REFERENCES
[1] LAKHUNDI S, ZHANG K. Methicillin-Resistant Staphylococcus
aureus: Molecular Characterization, Evolution, and Epidemiology [J].
Clinical microbiology reviews, 2018, 31(4).
[2] ALVARES P A, MIMICA M J. Osteoarticular infections in pediatrics
[J]. Jornal de pediatria, 2020, 96 Suppl 1(Suppl 1): 58-64.
[3] SABATER-MARTOS M, SIGMUND I K, LOIZOU C, et al. Surgical
Treatment and Outcomes of Calcaneal Osteomyelitis in Adults: A
Systematic Review [J]. Journal of bone and joint infection, 2019,
4(3): 146-54.
[4] KAVANAGH N, RYAN E J, WIDAA A, et al. Staphylococcal
Osteomyelitis: Disease Progression, Treatment Challenges, and Future
Directions [J]. Clinical microbiology reviews, 2018, 31(2).
[5] MASTERS E A, RICCIARDI B F, BENTLEY K L M, et al. Skeletal
infections: microbial pathogenesis, immunity and clinical management
[J]. Nature reviews Microbiology, 2022, 20(7): 385-400.
[6] AHMAD-MANSOUR N, LOUBET P, POUGET C, et al. Staphylococcus
aureus Toxins: An Update on Their Pathogenic Properties and Potential
Treatments [J]. Toxins, 2021, 13(10).
[7] MEHRAJ J, WITTE W, AKMATOV M K, et al. Epidemiology of
Staphylococcus aureus Nasal Carriage Patterns in the Community [J].
Current topics in microbiology and immunology, 2016, 398: 55-87.
[8] GARDETE S, TOMASZ A. Mechanisms of vancomycin resistance in
Staphylococcus aureus [J]. The Journal of clinical investigation,
2014, 124(7): 2836-40.
[9] SUTTON J A F, CARNELL O T, LAFAGE L, et al. Staphylococcus
aureus cell wall structure and dynamics during host-pathogen interaction
[J]. PLoS pathogens, 2021, 17(3): e1009468.
[10] BERNI F, ENOTARPI J, VOSKUILEN T, et al. Synthetic
carbohydrate-based cell wall components from Staphylococcus aureus
[J]. Drug discovery today Technologies, 2020, 38: 35-43.
[11] BECKER R E, BUBECK WARDENBURG J. Staphylococcus aureus and the
skin: a longstanding and complex interaction [J]. Skinmed, 2015,
13(2): 111-9; quiz 20.
[12] BRONESKY D, WU Z, MARZI S, et al. Staphylococcus aureus RNAIII
and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic
Adaptation, and Regulation of Virulence Gene Expression [J]. Annual
review of microbiology, 2016, 70: 299-316.
[13] KWIECINSKI J M, HORSWILL A R. Staphylococcus aureus bloodstream
infections: pathogenesis and regulatory mechanisms [J]. Current
opinion in microbiology, 2020, 53: 51-60.
[14] GEOGHEGAN J A, FOSTER T J. Cell Wall-Anchored Surface Proteins
of Staphylococcus aureus: Many Proteins, Multiple Functions [J].
Current topics in microbiology and immunology, 2017, 409: 95-120.
[15] DRAMSI S, BIERNE H. Spatial Organization of Cell Wall-Anchored
Proteins at the Surface of Gram-Positive Bacteria [J]. Current
topics in microbiology and immunology, 2017, 404: 177-201.
[16] MCCORMACK N, FOSTER T J, GEOGHEGAN J A. A short sequence within
subdomain N1 of region A of the Staphylococcus aureus MSCRAMM clumping
factor A is required for export and surface display [J].
Microbiology (Reading, England), 2014, 160(Pt 4): 659-70.
[17] FOSTER T J. The MSCRAMM Family of Cell-Wall-Anchored Surface
Proteins of Gram-Positive Cocci [J]. Trends in microbiology, 2019,
27(11): 927-41.
[18] PI Y, CHEN W, JI Q. Structural Basis of Staphylococcus aureus
Surface Protein SdrC [J]. Biochemistry, 2020, 59(15): 1465-9.
[19] WANG J, ZHANG M, WANG M, et al. Structural insights into the
intermolecular interaction of the adhesin SdrC in the pathogenicity of
Staphylococcus aureus [J]. Acta crystallographica Section F,
Structural biology communications, 2021, 77(Pt 2): 47-53.
[20] BARBU E M, MACKENZIE C, FOSTER T J, et al. SdrC induces
staphylococcal biofilm formation through a homophilic interaction
[J]. Molecular microbiology, 2014, 94(1): 172-85.
[21] CAROTHERS K E, LIANG Z, MAYFIELD J, et al. The Streptococcal
Protease SpeB Antagonizes the Biofilms of the Human Pathogen
Staphylococcus aureus USA300 through Cleavage of the Staphylococcal SdrC
Protein [J]. Journal of bacteriology, 2020, 202(11).
[22] WONG D, HOLTOM P, SPELLBERG B. Osteomyelitis Complicating
Sacral Pressure Ulcers: Whether or Not to Treat With Antibiotic Therapy
[J]. Clinical infectious diseases : an official publication of the
Infectious Diseases Society of America, 2019, 68(2): 338-42.
[23] LIU D, ZHANG J, LI T, et al. Chronic osteomyelitis with
proliferative periostitis of the mandibular body: report of a case and
review of the literature [J]. Annals of the Royal College of
Surgeons of England, 2019, 101(5): 328-32.
[24] WOODS C R, BRADLEY J S, CHATTERJEE A, et al. Clinical Practice
Guideline by the Pediatric Infectious Diseases Society and the
Infectious Diseases Society of America: 2021 Guideline on Diagnosis and
Management of Acute Hematogenous Osteomyelitis in Pediatrics [J].
Journal of the Pediatric Infectious Diseases Society, 2021, 10(8):
801-44.
[25] BURY D C, ROGERS T S, DICKMAN M M. Osteomyelitis: Diagnosis and
Treatment [J]. American family physician, 2021, 104(4): 395-402.
[26] LASSOUED FERJANI H, MAKHLOUF Y, MAATALLAH K, et al. Management
of chronic recurrent multifocal osteomyelitis: review and update on the
treatment protocol [J]. Expert opinion on biological therapy, 2022,
22(6): 781-7.
[27] COBB L H, MCCABE E M, PRIDDY L B. Therapeutics and delivery
vehicles for local treatment of osteomyelitis [J]. Journal of
orthopaedic research : official publication of the Orthopaedic Research
Society, 2020, 38(10): 2091-103.
[28] NURUZZAMAN F, ZHAO Y, FERGUSON P J. Chronic Nonbacterial
Osteomyelitis: Insights into Pathogenesis, Assessment, and Treatment
[J]. Rheumatic diseases clinics of North America, 2021, 47(4):
691-705.
[29] FANTONI M, TACCARI F, GIOVANNENZE F. Systemic antibiotic
treatment of chronic osteomyelitis in adults [J]. European review
for medical and pharmacological sciences, 2019, 23(2 Suppl): 258-70.
[30] LAWAL O U, BARATA M, FRAQUEZA M J, et al. Staphylococcus
saprophyticus From Clinical and Environmental Origins Have Distinct
Biofilm Composition [J]. Frontiers in microbiology, 2021, 12:
663768.
[31] SHARMA-KUINKEL B K, TKACZYK C, BONNELL J, et al. Associations
of pathogen-specific and host-specific characteristics with disease
outcome in patients with Staphylococcus aureus bacteremic pneumonia
[J]. Clinical & translational immunology, 2019, 8(7): e01070.
[32] SAHOO A, SWAIN S S, PANDA S K, et al. In Silico Identification
of Potential Insect Peptides against Biofilm-Producing Staphylococcus
aureus [J]. Chemistry & biodiversity, 2022, 19(10): e202200494.
[33] YANG D, ZHENG X, JIANG L, et al. Functional Mapping of
Phenotypic Plasticity of Staphylococcus aureus Under Vancomycin Pressure
[J]. Frontiers in microbiology, 2021, 12: 696730.
[34] DE FRUTOS F, OCHOA J P, NAVARRO-PEñALVER M, et al. Natural
History of MYH7-Related Dilated Cardiomyopathy [J]. Journal of the
American College of Cardiology, 2022, 80(15): 1447-61.
[35] !!! INVALID CITATION !!! .
[36] PARK J, PACKARD E A, LEVIN M G, et al. A genome-first approach
to rare variants in hypertrophic cardiomyopathy genes MYBPC3 and MYH7 in
a medical biobank [J]. Human molecular genetics, 2022, 31(5):
827-37.
[37] ROSE J, KRAFT T, BRENNER B, et al. Hypertrophic cardiomyopathy
MYH7 mutation R723G alters mRNA secondary structure [J].
Physiological genomics, 2020, 52(1): 15-9.
[38] LOWEY S, BRETTON V, JOEL P B, et al. Hypertrophic
cardiomyopathy R403Q mutation in rabbit β-myosin reduces contractile
function at the molecular and myofibrillar levels [J]. Proceedings
of the National Academy of Sciences of the United States of America,
2018, 115(44): 11238-43.
[39] YOUSAF M, KHAN W A, SHAHZAD K, et al. Genetic Association of
Beta-Myosin Heavy-Chain Gene (MYH7) with Cardiac Dysfunction [J].
Genes, 2022, 13(9).
Figure legend