation Map317

It is important to note that, while there are two variable inputs to the physics based318

model described in Section 2.3, G0 will be the variable of interest used in this work. Since319

linear dependency between both N and G0 exists, N is ultimately fixed as N = 6.842×320

10−2. G0 is an intrinsically varying parameter and better encapsulates the material prop-321

erties of the landslide (see Equation 5), so it is used the primary variable of interest mov-322

ing forward in this work. While some of the physical properties of the landslide are cap-323

tured by the rate sensitivity, assuming a variable N over the landslide would suggest that324

there are dramatic differences in composition of the sliding material over the landslide,325
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Figure 6. Original and ordinary kriging-based recreation of average velocity over El Forn

landslide during May-July 2019.

which goes against the original assumption in the physics-based model of a clay sliding326

surface.327

Assuming a linear relationship between velocity and G0, the predictive correlation328

matrix used in the kriging process Z∗ summarizes the pixel-to-pixel relationship of the329

landslide with sample size n = 2000 (created through the ordinary kriging process). This330

weights matrix was normalized to the S10 pixel and made non-negative in order to cre-331

ate a map of G0. Note that pixels were made non-negative by shifting all pixels up by332

the absolute value of the most negative Z∗ value in order to retain the integrity of cor-333

relation with respect to the random observations used in creating the kriged model. Af-334

ter this shift, the entire matrix was normalized to the S10 value, such that Z∗
S10 = 1.335

The entire normalized correlation matrix was used to create the G0 map, such that:336

G0,matrix = G0,S10 × Z∗ (18)337

where G0,S10 = 4.637×10−7, as determined in the model tuning (see Section 2.3).338

Figure 7 details the resulting G0 map, with two perspectives: (1) through a top-down339

view of the landslide, and (2) through a side-on lens of the landslide, showing the fluc-340

tuations in G0 over the landslide. Note that the side-on lens does not take into account341

any other topographical markings other than UTM Coordinates for geospatial position-342

ing (in this case, UTM 31N/EPSG 32631).343

3.2 Forecasting344

In order to understand the behavior of the physics-based model with respect to In-345

SAR, the InSAR time series for the S10 borehole was extracted from the GDAL and MintPy346

time series HDF5 file (see Section 2.4) and non-dimensionalized. The displacement In-347

SAR readings were compared to the model output for displacement (see Figure 10 for348

a model displacement - insitu displacement reading comparison) in order to further en-349

sure the fidelity of the InSAR time series (furthering the work of Lau et al. (2024)). Fig-350

ure 8 shows this comparison, with the InSAR readings closely following the model dis-351

placement.352
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Figure 7. G0 map, normalized to borehole S10, based off of the correlation matrix of high-

fidelity ordinary kriging over the El Forn landslide.

Figure 8. Comparison of model-output displacement for optimized S10 readings and corre-

lated InSAR time series output for S10 pixel.
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Given the alignment between InSAR displacement readings and model outputs for353

S10, five additional points were selected over the lobe in order to understand the behav-354

ior of InSAR over the lobe. These samples, named ”S1”-”S5”, were selected from var-355

ious points along the landslide in order to understand the variability of the physics-based356

and data-driven outputs. Table 2 outlines the exact location of each sample, and Fig-357

ure 9 summarizes their geography along the landslide.358

Table 2. Coordinate locations of samples (UTM 31N)

Sample Name Coordinates

S1 (384645.13, 4713238.80)
S2 (385092.91, 4712957.54)
S3 (386027.30, 4712403.30)
S4 (386183.72, 4711602.26)
S5 (386937.58, 4712222.92)

Figure 9. Samples used to confirm physics-based and data-driven assumptions. Samples are

labeled S1-S5 and are marked in pink, while the location of S10 is marked in yellow. (Earth,

2024)

The time series for each sample location were extracted from the GDAL and MintPy359

time series HDF5 file (see Section 2.4) and non-dimensionalized. The G0 values were pulled360

out of the S10-normalized G0 matrix and run individually through the physics-based model361

with the same rate sensitivity value. The corresponding G0 values for each sample point362

are seen in Table 3. In each sample iteration of re-solving Equation 7, the non-dimensional363

temperature output was similarly used to solve for velocity and subsequently integrated364

to get the displacement. These model-output displacements were then compared to the365

InSAR displacement readings, as seen in Supporting Information. Similarly, a compar-366

ison of InSAR displacements for S10 with samples S1-S5 be seen in Figure 10. The vari-367

ations in the displacement readings from InSAR align with the physics of the landslide368

– samples S4 and S5, located at the crown of the landslide, move much quicker than S10.369
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Figure 10. Comparison of InSAR readings for samples S1-S5 with S10.

Table 3. Sample G0 values extracted from S10-normalized G0 matrix.

Sample Name G0 Value

S1 5.4683 ∗ 10−7

S2 5.3391 ∗ 10−7

S3 4.6582 ∗ 10−7

S4 3.7253 ∗ 10−7

S5 3.8829 ∗ 10−7
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3.3 Uncertainty Quantification370

In order to understand and compare the predictability of samples considered in Sec-371

tion 3.2 with respect to S10, the maximum displacement output from the model-output372

displacement series was compared against the weighted correlation values to S10, which373

were taken from the correlation matrix derived from the ordinary kriging output Z∗ in374

Section 2.4. These G0 values, derived from data-driven approaches using InSAR, pro-375

vide different model-derived maximum displacement value outcomes, summarized in Fig-376

ure 11. The respective correlation values, which were normalized in relation to S10 (such377

that Z∗
S10 = 1), fall in line with the expected-physics of the landslide. Samples S4 and378

S5, located at the crown of the landslide, are expected to exhibit different behavior to379

the main part of the landslide. This suspected behavior is confirmed by the InSAR dis-380

placement value in Figure 11. However, samples S1 and S2, located at the bottom and381

middle part of the landslide (see Figure 9, can explain the physics of the model and of382

S10 within a 25% margin of error. Higher uncertainty lies in the crown of the landslide.383

This uncertainty is physically explained by the very definition of the quantity G0384

(Equation 5), which is proportional to the landslide’s driving stress and therefore to the385

depth of the sliding mass. Segúı and Veveakis (2021) have estimated the depth of the386

sliding surface to evolve from a couple of meters at the shallow parts of the crown (top)387

of the landslide, to 30 meters at the location of the S10 borehole and towards the foot388

of the landslide. Further to that, the sliding surface has a variable slope, making the driv-389

ing shear stresses vary considerably across the landslide. These considerations lead the390

shear stresses acting on the sliding surface to vary from a few kPa at the crown of the391

landslide all the way to about 400kPa at the foot (Segúı & Veveakis, 2021). Even if we392

assume that all other material properties of Equation 5 are homogeneous across the land-393

slide, this change of stresses -together with the impossibility of determining the depth394

of the landslide and whether it moves as a rigid block from the satellite- induces uncer-395

tainty in the approach and makes the choice of the calibration point essential for the per-396

formance of the work. As a case-in-point, if the model could be validated by in-situ data397

in the middle of the landslide (sample point 3 in Figure 9), all points would fall within398

one standard deviation of its displacement.399

3.4 Risk Map400

Since confirming the fidelity of the InSAR-driven and kriging-based G0 map with401

the physics-based model, the Gruntfest parameter Gr, discussed in Section 2.2, is used402

as the deciding factor to understand both the degree of stability and the initial failure403

location on the landslide. More specifically, G0 is one of the key terms used in Equation404

4. Using the same sensitivity rate N used through this work, the only other variable of405

interest is the ratio of pore pressure, such that:406

p∗ratio =
pf
pf0

(19)407

where the groundwater pressure pf is compared directly against the background408

pressure pf0. It is then possible to consider a variety of different scenarios to create a409

risk map. Depending on the use of this work, it is possible to include a variety of dif-410

ferent factors of safety, but for the intents and purposes of this study, a factor of safety411

(FS) of 1 is used. As such, the Gruntfest value is solved for every pixel of the landslide412

for a variety of different p∗ratio values. Note that, according to the physics-based model413

explained in Section 2.2, the critical Gruntfest parameter is Grcrit = 0.3679. There-414

fore, should any solved pixel value of Gruntfest Grpixel be greater than the critical Grunt-415

fest value Grcrit, the landslide would become unstable and lead to uncontrollable col-416
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Figure 11. Uncertainty comparison of peak model displacements with correlation to S10 with

a 25% error threshold.

lapse. This allows us to define a factor of safety (FS) per pixel, as the ratio417

FS =
Grcrit
Grpixel

(20)418

This definition in accordance with the classical definition of factor of safety in landslides419

through the shear stress τ , where FS = τcr/τ (τcr being the shear resistance). Indeed,420

Gr is a measure of shear stress (see Equation 4) and the corresponding Factor of Safety421

of Equation 20 is for all practical purposes formally equivalent to the classical definition422

when all other parameters are considered constant. The pixel is considered stable when423

FS > 1, critical at FS = 1 and unstable when FS < 1. For the consideration of the424

slope’s stability, it is not trivial to define an exact measure (norm) of the FS across the425

field that would correlate exactly with the stability of the entire rock mass. We there-426

fore consider the conservative case of adopting the max norm (i.e. maximum value) of427

the FS across all pixels of the landslide as an indicator. This implies that if one pixel428

is unstable the entire slope will be rendered unstable too. This is a very conservative,429

and to some extend overly restrictive approach since landslides do not become unsta-430

ble until a critical volume can be mobilized. However, for the qualitative purposes of this431

work we will introduce the max norm as a metric of stability being aware that future stud-432

ies will need to focus on defining a less conservative threshold.433

Table 4 summarizes the outcomes of a variety of different scenarios for different val-434

ues of pratio. Figure 12 details the field maps for the scenaria listed in Table 4, and in-435

dicates where in the landslide these critical values of the FS are achieved.For better vi-436

sualization, the results are plotted for the inverse FS (i.e. stability is ensured for values437

less than one), while the semi-opaque mesh marks at the final value of criticality, i.e. the438

plane FS = 1. We see that for low values of p∗ratio (1, 1.1 and 1.2) the entire landslide439

is stable, lying below the critical plane. As the pore pressure ratio increases to 1.3, pix-440

els at the foot of the landslide cross the stability threshold and upon further increase of441

the pore pressure the entire foot becomes unstable at 1.4 before the entire landslide turns442
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unstable too at higher pore pressures. The results suggest that the deeper parts of the443

landslide are prone to pore-pressure induced catastrophic instability more than the steep-444

est parts at the crown of the landslide. The latter (steeper parts) are traditionally more445

susceptible to static slope instability, since steep slopes exceeding the static friction co-446

efficient are intrinsically unstable statically.447

Table 4. Summary of landslide stability for various p∗ratio values.

p∗ratio Landslide Stability

1 Stable
1.1 Stable
1.2 Stable
1.3 UNSTABLE
1.4 UNSTABLE
1.5 UNSTABLE
1.6 UNSTABLE

4 Discussion and Conclusions448

This work, in its aim to create quantifiable and accessible risk maps for the post449

failure evolution and catastrophic collapse of deep-seated landslides, synthesizes high-450

fidelity insitu borehole data with remote sensing InSAR data, driven by previously-proven451

physics-based model for forecasting. The work done by Vardoulakis (2002); Veveakis et452

al. (2007); Segúı et al. (2020) in the development of the physics-based model necessitates453

two variables, G0 and N as the two parameters of interest in tuning the physics-based454

model with borehole data from the El Forn landslide. In order to tune the physics-based455

model to the insitu data provided in the S10 borehole, over 400 iterations of varying G0456

and N combinations were simulated to solve for the evolution of dimensionless temper-457

ature over dimensionless time (see Equation 7). While there was not a global minimum458

of the 400 iterations, 10 options with local error minima (as seen in Figure 3 and Table459

1) were explored further as options ”C1”-”C10”. Option C4, with G0 = 4.637 × 10−7
460

and N = 6.842 × 10−2, was ultimately selected as the optimized variables for the as-461

sumed ground truth of S10. While other options provided acceptable fits as well, option462

C4 offered minimize temperature fit error and a good displacement match with insitu463

data, as seen in Figures 4 and 5. This combination of G0 and N became the axis by which464

we were able to analyze and compare InSAR with corresponding model outputs from other465

points on the landslide (Yunjun et al., 2019).466

Before comparing other points along the landslide, however, we compared the In-467

SAR displacement readings at S10 with the field output displacement readings, confirm-468

ing that InSAR was indeed reflective of the sub-surface ground motion, further confirm-469

ing the work done by Lau et al. (2024). Creating a high-fidelity (n=2000 sample points)470

correlation matrix summarizing each pixel on the scarp and its average-read InSAR ve-471

locity for the no-snow periods of 2019 via ordinary kriging allowed us to create a nor-472

malized map (for S10) for G0 along the landslide, assuming a linear relationship between473

G0 and velocity(PlanetLab, Retrieved 2019; Cressie, 1988). From there, we were able to474

extract specific values for G0 along the scarp while keeping rate sensitivity N constant,475

as seen in Samples ”S1”-”S5” (see Figure 9 and Tables 2, 3). Note that considering a476

variable rate sensitivity N would imply marked material heterogeneity over the landslide,477

so G0 is the variable of interest moving forward. These extracted G0 values were then478

used to derive corresponding dimensionless temperature and displacement values by solv-479

ing equations 7, 9 and integrating for displacement. Similarly, the InSAR time series were480
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Figure 12. Risk (inverse Factor of Safety) map for various combination of p∗ratio values shown

underneath the title of each sub-figure.
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compared for each simulated displacement time series for samples S1-S5. The variable481

displacement outputs in Figure10 align with the spatial variation along the landslide and482

the varying stresses that different parts of the landslide may experience. After confirm-483

ing the fidelity of the InSAR data with the physics-based and data-driven outputs for484

displacement, we were able to create a risk map for different loading scenarios by vary-485

ing the ratio of current pore pressure to background pore pressure. By solving Equation486

4, we were able to solve for the Gruntfest parameter, which through the work of Segúı487

et al. (2021), can be compared to a critical Gruntfest value that dictates the stability488

of the landslide Vardoulakis (2002); Gruntfest (1963). By establishing a Gr-based factor-489

of-safety approach for the mobilised phase of the landslide, we have created a malleable490

framework for assessing deep-seated landslide conditions over a variety of different load-491

ing scenarios.492

The correlation between the model and InSAR displacements, meant to be an in-493

dicator of sub-surface ground motion, was used to create an uncertainty envelope, as seen494

in Figure 11. Given that S10, which lies on the periphery of the considered sliding mass,495

we expected there to be outliers outside the single standard deviation (25%) envelope.496

However, Figure 11 requires a more in-depth exploration of uncertainty. Since G0 is con-497

sidered the variable of interest over the landslide, the variables that comprise it – the498

ratio of the rate sensitivity and thermal rate m, reference strain rate γ̇ref , thermal con-499

ductivity jkm, the thickness of the shear band ds, and the reference shear stress τd,ref500

– similarly propagate uncertainty (see equation 5). There are a few key assumptions that501

may produce uncertainty through employment of the model through linking with InSAR.502

One of the first key assumptions used in the tuning of this model is a constant pore pres-503

sure, such that the pore pressure at borehole S10 is assumed over the entirety of the land-504

slide. While it is true that the landslide is all similarly loaded by a sub-surface aquifer505

(and a bit of snow melt), there is a high chance that the pore pressure is not geo-spatially506

homogeneous over the sliding surface. While the physics-based assumptions of material507

and assumed mineralogy remain constant between the crown and bottom of the land-508

slide (for example, between samples S1 and S4), the limitations of assuming of constant509

pore pressure can be explained by the uncertainty envelope summarized in Figure 11.510

The displacement fits of InSAR of the optimized physics-based model (with selected G0511

and N as seen in Section 2.3) suggests that the G0 map, created through the InSAR time512

series inversion process (see Section 2.4) is a reliable metric in reflecting sub-surface ground513

movement. However, as seen in Figure 11, samples S4 and S5 lie outside of the 25% thresh-514

old of uncertainty of model displacement for the ground truth of S10. Since the relation-515

ship between every pixel along the scarp was calculated with respect to S10 via high-516

fidelity ordinary kriging, two possible explanations exist for outliers S4 and S5: (1) the517

assumption of constant pore pressure over the scarp dismisses the depth of the shear sur-518

face at the crown, which is likely more shallow than at the location of S10 (and thereby519

also being loaded differently than the shearing surface at S10), or (2) the InSAR read-520

ings may be limiting in the interferogram creation due to low-coherence value thresh-521

olds (0.4 in this case), or in azimuth angles of the InSAR collection due to higher slopes522

at the crown, which may impede the fidelity of InSAR readings.523

Despite these limitations, the proof of correlation with a subsequent risk map based524

off of a physics-based model but informed by remote sensing has not be completed to525

this extent for deep-seated landslides and carries exciting implications. Because of it’s526

predication on a factor of safety this tool emerges as an attractive option for decision-527

makers in vulnerable regions. The framework’s use of InSAR (which is open source in528

data access through data processing) caters to remote, often subsequently highly-vulnerable529

mountain communities that cannot either logistically drill boreholes for instrumentation530

or are financially restricted in doing so. For vulnerable populations, these predictive maps531

have the capacity to become useful tools of empowerment and resilience and shape a lo-532

cal and quantitative response.533
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Appendix A Open Research534

The Sentinel-1 data used for interferogram creation and time series inversion in the535

study are available for retrieval from the Alaska Satellite Facility Vertex Platform at: https://536

search.asf.alaska.edu. Source files are listed in the appendix for reference. [ASF In-537

terferogram]538

Version 1.5.3 of the MintPy used for InSAR time series inversion and is preserved539

at https://github.com/insarlab/MintPy, available via open-access and developed openly540

on Github.541

Version 2 of the Hyp3 used for InSAR time series inversion and is preserved at https://542

hyp3-docs.asf.alaska.edu/v2-transition/, available via the Alaska Satellite Ver-543

tex Platform.544

Insitu borehole data of the El Forn landslide used in time series comparison is through545

partnership with the Government of Andorra and is available upon request from the au-546

thors.547
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Osmanoğlu, B., Sunar, F., Wdowinski, S., & Cabral-Cano, E. (2016, 5). Time series684

analysis of insar data: Methods and trends. ISPRS Journal of Photogrammetry685

and Remote Sensing , 115 , 90-102. doi: 10.1016/J.ISPRSJPRS.2015.10.003686

Perski, Z., Wojciechowski, T., & Borkowski, A. (2014). Monitoring of land-687

slide dynamics with lidar, sar interferometry and photogrammetry. case688

study of k lodne landslide (southern poland).. Retrieved from https://689

www.researchgate.net/publication/335773123690

Piciullo, L., Calvello, M., & Cepeda, J. M. (2018, 4). Territorial early warning sys-691

tems for rainfall-induced landslides. Earth-Science Reviews, 179 , 228-247. doi:692

–23–



manuscript submitted to JGR: Earth Surface

10.1016/J.EARSCIREV.2018.02.013693

PlanetLab. (Retrieved 2019). Planet application program interface: In space for life694

on earth. Retrieved from https://www.planet.com/explorer/695

Rice, J. R. (2006). Heating and weakening of faults during earthquake slip.696

Journal for Geophysical Research, 111 , 5311. Retrieved from https://697

agupubs.onlinelibrary.wiley.com/doi/10.1029/2005JB004006 doi:698

10.1029/2005JB004006699

Samsonov, S., d’Oreye, N., & Smets, B. (2013, 8). Ground deformation associated700

with post-mining activity at the french–german border revealed by novel insar701

time series method. International Journal of Applied Earth Observation and702

Geoinformation, 23 , 142-154. doi: 10.1016/J.JAG.2012.12.008703

Scaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). remote sensing remote704

sensing for landslide investigations: An overview of recent achievements and705

perspectives. Remote Sens, 6 , 1. Retrieved from www.mdpi.com/journal/706

remotesensing doi: 10.3390/rs60x000x707
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