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In recent years, Orthogonal Time Frequency Space Modulation 
(OTFS) has gained popularity in integrated sensing and 
communications (ISAC) system due to its robustness against 
Doppler offset and delay changes. Traditional pilot-based 
methods for accurate channel parameter estimation are 
complex and struggle with rapidly changing channel 
conditions. In this letter, we propose a deep encode-decode 
network (DED-Net). It uses DL to automatically learn and 
eliminate channel interference from OTFS signals. The 
framework employs a deep encoding and decoding network, 
similar to a filter, learning complex signal features to 
effectively remove interference. Our experiments demonstrate 
DED-Net's ability to eliminate interference in OTFS 
modulation signals, offering an alternative to pilot-based 
methods and showcasing DL's potential for ISAC systems. 

Introduction: Orthogonal time frequency space modulation (OTFS) 
modulates information code elements more efficiently than orthogonal 
frequency division multiplexing (OFDM) by utilizing the approximate 
smoothness of the time-delay Doppler domain channel and modulating 
information code elements in the time-delay Doppler domain. Therefore, 
it has a greater advantage in time-frequency dual-selective channels. Since 
OTFS modulation is able to combat high delay and Doppler shifts, it is 
considered as an effective technology for ISAC in high-mobility scenarios 
[1–6]. With the development of next-generation mobile communication 
technologies, 6G needs to address high-speed communication in high 
mobility scenarios, such as high-speed rail, drones, and unmanned 
vehicles [7-10]. 

In high-speed mobility scenarios, wireless signals arrive successively 
at the receiver after reflection by obstacles like buildings and vehicles, 
creating multipath effects with varying delays and fading. This results in 
frequency selectivity, and the relative motion of transceivers imparts 
Doppler frequency bias to each signal path, causing time-domain 
selectivity, known as a time-varying channel. 

In high-speed mobile scenarios, most channels are time-frequency 
dual-selective channels. In next-generation system, OFDM optimally 
utilizes spectrum by leveraging subcarrier orthogonality. However, at high 
speeds, subcarrier orthogonality is compromised, degrading OFDM 
performance. Traditional OFDM is inadequate for these scenarios. In 
time-invariant, frequency-selective channels, guide frequency-based 
channel estimation remains valid for the entire frame. For time-varying 
channels, continuous updates are needed. To minimize bit errors in high-
speed scenarios, inserting numerous frequency guides is essential. How-
ever, excessive cyclic prefix (CP) and frequency guide overhead reduce 
spectrum efficiency and increase costs. 

To solve communication challenges in high-speed mobile scenarios, 
the OTFS modulation scheme was proposed in [11]. OTFS was 
demonstrated in [12–14] to be more suitable for communication in high-
speed mobile scenarios than conventional modulation methods. OTFS 
performs modulation and demodulation of signals in the delayed Doppler 
domain [15–17]. The time-frequency dual-selective channel can be 
represented as a sparse channel with multiple taps in the delayed Doppler 
domain. Channel estimation in this domain effectively serves as channel 
estimation for the entire signal block. The frequency domain signal can be 
converted to the delay domain signal using the inverse fast Fourier 
transform (IFFT), and signals inserted in the delay Doppler domain are 
transformed using the inverse Sim Fourier transform (ISFFT). 

However, practical OTFS application still faces challenges [17]. ISAC 
systems struggle to achieve time-frequency dual orthogonality with 
transceiver filters, often resorting to rectangular filters. High-speed mobile 
scenarios introduce inter-carrier interference and inter-symbol 
interference in OTFS signals [18]. In ISAC systems, one symbol block 
represents multiple consecutive multi-carrier symbols, leading to a large 
channel matrix when representing the received signal as a product of the 
transmitted signal and the channel matrix. Traditional linear interference 
cancellation methods demand significant time and space resources. 
Nonlinear detection methods rely on fixed parameters from simulations, 
limiting optimization. OTFS channel estimation using impulsive signals 
simplifies the process with a threshold, but there’s room for improvement 
in these methods. 

With increasing hardware computing power, deep learning (DL) 
algorithms have become pivotal in various fields, including image 
processing, natural language processing, and language recognition [19, 
20]. DL employs complex multilayer neural networks for enhanced 
expressive-ness. Optimizing DL has benefited from big data, improved 
algorithms, and better hardware. DL consists of two phases: training and 
application. During training, data is input, and actual outputs are compared 
to desired results. The backpropagation algorithm iteratively adjusts 
neural network weights. In the application phase, the trained model 
quickly processes real data, reducing online task execution time but 
requiring offline training. DL’s advancements also contribute to OTFS 
signal noise reduction in communications. 

In this letter, inspired by voice noise reduction [21], we leverage an 
Encoder-Decoder network to learn a matrix that can encode the OTFS 
signal to the original signal. The main contributions of this paper are 
summarized as: 
1. A novel network architecture DED-Net is proposed for channel 

interference elimination for OTFS signals under various SNRs 
conditions. DED-Net contains an encoder and decoder modules. The 
DED-Net can effectively eliminate channel interference for OTFS. 

2. In the proposed model, richer features are fused by setting 
cascaded structures, which consist of a down-sampling module 
and an up-sampling module. This process allows the model to 
focus more on the key feature dimensions to achieve matrix 
decomposition. 

3. Numerical experiments verify the effectiveness of the proposed 
method under different SNR conditions. The original coding 
information of the separated signal is validated by bit error rate. 
 
Motivation: In ISAC systems, achieving the ideal transceiver filter, 

meeting the time-frequency dual quadrature requirement, is challenging. 
Rectangular filters are a practical but imperfect alternative, introducing 
interference in high-speed mobile scenarios. OTFS symbol blocks 
correspond to multiple multi-carrier symbols, leading to a large channel 
matrix [22]. Traditional linear interference cancellation methods have 
high complexity. Nonlinear methods require preset parameters based on 
simulations, challenging to optimize. Traditional OTFS channel 
estimation with impulsive signals as guides results in errors when setting 
a threshold for signal filtering. 

In OTFS systems, where the channel is a 2D matrix in the delayed 
Doppler domain, we propose a deep interference elimination network to 
effectively reduce interference. This network addresses traditional 
interference cancellation and channel estimation challenges by using DL 
to estimate and eliminate interference in ISAC systems. 

                                  𝑟!	(𝑡) 	= 	𝑀	(𝑟	(𝑡)),                                      (1) 
where 𝑀(·) is the deep noise eliminate network. We hope the denoised 

data is as same as the original sent data as possible, and the constraint 
optimization can be expressed as 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝐷(𝑟!(t), s(t)),                                 (2) 
where 𝐷(·) denotes the distance metric function. Through the 

optimization of the model, the transmitted signal and the model-processed 
signal are as same as possible to achieve effective noise elimination for 
ISAC systems. 

 
The proposed Network: 
Time Delay Doppler Interference Elimination Network: High-speed 

communication systems often have transient channel changes, making it 
challenging to learn channel parameters quickly using traditional pilot 
modes, which have high complexity. While in an OFDM system, a CP is 
designed to convert the linear convolution of the physical channel into 
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cyclic convolution, reducing inter-symbol interference but decreasing 
transmission efficiency. However, the data-driven deep learning model 
offers a robust and automated method to address the time-delay Doppler 
problem in high-speed motion. In this study, an end-to-end algorithm with 
high robustness was developed to automate time delay Doppler 
elimination. 

The proposed time delay Doppler interference elimination algorithm 
is an Encoder-Decoder structure, as illustrated in Figure 1. The encoder in 
the upper part consists of dry convolution, average pooling, batch 
normalization, and an activation function. Typically, the input original 
OTFS data is down-sampled, and the decoder below is up-sampled to 
recover the data and provide a prediction for each pixel. 

 
Fig 1 An illustration of the proposed DED-Net system. 

The encoder contains four encode blocks, with each submodule having 
two convolution layers. Each convolution processed data is then subjected 
to Batch Normalization (BN), which can enhance network convergence, 
control gradient explosion or disappearance, and prevent overfit-ting. The 
data are then passed through the ReLU activation function to introduce 
nonlinearity. At the end of each submodule, a down-sampling layer is 
implemented through the Average Pool. The input data format is 2 × 64 × 
64, and the resolutions of the 1-4 modules are 32 × 64 × 64, 64 × 32 × 32, 
128 × 16 × 16, and 256 × 8 × 8, respectively. 

The decoder consists of four modules, increasing data dimension 
through up-sampling until it matches the input signal resolution. Jump 
cascades connect up-sampling results to sub-modules in the encoder, 
propagating pre-encoded information. The segmentation map contains 
pixels with full context from the input image, without fully connected 
layers. The proposed deep learning-based algorithm effectively eliminates 
time delay Doppler interference in high-speed motion, offering robustness 
and an end-to-end architecture for communication systems. 

 
Learning Process: The learning process considers the waveform 

characteristics of the signal, and the scale-invariant source-to-noise ratio 
(SI-SNR) is utilized as the loss function to avoid being influenced by the 
amplitude size. While signal-to-noise ratio (SNR) is defined as the power 
ratio of signal to noise, SI-SNR is used to mitigate signal variations 
through regularization. To further improve signal separation and recovery, 
we combine mean square error (MSE) to optimize the back-propagation 
process and train the dataset’s learning. The loss function for training 
optimization is defined as: 

𝐿𝑜𝑠𝑠 = −𝑆𝐼-𝑆𝑁𝑅 + 𝑀𝑆𝐸,                           (3) 
where 𝑆𝐼-𝑆𝑁𝑅 is defined as: 
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where 𝑠̂ is the decoded signal, and 𝑠 denotes the original OTFS signal. 

〈𝑠̂, 𝑠〉 signifies 𝑠̂ × 𝑠 and then the summation operation. ‖𝑠‖3is the second 
order norm of 𝑠.𝑀𝑆𝐸 is presented as: 

𝑀𝑆𝐸 = 0
-
∑ (𝑠̂ − 𝑠)-
/ .                                     (5) 

By optimizing 𝑆𝐼-𝑆𝑁𝑅 and 𝑀𝑆𝐸, the interference is eliminated, and 
recovering the raw OTFS signal. 

 
Simulations and Analysis: 
Data and Settings: To evaluate the performance of the proposed 

scheme, experimental data is simulated using the Matlab2019b plat-form. 
Specifically, each frame contains 64 symbols, and there are 64 subcarriers. 
The signal in the time-delay Doppler domain, modulated by 64QAM, is 
transformed into the time-frequency domain signal by SFFT, which is then 
mapped to the time domain by the Heisenberg transform. After channel 
conversion, the time-domain signal is transformed into the time-frequency 
domain signal using the Wigner transform. 

The complex-format signal is transformed into two-channel data 
according to the In-phase/Quadrature parts to serve as input for the neural 
network. The time-frequency domain signal obtained through the SFFT 
transform serves as label data for model learning. The channel SNR ranges 
from -5 dB to 20 dB, and the input data dimension is 64 × 64 × 2. A total 
of 60,000 experimental data points are generated, with 7000 pieces in the 
training set, 1000 pieces in the validation set, and 2000 pieces in the test 
set. The experiment was executed using an NVIDIA GeForce GTX 
1080Ti GPU. 

 
The performance of proposed scheme: To assess our scheme’s 

performance, we compared it with traditional methods, including SVD, 
PCA, LSMMSE, and Wavelet (WT). Figure 2 displays the BER 
comparison between our algorithm and the baseline methods. Our 
algorithm achieves the following BERs: -5 dB (25%), 0 dB (18%), 5 dB 
(6.8%), 10 dB (2%), and 15 dB (0.2%). In contrast, traditional algorithms 
yield BERs ranging from 33% to 51% at -5 dB SNR, gradually decreasing 
with increasing SNR. At SNR = 20 dB, baseline methods achieve BERs 
between 1.1% and 1.7%. Our results highlight the superior noise impact 
reduction and error rate improvement of our algorithm compared to 
traditional methods, underscoring its robust performance. 

 
Fig 2 The BER value comparison of the proposed scheme and 
baseline methods. 

Figure 3 compares NMSE results of our algorithm with baseline 
algorithms across various SNRs. At -5 dB SNR, our algorithm achieves 
an NMSE of -1.52. The NMSE values at other SNRs are: 0 dB (-2.43), 5 
dB (-4.67), 10 dB (-6.72), 15 dB (-7.45), and 20 dB (-9.31). In contrast, 
the LMMSE algorithm performs less effectively with an NMSE of 0.07 at 
-5 dB SNR, which is 1.45 worse than our algorithm. At 20 dB SNR, 
LMMSE outperforms our algorithm with an NMSE of -3.79, which is 5.52 
lower. Our algorithm consistently outperforms traditional ones across 
SNRs. 
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Fig 3 The NMSE value comparison of Doppler delay channel 
interference elimination methods for OTFS based on the proposed 
method. 

Figure 4 presents KL results comparing our algorithm with baseline 
methods based on experimental data. At -5 dB SNR, our algorithm 
achieves a KL value of 0.25. At other SNRs, the KL values are: 0 dB 
(0.18), 5 dB (0.15), 10 dB (0.11), 15 dB (0.09), and 20 dB (0.06). In 
contrast, the LMMSE algorithm performs less effectively with a KL value 
of 0.27 at -5 dB SNR, which is 0.02 higher than our algorithm. At 0 dB 
SNR, LMMSE's KL value is 0.23, which is 0.05 higher. At other SNRs, 
baseline methods consistently have higher KL values compared to our 
algorithm. 

 
Fig 4 The KL value comparison of Doppler delay channel 
interference elimination methods for OTFS based on the proposed 
method. 

Based on experiments, the proposed algorithm outperforms traditional 
methods at various signal-to-noise ratios, indicating its effectiveness in 
reducing noise and distortion. Comparing it to the baseline algorithm 
underscores its accuracy in signal estimation. These results offer insights 
for designing and optimizing signal processing algorithms, with wide-
ranging applications. Future research can examine the algorithm’s 
performance in complex scenarios and explore its extensions and 
applications in diverse domains. 

 
Conclusion: In this letter, we introduce a groundbreaking channel 

estimation approach for ISAC systems using our novel DL-based model, 
DED-Net. Unlike traditional methods, DED-Net employs an end-to-end 
deep encode-decode convolutional architecture. It excels at eliminating 
channel interference and directly recovering OTFS symbols. Extensive 
simulations confirm its advantages, emphasizing deep learning’s potential 
in addressing OTFS channel interference. Our findings offer a trans-
formative perspective on channel estimation, revealing limitations in 
traditional methods. DED-Net’s success paves the way for deep learning 
in ISAC systems, showcasing its adaptability in complex interference 
scenarios. 
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