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Abstract 37 

Coastal wetlands play a significant role in the storage of 'blue carbon’, indicating their 38 

importance in the carbon biogeochemistry in the coastal zone and in global climate change 39 

mitigation strategies. We present airborne eddy-covariance observations of CO2 and CH4 fluxes 40 

collected in southern Florida as part of the NASA BlueFlux mission during April 2022, October 41 

2022, February 2023, and April 2023. The flux data generated from this mission consists of over 42 

100 flight hours and more than 6000 km of horizontal distance over coastal saline and freshwater 43 

wetlands. We find that the spatial and temporal heterogeneity in CO2 and CH4 exchange is 44 

primarily influenced by season, vegetation type, ecosystem productivity, and soil inundation. 45 

The largest CO2 uptake fluxes of more than -20 µmol m
-2

 s
-1

 were observed over mangroves 46 

during all deployments and over swamp forests during flights in April. The greatest CH4 effluxes 47 

of more than 250 nmol m
-2

 s
-1

 were measured at the end of the wet season in October 2022 over 48 

freshwater marshes and swamp shrublands. Although the combined Everglades National Park 49 

and Big Cypress National Preserve region was a net sink for carbon, CH4 emissions reduced the 50 

ecosystem carbon uptake capacity (net CO2 exchange rates) by 11-91%. Average total net carbon 51 

exchange rates during the flight periods were -4 to -0.2 g CO2-eq m
-2

 d
-1

. Our results highlight 52 

the importance of preserving mangrove forests and point to potential avenues of further research 53 

for greenhouse gas mitigation strategies. 54 

Plain Language Summary 55 

Coastal wetlands play a crucial role in trapping and storing carbon, aiding in climate change 56 

adaptation and mitigation efforts. Carbon dioxide (CO2) uptake and methane (CH4) emissions 57 

were measured from an aircraft over wetlands of southern Florida during different times of the 58 

year. Season, vegetation, and water depth were found to have a large influence on carbon 59 

exchange. Mangroves with the largest canopy heights showed the highest CO2 uptake, while CH4 60 

emissions peaked during the wet season over freshwater marshes where surface water depths 61 

were greatest. CH4 emissions diminished the overall carbon uptake capacity of southern Florida. 62 

Results emphasize the importance of preserving coastal wetland ecosystems and suggest 63 

potential directions for further research aimed at mitigating greenhouse gas emissions. 64 

1 Introduction 65 

Vegetated ecosystems mitigate the impact of anthropogenic CO2 emissions by serving as 66 

natural carbon stores (e.g., Barbier et al., 2011; Donato et al., 2011; Murdiyarso et al., 2015; 67 

Duarte 2017). The terrestrial biosphere is estimated to remove 10—40 % of the CO2 emitted 68 

from fossil fuels, and coastal aquatic vegetation removes a further 3—25% (Barbier et al., 2011; 69 

Donato et al., 2011; Murdiyarso et al., 2015; Duarte 2017; Friedlingstein et al., 2023). Coastal 70 

vegetated ecosystems have been of recent interest for “blue” carbon mitigation strategies because 71 

of their efficiency for short-term carbon storage in vegetation biomass (above- and belowground) 72 

and long-term carbon storage in soils and sediments (e.g., McLeod et al., 2011; Barbier et al., 73 

2011; Donato et al., 2011; Murdiyarso et al., 2015; Macreadie et al., 2021; Poulter et al., 2023). 74 

“Blue” carbon refers to the carbon that is captured by oceans and coastal ecosystems. Although 75 

coastal vegetated ecosystems (i.e., mangroves, salt marshes, seagrasses) cover an area equivalent 76 

to ~2% of terrestrial forest area, their carbon burial rates are 50 times faster per unit area, 77 

making the net contributions of coastal wetlands to carbon sequestration comparable to that of 78 

terrestrial forests (McLeod et al., 2011; Duarte et al., 2013). Yet these ecosystems are under 79 
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continued threat due to hurricanes, land development, and sea level rise, which contribute to a 80 

global net loss of mangroves and salt marshes at a rate of 0.13—2 % annually (McLeod et al., 81 

2011; Goldberg et al., 2020; Campbell et al., 2022; Murray et al., 2022). 82 

Understanding the climate change mitigation potential of these ecosystems requires 83 

accurate accounting of their carbon balance. Only a fraction of the CO2 taken up by coastal 84 

vegetation is sequestered in sediments via long-term carbon burial. Much of this carbon is stored 85 

in shorter-term above- and belowground biomass, re-emitted to the atmosphere through soil 86 

respiration, or transported to the ocean as particulate organic carbon (POC), dissolved organic 87 

carbon (DOC), and dissolved inorganic carbon (DIC) (Rosentreter 2018b; Sanderman et al., 88 

2018; Simard et al., 2019; Adame et al., 2021). In addition, anoxic soil conditions and 89 

methanogenic archaea in coastal vegetated ecosystems produce CH4 (e.g. Bartlett et al., 1987; 90 

Rosentreter 2018c; Al-Haj and Fulweiler, 2020).  Methane emissions have the potential to 91 

significantly offset the climate mitigation potential of coastal wetlands, as the global warming 92 

potential (GWP) of methane is 81.2 and 27.9 times greater than that of CO2 on a 20- and 100- 93 

year scale, respectively (Forster et al., 2021). Estimates of global CH4 emissions from coastal 94 

wetlands are poorly constrained, with uncertainties stemming from large regional differences, 95 

lack of direct measurements, and anthropogenic impacts on wetland disturbance and hydrology 96 

(Harrison et al., 2017; Kroeger et al., 2017; Saunois et al., 2020; Rosentreter et al., 2021).  97 

Several methods exist for quantifying carbon exchange at landscape to global scales, each 98 

with their own benefits and limitations. Concentration measurements from aircraft, ground sites, 99 

and satellites can be coupled with inverse models to provide a “top-down” inference of 100 

atmosphere-biosphere CO2 and CH4 exchange (e.g. Wang et al., 2018; Saunois et al., 2020; Ma 101 

et al., 2021; Schiferl et al., 2022; Gaubert et al., 2023). However, these top-down approaches 102 

suffer from considerable uncertainties related to atmospheric transport and heavily rely on prior 103 

assumptions for source attribution. Satellite-based top-down approaches allow for the assessment 104 

of changes in CO2 and CH4 fluxes over multiple years with global coverage, which is particularly 105 

important in areas where direct ground-based and airborne measurements are limited (e.g., 106 

Campbell et al., 2020). Satellite approaches are, however, further limited by additional 107 

uncertainties related to satellite retrievals. Bottom-up inferences of carbon atmosphere-biosphere 108 

exchange in wetlands utilize biophysical process models, inventories of biomass, and remotely 109 

sensed surface properties to indirectly calculate fluxes (Hayes et al., 2018; Saunois et al., 2020; 110 

Ma et al., 2021; Friedlingstein et al., 2022; Zhang et al., 2023). These models, however, rely on 111 

complicated parameterizations and assumptions of biological activity across a complex diversity 112 

of ecosystems and environmental conditions. This leads to large uncertainties, disagreements 113 

between different modeling approaches, and inconsistencies between top-down and bottom-up 114 

approaches (Melton et al., 2013; Pandey et al., 2021; Saunois et al., 2020; Ma et al., 2021).  115 

Alternatively, atmosphere-biosphere fluxes can also be measured directly on a variety of 116 

scales and can provide a more discerning understanding of wetland fluxes in space and time. 117 

Ground-based chamber measurements are important for quantifying process-level drivers of 118 

carbon exchange from soils, leaves, roots, and stems (e.g. Nahlik and Mitsch 2011; Marín-Muñiz 119 

et al., 2015; Troxler et al., 2015; Rosentreter et al., 2018a). Chamber water-atmosphere CH4 and 120 

CO2 fluxes coupled to measurements of water properties have identified factors controlling the 121 

cycling of carbon in mangrove-dominated Australian estuaries and tidal freshwater marshes in 122 

Veracruz, Mexico (Marín-Muñiz et al., 2015; Rosentreter et al., 20218a). These types of studies 123 

are extremely useful for linking carbon fluxes to underlying processes, but measurements are 124 
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typically only conducted for a short period of time at a limited number of sites, making upscaling 125 

these findings difficult and sensitive to statistical assumptions.  126 

Eddy covariance flux towers provide localized representations of net ecosystem exchange 127 

(NEE) fluxes over longer periods (e.g., Barr et al., 2010; Beringer et al., 2013; Malone et al., 128 

2015; Shoemaker et al., 2015; Alvarado-Barrientos 2020; Zhu et al., 2021). Such EC towers have 129 

been used to quantify the seasonality of net ecosystem CO2 exchange in mangrove forests in the 130 

Florida Everglades (Barr et al., 2010; Barr et al., 2012), the Yucatan Peninsula (Alvarado-131 

Barrientos 2020), and southeastern China (Zhu et al., 2021). But the degree to which 132 

measurements at one flux tower are representative of other sites varies, even within the same 133 

region, as environmental conditions (e.g. soil properties, inundation, leaf area, tidal influence, 134 

etc.) can vary from region to region and from site to site.  135 

Airborne eddy covariance (EC) offers a viable approach to measure fluxes over larger 136 

areas, though with a more limited temporal resolution (e.g. Crawford et al., 1996; Sellers et al., 137 

1997; Zulueta et al., 2013; Wolfe et al., 2015; Desjardins et al., 1982; Wolfe et al., 2018; Hannun 138 

et al., 2020). This technique has the advantage of elucidating heterogenous fluxes over a large 139 

region (15-100 km) at a relatively fine spatial scale (~1km). One recent application of the 140 

technique in a tropical Zambian wetland highlighted large discrepancies between land surface 141 

models and observations (Shaw et al., 2022). Zulueta et al. (2013) also utilized airborne EC to 142 

derive heterogenous CO2 fluxes over distinct ocean, mangrove, and desert ecosystems in Baja 143 

California Sur, Mexico. This latter study also utilized tower flux measurements and vegetation 144 

indices to assess the representativeness of towers and provide a simple model for scaling up to 145 

regional CO2 fluxes. However, these studies represent two of only very few that have used 146 

airborne EC to measure greenhouse gas exchange in subtropical to tropical wetlands. 147 

Here we analyze extensive airborne CO2 and CH4 flux measurements acquired over 148 

southern Florida during the NASA BlueFlux mission. Combining flux measurements and flux 149 

footprint analysis with detailed information of land surface properties, we explore the patterns in 150 

flux variability across this diverse landscape. We also utilize long-term ground-based flux 151 

datasets to provide a valuable point of comparison and a means of upscaling to estimate the net 152 

regional carbon balance. Although the definition of “blue” carbon typically only includes tidal 153 

saltwater wetlands, we also investigate carbon exchange in the freshwater wetlands within the 154 

greater Everglades coastal watershed system. These regions are also extremely influential in the 155 

carbon cycle of this coastal zone. The primary objectives of this study are to 1) elucidate the 156 

heterogeneity of atmosphere-biosphere carbon fluxes in southern Florida, 2) identify the 157 

underlying sources of this variability, and 3) provide an estimate of the net carbon balance during 158 

the sampling periods from an atmospheric perspective. In addressing each of these objectives, we 159 

identify potential avenues for applying our unique data set to addressing “blue” carbon 160 

greenhouse mitigation strategies. 161 

 162 

2 Materials and Methods 163 

2.1 BlueFlux Field Campaign 164 

BlueFlux is a NASA-sponsored effort to understand the dynamics of carbon exchange in 165 

coastal wetlands and develop long-term gridded flux estimates for science and policy 166 



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

applications. The BlueFlux field campaign was developed to provide comprehensive 167 

measurements of ecosystem carbon fluxes in southern Florida, with a special emphasis on 168 

mangroves. BlueFlux observations bridge multiple scales of biosphere-atmosphere exchange, 169 

including chamber measurements of soil and vegetation fluxes, ecosystem-scale fluxes from 170 

existing EC tower sites, airborne EC measurements across the south Florida region, and lateral 171 

aquatic carbon fluxes (Poulter et al., 2023).  Primary study regions include Everglades National 172 

Park (ENP) and Big Cypress National Preserve (BCNP) (Fig. 1). The focus of this study is the 173 

airborne EC component of the project. 174 

Southern Florida is characterized by a subtropical to tropical climate. The wet season 175 

occurs from May—October, during which conditions are hot (>30
o
C) and humid (>80% relative 176 

humidity) with frequent convective thunderstorms. The average annual rainfall is typically 177 

1000—1700 mm, with 70% of precipitation occurring during the wet season (Florida Climate 178 

Center https://climatecenter.fsu.edu/products-services/data/statewide-averages/precipitation). 179 

The dry season (November to April) is typically warm (13—22 
o
C) and dryer, with very rare 180 

winter frosts projected to decrease over time (Ross et al., 2009). Flights were performed during 181 

April 2022, October 2022, February 2023, and April 2023. April months are typically in the tail-182 

end of the dry season and beginning of the wet season, while October is considered the tail-end 183 

of the wet season. Temperatures during study months were roughly average for the area and 184 

season, and ENP and BCNP experienced an average amount of rainfall during April 2022 and 185 

October 2022. However, Hurricane Ian made landfall north of the study region on September 28, 186 

2022. There were higher observed water levels in the weeks following the hurricane at EC tower 187 

sites (EDEN, https:sofia.usgs.gov/eden). Conversely, February 2023 and April 2023 experienced 188 

below average rainfall by 26% and 73%, respectively (South Florida Water Management District 189 

https://www.sfwmd.gov/weather-radar/rainfall-historical/year-to-date). Atlantic basin hurricanes 190 

frequently pass over Southern Florida between August and November. Such hurricanes have 191 

resulted in significant alteration to the coastal wetlands of Southern Florida over the past 32 192 

years (Taillie et al., 2020). The terrain is mostly flat, with some small hills (up to 6 m above 193 

mean sea level) in the northwest portion of BCNP. 194 

 195 

2.2 Airborne flux measurements 196 

2.2.1 Flight strategy  197 

Airborne operations utilized a Beechcraft King Air A90 owned and operated by Dynamic 198 

Aviation. Deployments entailed four 2-week intensives, each consisting of 6 – 8 flights with 199 

durations of 2 – 4 hours each (~25 flight hours per deployment). A typical flight consisted of 200 

straight and level legs at an altitude of 90 m above mean sea level and a ground speed of 65 – 80 201 

m s
-1

, along with occasional overlapping legs at higher altitudes (up to 300 m) to constrain flux 202 

divergence. Vertical profiles were performed periodically (up to 3 km) to ascertain boundary 203 

layer depth. Flux legs were typically oriented across the mean horizontal wind flow, spanned 204 

lengths of 20 – 100 km, and concentrated on mangrove forests and regions of recent mangrove 205 

dieback (‘ghost’ forests) (Fig. 1) that resulted from impacts of Hurricane Irma (September 2017) 206 

(Lagomasino et al., 2021). Other considerations for flight design included overflight of existing 207 

ground sites and avoidance of nesting bird colonies and Seminole and Miccosukee tribal lands. 208 
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In total, flux transects during all deployment periods comprise more than 6000 km of linear 209 

distance.  210 

Figure 1: Flux transects from all flights between April 2022 and April 2023. Flux legs from 

April 2022, October 2022, February 2023, and April 2023 are shown in yellow, cyan, green, 

and white, respectively. The locations of five ground sites with eddy covariance towers are 

indicated with square markers.  

 211 

2.2.2 Instrument Payload 212 

The BlueFlux study utilized an upgraded version of the NASA Carbon Airborne Flux 213 

Experiment (CARAFE) platform, originally described by Wolfe et al (2018). Ambient air was 214 

sampled from a common inlet (1.3 cm stainless steel with fluoropel coating) located under right 215 

wing. The sample tube was fluorinated ethylene propylene (FEP) with an inner diameter of 0.65 216 

cm and a length of about 8 m. Gas measurements utilized two commercial Picarro closed-path 217 

analyzers. A model g2311f (hereafter, PFlux) provided continuous measurements of CH4, CO2 218 

and H2O at 10 Hz, while a model g2401m (hereafter PConc) provided measurements of CH4, 219 

CO2, H2O, and CO at 0.5 Hz. Agilent IDP3 scroll pumps maintained gas flows of ~5.5 slm and 220 

~1 slm, respectively. The greater pressure stability of the PConc (which is designed for flight) 221 

provides an accuracy standard, while the PFlux provided the fast measurements required for 222 

eddy covariance. Supplement Section S1 describes comparisons and corrections for the two 223 

instruments. The PConc was calibrated in the lab before and after each mission (see Sect 2.2.3).  224 

An Aventech Aircraft-Integrated Meteorological Measurement System (AIMMS-20) 225 

provided 20 Hz measurements of aircraft position and attitude, air temperature and pressure, and 226 

3-D wind velocities. The probe was mounted under the left wing and calibrated via the 227 

manufacturer-provided protocol at the start of each deployment. 228 
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2.2.3 Flux calculations 229 

Data from the AIMMS-20 probe (20-Hz vertical wind speed, w, and potential 230 

temperature, Θ), and the 10 Hz measurement of H2O, CO2, and CH4 were time aligned to a 231 

common 10-Hz time base and combined to determine fluxes of CH4, CO2, latent heat (LE) and 232 

sensible heat (H) using airborne eddy covariance with the continuous wavelet transform (CWT) 233 

method (Torrence and Compo, 1998; Wolfe et al., 2018). Flux legs were selected as flight 234 

segments greater than 15 km in linear distance with an aircraft roll not exceeding 5
o
 and altitude 235 

variation within ± 10 m. Scalar time series were detrended by subtracting a 40-second (~4 km) 236 

moving average and time-shifted by 0 to 3 s based on lag correlation to the vertical wind (Fig. 237 

S4). This detrending length was selected to remove non-turbulent variability and maintain the 238 

largest eddies contributing to the flux (Moncrieff et al., 2006).  239 

Following this pre-processing of the data, fluxes were calculated using CWT (Section 240 

S2). Flux data for analysis is filtered by the cone of influence (COI), i.e., the spectral region 241 

where additional errors and uncertainties may be present due to edge effects (Torrance and 242 

Compo, 1998). Data are excluded where the fraction of the cospectral power that resides within 243 

the COI is greater than 0.5. Fluxes are further filtered to exclude measurements where the 244 

friction velocity (u
*
)—as determined from momentum fluxes at aircraft height (Section 2.4.3)—245 

is less than 0.2 m s
-1

 over land, or less than 0.1 m s
-1

 over water. This criterion was selected to 246 

exclude periods with insufficient vertical mixing (e.g. Hogstrom 1988; Barr et al., 2010; Hayek 247 

et al., 2018). The selected u* filtering limits are in accordance with EC towers (Barr et al., 2010) 248 

and were verified for flight data with the method of Hayek et al., 2018. 249 

2.2.4 Uncertainties 250 

Systematic error contributions to flux uncertainties include those due to under-sampling 251 

of low frequencies (SEturb), the instrument response time which can limit detection of high-252 

frequency signals (SERT), and instrument accuracy (SEacc). SERT and SEturb were calculated 253 

according to Wolfe et al., 2018. The e-folding response time used to calculate SERT was 254 

determined through laboratory tests to be 90 ± 10 ms for the PFlux instrument—which translates 255 

to an effective cutoff frequency of 3.8 Hz. SEacc for each scalar is based on measurement 256 

accuracy. Accuracy for CH4 and CO2 measurements are 0.05%, and 0.2%, respectively, 257 

determined through laboratory calibration with WMO-grade calibration NOAA cylinders (IDs 258 

CC746186 and CA03516). The PFlux stated H2O accuracy is 0.8%. The AIMMS-20 probe has a 259 

stated accuracy of 10% for vertical wind speed.  260 

Random errors in fluxes include contributions from uncorrelated instrument noise and 261 

turbulent variability. Methods have been developed for traditional ensemble-averaged EC to 262 

represent the individual contributions of these two sources of uncertainty, as well as to 263 

empirically calculate the total random error based on the cross- and auto- covariance of scalar s 264 

and w at different time lags (e.g. Leschow et al., 1994, Finkelstein and Simms, 2001). It is not 265 

immediately obvious how these approaches are best applied to time-resolved CWT analysis. 266 

Here we propose a new method for quantifying random flux errors (RE) for CWT based upon 267 

Langford et al. (2015). In this approach, the root mean squared deviation from zero of the cross-268 

covariance between s and w is used to represent the random flux error (RE): 269 
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𝑅𝐸 =  √𝑁√(0.5 ( (𝜎𝑤′𝑠′[−Γ])
2

+ (𝑓𝑤′𝑠[−Γ])
2

+ (𝜎𝑓𝑤′𝑠′[+Γ]
)

2
+ (𝑓𝑤′𝑠′[+Γ])

2
))

2

                   (1) 270 

Here 𝑁 is the number of data points per second, 𝜎𝑤′𝑠′ is the standard deviation of the covariance 271 

(𝑓𝑤′𝑠′) and 𝑓𝑤′𝑠′ is the average cross-covariance over a time lag range of −Γ or +Γ. Primes 272 

denote deviations from the mean of w and s. We define Γ over a time lag range from one to 100 273 

data points. Here, 100 was chosen as the maximum lag considered for Γ to be representative of 274 

the integral time scale. This representation considers the variability in the cross-covariance of s 275 

and w, as well as the offset from zero related to non-turbulent trends in the data.   276 

Random flux errors vary along flux legs due to variations in turbulence and tend to be 277 

larger in magnitude for larger magnitude fluxes. For 1 Hz-averaged flux measurements, the 278 

median limit of detection (LOD), defined as twice the median random flux error, is 2.8 µmol m
-2

 279 

s
-1

 and 18.3 nmol m
-2

 s
-1

 for CO2 and CH4 fluxes, respectively. Average fluxes at 1 km resolution 280 

have a median LOD of 0.9 µmol m
-2

 s
-1

 and 5.8 nmol m
-2

 s
-1

 for CO2 and CH4 fluxes, 281 

respectively. This error is approximately a factor of three lower than that derived using the 282 

approach of Wolfe et al. (2018), which was calculated from the sum (rather than the standard 283 

deviation and mean) of the cross covariance between s and w in analogy to Finkelstein and Sims 284 

(2001). Random fluxes were also estimated experimentally over a leg on April 19, 2022, by 285 

overflowing the inlet with calibration gas. The standard deviation of the 10 Hz CO2 “flux” was 286 

0.7 µmol m
-2

 s
-1

 (mean -0.0045 µmol m
-2

 s
-1

), providing an estimation of combined instrument 287 

noise and turbulence random errors over this leg. We found the approach of Wolfe et al. (2018) 288 

Figure 2: CO2 fluxes for repeated legs over the same flight path on October, 14, 2022 (top) 

and February 8, 2023 (bottom). Colored markers represent 1 km average fluxes for the 

different legs. Solid black lines, shading, and dotted lines represent the mean flux, 1𝜎 random 

error, and 2𝜎 random error, respectively.  
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to result in an unreasonably large random flux error over the same flight track of 9.0 µmol m
-2

 s
-

289 
1
, compared with our new parameterization (3.3 µmol m

-2
 s

-1
) (Figure S11).     290 

During each flight we performed repeat flux legs over the same ground track above a 291 

mangrove forest to provide an additional test of the variability in flux measurements due to 292 

random error. Figure 2 shows 1 km averaged CO2 fluxes from repeat legs during two different 293 

flight patterns flown in October 2022 and February 2023. Leg-to-leg variability typically falls 294 

within that expected based on random errors estimated via Eqn. (1), providing further validation 295 

of the calculated random flux errors. 296 

We include an additional uncertainty estimate from the vertical divergence of fluxes (see 297 

Supplementary Information Section S5). During each flight we performed vertically stacked legs 298 

to estimate the change in flux with altitude and allow for extrapolation of fluxes to the surface. In 299 

most cases the differences in calculated surface fluxes and fluxes measured at the aircraft altitude 300 

(< 100 m) were not statistically significant (𝛼 = 0.05, two-sided t-test). This is not surprising, as 301 

the aircraft altitude was typically in the lowest 10 % of the boundary layer. We therefore assume 302 

that the surface fluxes are equal to the aircraft altitude fluxes and include the difference between 303 

the extrapolated surface flux and flux measured at the aircraft altitude as an additional systematic 304 

error. We do not correct the reported fluxes for the calculated surface flux divergence because 305 

this correction uncertainty is typically much larger in magnitude than the correction itself, which 306 

would thus introduce even greater uncertainty. The magnitudes of all contributing flux errors are 307 

shown in Figure S12. The largest sources of systematic uncertainty are divergence effects (IQR 308 

3-30%) and SEacc (10%). The effect of RE is small when averaged over a flux leg (IQR 1-5% 309 

uncertainty), but large for 1 Hz fluxes (IQR 30 – 60 % uncertainty) 310 

2.3 Flux towers 311 

Several flux towers located in the Everglades regions of southern Florida measure half-312 

hourly fluxes of CO2, CH4, sensible heat (H), and latent energy (LE) using the eddy covariance 313 

method. These towers are part of the Florida Coastal Everglades Long-Term Ecological 314 

Research (FCE LTER) Network and the AmeriFlux tower networks. Towers are located along 315 

the Shark River Slough (SRS) and the Taylor Slough/Panhandle (TS/Ph) (Fig. 1) hydrologic 316 

gradients (Barr et al., 2010; Malone et al., 2015) and are representative of freshwater marsh 317 

(SRS-2), freshwater marsh prairies (TS/Ph-1), mangrove forests (SRS-6) and mangrove scrub 318 

(TS/Ph-7). These EC towers measure vertical wind speed and virtual temperature with 3D sonic 319 

anemometers (SRS-6: model RS-50, Gill Co., Lymington, England; SRS-2, TS/Ph-7, and TS/Ph-320 

1: CSAT 3B, Campbell Scientific Inc., Logan, Utah). CO2/H2O (LI-7500) and CH4 (LI-7700) are 321 

measured at 20 Hz with open path infrared gas analyzers (LI-COR, Inc., Lincoln, Nebraska).  322 

2.4 Flux decomposition by land classification 323 

Southern Florida is a heterogenous landscape with a wide range of vegetation types. 324 

Vegetation phenology, quantity, and productivity modulate CO2 uptake. Other features like 325 

salinity, water levels, surface water extent, tides, inundation period, and soil moisture can lead to 326 

changes in CH4 emission fluxes and biological CO2 respiration. We consider several 327 

geographical data sets to identify some of the causes of the observed variability in GHG fluxes 328 

across the flight domain.  329 
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2.4.1 Vegetation coverage 330 

Land cover and vegetation information for ENP and BCNP was obtained from Ruiz et al. 331 

(2019, 2021) and Whelan et al. (2020). Land classifications based on these data sets included 16 332 

different classes (Fig. 3) at 50 m spatial resolution. Dominant land classifications sampled during 333 

BlueFlux over ENP and BCNP were freshwater marsh (21%), mangrove forest (17%), mangrove 334 

scrub (10%), mangrove shrubland (6.6%), salt marsh (2.2%), swamp forest (6.9%), swamp scrub 335 

(7.5%), swamp shrubland (5.7%), and upland forest (3.5%). The “Ghost Forest” land class was 336 

added to identify where mangrove forests experienced extensive die-offs by drowning following 337 

Hurricane Irma in 2017 (Lagomasino et al., 2021). Ghost forests constituted 2.2% of all land 338 

classes sampled, and 13% of the mangrove forest sampled. Dominant vegetation species found in 339 

each class are listed in Supplementary Information Section S3. Some flight tracks are outside of 340 

the ENP and BCNP boundaries and are therefore not included in the vegetation analysis.  341 

2.4.2 Other surface characteristics 342 

Remotely sensed satellite products of enhanced vegetation index (EVI), normalized 343 

difference vegetation index (NDVI), leaf area index (LAI), the fraction of photosynthetically 344 

active radiation (400-700 nm) absorbed by green vegetation (FPAR), and soil moisture were 345 

obtained over South Florida as an average for each flight month. The vegetation indices were 346 

obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra 347 

satellite at a resolution of 250 m (Didan et al., 2015). LAI and FPAR were acquired from the 348 

combined MODIS Terra + Aqua land data products at 500 m resolution (Myneni et al., 2015). 349 

Figure 3: Map of vegetation coverage for the Everglades National Park (ENP) and Big 

Cypress National Preserve (BCNP) regions. Figure adapted from Ruiz et al. (2019, 2021) and 

Whelan et al., (2020). The ghost forest area was adapted from Lagomasino et al. (2021). 

Numbers following the vegetation types in the figure legend denote the area of each region in 

units of km
2
. Black solid lines denote the boundaries of ENP in the south and BCNP in the 

north.   
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The Soil Moisture Active Passive mission (SMAP) provided a remotely sensed soil moisture 350 

product at 9 km resolution (O’Neil et al., 2023). Above ground biomass density (AGBM) and 351 

canopy heights for the study region were estimated from the Global Ecosystem Dynamics 352 

Investigation (GEDI) Lidar 2021 data products at 1 km resolution (Dubayah et al., 2021, 2023).  353 

The Everglades Depth Estimation Network (EDEN, https:sofia.usgs.gov/eden) provides a 354 

long-term daily estimate of surface water-level. This data set consists of surface water depth 355 

estimates at 400 m resolution obtained from a model that interpolates measurements from a 356 

dense network of water gauges through the Everglades and water management areas of South 357 

Florida (Haider et al., 2020). 358 

2.4.3 Footprint analysis  359 

Figure 4: (Left) a single flux transect at 90 m altitude from the flight on April 19, 2023 

superimposed on the map of vegetation cover. The shaded area shows the cumulative footprint 

containing the area contributing to 90% of the flux signal. (Right) A single footprint at the 

measurement location marked with the star. Contours depict the weighted contributions to the 

observed flux from 10% to 90% in 10% increments. Background colors denote land 

classification (Fig. 2).  

Along each flux segment below 100 m altitude we computed a 2D flux footprint that 360 

expresses the relative contribution of each upwind surface element to the observed flux. This 361 

footprint analysis is detailed in Hannun et al. (2020). Briefly, to compute the flux footprint we 362 

used the parameterization of Kljun et al. (2015) based on a Lagrangian stochastic particle 363 

dispersion model (Kljun et al., 2002). Inputs to the 2D footprint calculation include the 364 

measurement height, mean horizontal wind speed (U), planetary boundary layer (PBL) height, 365 

the Obukhov length (LOB), standard deviation of the lateral velocity fluctuations (𝜎𝑣), and the 366 

friction velocity (u
*
). For these calculations we used the PBL height obtained from the High-367 

Resolution Rapid Refresh (HRRR) 3 km product interpolated along our flight track. HRRR PBL 368 

height was validated against single-point determinations of actual PBL height based on 369 
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observations of trace gas vertical profiles during each flight. We calculated u
*
 from the 370 

momentum fluxes of the horizontal winds u and v (also determined with the CWT) and validated 371 

u
* 
with measurements from the Everglades network of EC towers (Fig. S13 and S14). The flux 372 

footprint was then rotated into the mean wind direction and translated to geographical 373 

coordinates. Example flux footprints along a flight track are shown in Figure 4. For segments 374 

below 100 m altitude, 90 % of the flux signal is contained within a region 1—2 km up wind of 375 

the measurement location over land. Footprints are typically larger over water, with 90% of the 376 

flux signal contained within 5 km of the measurement point.  377 

2.4.4 Flux disaggregation  378 

The observed flux contains contributions from the fluxes of different land classes 379 

contained within the flux footprint. To derive the mean flux for each vegetation type over a set of 380 

flux observations (e.g., flux leg, single flight, or period of deployment), we used the method 381 

described in Hannun et al. (2020). This method utilizes the Disaggregation combining Footprint 382 

analysis and Multivariate Regression (DFMR) technique of Hutjes et al. (2010). Here the 383 

observed flux is treated as a linear combination of component fluxes from each land class within 384 

the footprint, such that: 385 

𝐹𝑜𝑏𝑠 =  ∑ 𝐶𝑘𝐹𝑘
𝑛
𝑘=1                                               (6) 386 

𝐶𝑘 is the fractional contribution of the k
th

 land class to the flux footprint, and 𝐹𝑘 is the average 387 

flux from the corresponding land class over the observation period. 𝐶𝑘 for each 1 Hz flux 388 

observation was determined by overlaying the footprint function onto a gridded map of land 389 

cover (Fig 3, Fig 4) and weighting by the contribution of each grid cell to the observed flux 390 

(areas closer to the measurement point contribute more heavily to the measurement). 𝐹𝑘 was 391 

calculated via multilinear regression of 𝐹𝑜𝑏𝑠 versus 𝐶𝑘 for each land class that constituted more 392 

than 25% of the flux footprint over more than 10 linear km of cumulative (but not necessarily 393 

consecutive) observations. This criterion was selected to ensure sufficient sampling of each land 394 

class during the observation period.  The regions that met this criterion were mangrove forests, 395 

mangrove scrub, mangrove shrubland, ghost forest, salt marsh, freshwater marsh, swamp shrub, 396 

swamp scrub, swamp forest, and upland forest. 397 

Uncertainty in mean fluxes for each land class was calculated as the statistical uncertainty 398 

in the regression. Random and systematic errors, as well as the calculated divergence correction 399 

(summed in quadrature to yield the total uncertainty) for each flux observation were also 400 

propagated through the regression analysis. We do not include uncertainties in the land surface 401 

data or the footprint analysis, as we expect these to be comparatively small (Hannun et al., 2020).   402 

Disaggregation of fluxes from additional categorical land data were computed using the 403 

same method as for vegetation data. Continuous numerical land cover data, such as NDVI, do 404 

not require multivariate regression to disaggregate fluxes. After superimposing the footprint 405 

function onto the geographical data set, the footprint weighted average of the land cover data can 406 

simply be calculated at each 1 Hz observation in the same manner as for fractional land class 407 

contributions (e.g., Ck).  408 

3 Results and Discussion 409 
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3.1 Heterogenous CWT-derived Fluxes 410 

Figure 5: Spatial distribution of (top) CO2 and (bottom) CH4 1 km averaged fluxes over flight 

legs below 100 m altitude for all seasons. Here negative fluxes denote uptake and positive 

fluxes represent emission. Flux rates are color coded to scale below maps. Larger CO2 uptake 

fluxes appear as darker colors, while larger CH4 emissions appear as brighter colors 
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The airborne CWT derived fluxes measured below 100 m flight altitude are shown in 411 

Figure 5. Negative and positive fluxes represent uptake and emission by the surface, 412 

respectively. These fluxes provide a measurement of the net ecosystem exchange (NEE) of CO2 413 

and CH4, as the aircraft samples the net canopy exchange (photosynthetic uptake, respiration, 414 

and storage) of carbon.  Downward (i.e., uptake) CO2 fluxes are largest (less than -15 µmol m
-2 

s
-

415 
1
) during all flight periods over mangrove forests in the southwest portion of the flight domain, 416 

near 25°30’ N and 81° W. During both April deployments, high rates of CO2 uptake were also 417 

observed in the northwest quadrant over the swamp and upland forests of BCNP.  418 

Methane fluxes also demonstrate significant spatial heterogeneity during all deployment 419 

periods. The largest methane fluxes (greater than 200 nmol m
-2

 s
-1

) occur in the northeast portion 420 

of the flight domain over freshwater marshes. High CH4 emissions also appear in a band just 421 

inland of the west coast in the transition region between mangroves and marshlands (Fig 3, Fig 422 

5).   423 

3.2 Drivers of CO2 uptake and CH4 emission 424 

3.2.1 Vegetation class 425 

Figure 6: CO2 and CH4 fluxes disaggregated by land class for all flights during April 2022, 

October 2022, February 2023, and April 2023. Fluxes are grouped by vegetation coverage. 

Error bars represent ±1σ uncertainty in the component flux, which includes systematic, 

random, and divergence flux uncertainties propagated through the regression analysis, in 

addition to the regression residuals, which also reflect the variability in carbon fluxes for each 

vegetation regime.  
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Figure 6 shows that CO2 and CH4 fluxes clearly and consistently vary according to the 426 

underlying vegetation type. In some cases, there is also an apparent seasonality in the fluxes. 427 

Disaggregated fluxes demonstrate that the largest fluxes of CO2 uptake were observed for 428 

mangrove forests, salt marshes and swamp forests. The greatest CH4 emissions were consistently 429 

measured over freshwater marshes and swamp shrublands. Below we discuss in detail the 430 

patterns in observed carbon exchange for mangrove, salt marsh, freshwater wetlands, and upland 431 

ecosystems.  432 

 433 

Mangroves 434 

Mangrove forest CO2 fluxes did not exhibit much variation over the different sampling 435 

months, with the largest average uptake rate of -11 ± 4 µmol m
-2 

s
-1

 observed during February 436 

2023. These fluxes are consistent with the range of  -5 to -18 µmol m
-2 

s
-1

 uptake observed in the 437 

Yucatan during 2017—2018 from an eddy-flux tower (Alvarado-Barrientos et al., 2021). Large 438 

peak daily fluxes of -13 to -20 µmol m
-2 

s
-1 

and -17.1 to -19.9 µmol m
-2 

s
-1 

have been observed in 439 

coastal southeastern China (Zhu et al., 2021) and near Hong Kong (Liu and Lai 2019), 440 

respectively. Weak seasonality of CO2 fluxes was also observed in both other regions. We 441 

regularly observed fluxes of -17 to -22 µmol m
-2 

s
-1 

near the SRS-6 tower site in southwestern 442 

ENP, where previous studies have reported the highest mangrove above-ground biomass and 443 

productivity (Castañeda-Moya et al., 2013; Danielson et al., 2017; Rivera-Monroy et al., 2019) 444 

(Fig. 5, Fig S17, Fig S18). Barr et al. (2010) reported peak uptake values between -15 and -25 445 

µmol m
-2 

s
-1 

at the SRS-6 tower site prior to Hurricane Wilma in 2005, suggesting the strong 446 

carbon sink capacity of these riverine mangroves. Our smaller average midday CO2 fluxes 447 

compared with other regions of mangroves may in part be due to lasting effects of past 448 

hurricanes. Hurricane Andrew in 1992 had devastating impacts on mangrove forests (Smith et 449 

al., 2005). Although trees recovered, canopy heights are still lower in some areas than pre-450 

Andrew levels. High winds and large storm surges from Hurricane Irma in 2017 also created 451 

ghost forests and caused additional canopy height loss (Lagomasino et al., 2021). 452 

Average mangrove shrub CO2 fluxes were very similar to the -8.11 µmol m
-2 

s
-1

 fluxes 453 

measured for mangroves of similar heights and speciation in Baja California Sur, Mexico 454 

(Zulueta et al., 2013). Lesser average uptake of -3 to -5 µmol m
-2 

s
-1

 was measured for mangrove 455 

scrub systems, which have a lower average canopy height (< 2 m) compared to mangrove 456 

shrublands (2-5 m) and forests (>5 m). The mangrove shrublands exhibit greatly reduced CO2 457 

uptake during October 2022. The cause of this reduction in productivity is unclear but may be 458 

due to either increased freshwater inundation during the wet season, or differences in flight paths 459 

and conditions that led to more limited sampling of mangrove shrublands during October 2022. 460 

If the first explanation was the cause, we would likely have also seen an effect in mangrove 461 

scrub fluxes. Mangrove shrublands contributed half as much to the total cumulative flux 462 

footprints during October 2022 as the other deployment periods, making it difficult to rule out 463 

sampling bias. A single flight on October 17, 2022, comprised half of the sampled mangrove 464 

shrublands (Table S1). This particular flight resulted in a uniquely low estimate for the CO2 465 

fluxes for mangrove shrublands (Table S2). If this flight were omitted from the October 2022 466 

mangrove shrubland disaggregation calculation, the average CO2 for this vegetation class during 467 
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October 2022 would be -8 ± 4 µmol m
-2 

s
-1

, similar to the estimates for the other sampling 468 

periods.  469 

Measured CH4 fluxes likely integrate contributions of water-atmosphere fluxes from 470 

mangrove tidal creeks and sediment-atmosphere fluxes. Insignificant CH4 emissions were 471 

measured for mangrove forests except during the October 2022 (end of wet season) period of 472 

high inundation, when average CH4 fluxes were 29 ± 16 nmol m
-2

 s
-1

 (Fig. 6, lower panel). 473 

Fluxes from mangrove scrubs and shrublands were also higher in October 2022, though these 474 

areas tended to have larger dry-season CH4 fluxes, ranging from 8 to14 nmol m
-2

 s
-1

 among 475 

mangrove scrub and from -4 to 9 nmol m
-2

 s
-1

 for mangrove shrublands. Rosentreter et al. 476 

(2018a) observed a similar range of 0.5—12 nmol m
-2

 s
-1

 (40—1000 µmol m
-2

 d
-1

) water-477 

atmosphere exchange from flux chambers at three sites in Australia, with the highest fluxes 478 

during the wet season. Much larger fluxes from mangrove soils of 110 ± 180 nmol m
-2

 s
-1

 (150 ± 479 

250 mg m
-2

 d
-1

) were observed during the wet season in India (Jha et al., 2014), and CH4 fluxes 480 

from soils ranged from 0.02 to 88 nmol m
-2

 s
-1 

at four mangrove sites in Taiwan
 
(Lin et al., 481 

2020). There is a large variability of CH4 emissions from mangrove waters and soils that have 482 

been reported, with an estimated global average of 3.9 ± 1.2 nmol m
-2

 s
-1

 (339 ± 106 µmol m
-2

 d
-

483 
1
) (Rosentreter et al., 2021).  484 

Mangrove ghost forests predictably did not take up CO2. In these areas there had been a 485 

high tree mortality rate and massive defoliation post-Irma, without signs of recovery three years 486 

post-storm (Xiong et al., 2022). CO2 exchange was not statistically different from zero during the 487 

first three deployment periods, but ghost forests served as a small source of CO2 (1.1 ± 0.8 µmol 488 

m
-2 

s
-1

) during April 2023. It should be noted that during this deployment period we more heavily 489 

targeted ghost forests, particularly during the flight on April 18, 2023 (Table S1). Ghost forests 490 

were a methane source across all deployment months, particularly during October 2022 when we 491 

observed an average emission rate of 51 ± 27 nmol m
-2

 s
-1

. During this period ghost forests 492 

emitted more CH4 than any of the intact mangrove areas. Higher CH4 emissions and eliminated 493 

CO2 uptake from ghost forests highlights the importance of mangrove preservation for mitigation 494 

of carbon emissions, and the potential for additional GHG emissions as hurricanes and coastal 495 

development continue to threaten mangrove communities globally. This is particularly 496 

significant in south Florida mangrove communities, given the high tropical storm recurrence 497 

frequency in this region and the significant impacts of past hurricanes on forest structure and 498 

productivity (Danielson et al., 2017; Rivera-Monroy et al., 2019; Lagomasino et al., 2021; Xiong 499 

et al., 2022; Chavez et al., 2023).  500 

Saltwater Marshes 501 

Average daily NEE for saltwater marshes ranged from -6 to -12 µmol m
-2 

s
-1 

with no 502 

statistically significant seasonality. Similar fluxes of -6.7 ± 5.5 µmol m
-2 

s
-1

 (winter—spring) and 503 

-7.9 ± 6.4 µmol m
-2 

s
-1 

were observed from an eddy-covariance tower in a tidal salt marsh in 504 

Brazil (Souza et al., 2022). An NEE range of -5 to -15 µmol m
-2 

s
-1 

was also recorded at a 505 

subtropical estuarine marsh in Taiwan (Lee et al., 2015).  506 

CH4 fluxes from saltwater marshes were insignificant, except during February 2023, 507 

when CH4 fluxes were -11 ± 4 nmol m
-2

 s
-1

. Saline marshes typically emit less CH4 than 508 

freshwater marshes because sulfate reduction dominates over methanogenesis during 509 
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decomposition of organic matter (Bartlett et al., 1987). Low methane emission fluxes of 0.08 ± 510 

0.02 nmol m
-2

 s
-1 

(0.04 ± 0.01 g m
-2 

yr
-1

) have also been observed in a tropical region of 511 

northwest Australia (Iram et al., 2021). In general, a large range of methane emissions from salt 512 

marshes has been observed globally (-1 to 1090 nmol m
-2 

s
-1

, -92 to 94,000 µmol m
-2 

d
-1

), with an 513 

estimated average of 2.6 nmol m
-2 

s
-1

 (224 µmol m
-2 

d
-1

) (Al-Haj and Fulweiler, 2020).  514 

The reason for the different net CH4 and CO2 fluxes during each deployment is not 515 

immediately obvious. Methane and CO2 soil respiration fluxes in salt marshes are known to be 516 

influenced by tidal cycles (Kristensen et al., 2008; Rosentreter et al., 2018c; Iram et al., 2021) 517 

and it is possible that our flight data were skewed by sampling different tidal regimes. Methane 518 

uptake due to increased oxidation by methanotrophic bacteria has also been observed during the 519 

dry season of a coastal wetland in China (e.g. Hao et al., 2020). It is possible that abnormally low 520 

rainfall during February 2023 in southwest Florida contributed to the more significantly negative 521 

methane fluxes during this period.  522 

Freshwater Marshes and Swamplands  523 

Freshwater marshes, swamp forests, swamp scrub, and swamp shrublands are all 524 

considered freshwater wetlands. Their different classifications reflect differences in vegetation 525 

composition and distribution, with a higher percentage of tall tree cover for swamp forests and a 526 

higher percentage of grasses in freshwater marshes (Section S3). The Shark River Slough, Taylor 527 

Slough, and several other sloughs that flow through the Big Cypress Swamp connect these areas 528 

with the saltwater tidal wetlands. CO2 uptake fluxes were relatively low over freshwater marshes 529 

(-2.9 to -3.6 µmol m
-2 

s
-1

), with a weak seasonality. Similar daily peak fluxes for two freshwater 530 

marsh sites in ENP were observed using chamber measurements in 2008—2009 (Schedlbauer et 531 

al., 2012). The relatively low CO2 fluxes for freshwater marshes are likely due to the lower LAI 532 

and biomass for grasses than for regions containing larger shrubs and trees (Fig. 6, Fig S17, Fig 533 

S18). Inundation also plays a significant role in these systems, causing a decline in 534 

photosynthesis with increasing length of flooding (Zhao et al., 2021). CO2 fluxes in swamp 535 

shrublands were larger than in freshwater marshes, with a weak seasonality. These areas consist 536 

of a variety of evergreen tree species in a matrix of grasses (Supplementary Information Section 537 

S3). Average fluxes to swamp shrublands were more uncertain in April 2023, likely due to less 538 

area sampled than during other deployment periods (Table S1).  539 

Many of the freshwater wetland regions of the Everglades, particularly freshwater 540 

marshes and swamp shrublands, contain periphyton mats in the water. These periphyton mats 541 

grow during the wet season and during periods of inundation, when they are active in fixing CO2 542 

from the atmosphere as calcium carbonate (Schedlbauer et al., 2012). The balance of CO2 uptake 543 

from plant and periphyton communities, CO2 emission from soils and waters, and the effect of 544 

inundation on these processes likely drives observed temporal changes in CO2 exchange.  545 

CO2 fluxes from swamp forests were largest during April 2022 and April 2023 (-10 ± 5 546 

µmol m
-2 

s
-1

 and -10 ± 4 µmol m
-2 

s
-1

, respectively), during the dry- to wet-season transition 547 

period, with much smaller fluxes observed during October 2022 and February 2023 (-4 ± 2 µmol 548 

m
-2 

s
-1

 and -3 ± 2 µmol m
-2 

s
-1

, respectively) when the sun was lower and temperatures were 549 

cooler. Similar seasonality can be seen for swamp scrub. Swamp forests and swamp scrub 550 

vegetative regions are dominated by deciduous bald cypress trees (Ruiz et al., 2021). The 551 
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majority of these conifers were observed to either lack leaves or had brown needles during 552 

October and February flights. 553 

CH4 emissions were largest for freshwater marshes and swamp shrublands, with the 554 

largest emissions in October 2022 during the tail end of the wet season when soils were 555 

inundated. Average October 2022 fluxes for freshwater marshes, swamp forests, swamp scrubs, 556 

and swamp shrublands were 59 ± 26 nmol m
-2 

s
-1

, 52 ± 24 nmol m
-2 

s
-1

, 33 ± 18 nmol m
-2 

s
-1

, and 557 

69 ± 29 nmol m
-2 

s
-1

, respectively. Much larger CH4 fluxes of 42—1200 nmol m
-2 

s
-1

, (44—1244 558 

mg C-CH4 m
-2

 d
-1

) have been recorded in both marsh and forested wetland areas of Veracruz, 559 

Mexico (Marín-Muñiz et al., 2015) and Costa Rica (Nahlik and Mitsch 2011). More comparable 560 

CH4 emission rates of 48—290 nmol m
-2 

s
-1 

(0.05—0.3 g C-CH4 m
-2

 d
-1

) during periods of 561 

inundation, and 2 ± 1 nmol m
-2 

s
-1 

(0.002 ± 0.001 g C-CH4 m
-2

 d
-1

) during dry conditions were 562 

recorded from an eddy flux tower in the Pantanal wetland of Brazil (Dalmagro et al., 2019). 563 

Recently, Murguia-Flores et al. (2023) identified a median (IQR) CH4 emission rate for tropical 564 

shallow-water inland wetlands of 39.2 (7.1—180.7) nmol m
-2 

s
-1

, or 40.6 (7.4–187.3) g C-CH4 m
-

565 
2
 d

-1
. Our measurements from freshwater wetlands in southern Florida fall within this range and 566 

close to the reported median. 567 

Upland Woodlands 568 

Upland woodlands exhibited a moderately high NEE ranging from -4 to -8 µmol m
-2 

s
-1

. 569 

A similar range (-6 to 12 µmol m
-2 

s
-1

) of NEE for slash pine plantations in subtropical Australia 570 

was also observed across wet and dry seasons (McGowan et al., 2020). This vegetation region 571 

also demonstrates a similar but less pronounced seasonal cycle of CO2 fluxes as swamp forests. 572 

Although most of the upland woodlands in this region are dominated by evergreen slash pine, 573 

this seasonality may be caused by variations in PAR and by the presence of some semi-574 

deciduous species, such as laurel oaks. It is also possible that the productivity of flood-intolerant 575 

upland woodland species was somewhat suppressed during October 2022 at the tail of the wet 576 

season when water levels were relatively high (Fig S17). Reduction of NEE for October 2022 577 

could have also been driven by increased soil respiration during the wet season when soil 578 

moisture was higher (Fig S17), (Orchard and Cook 1983, Hawkes et al., 2016).  579 

Methane fluxes from upland woodlands were undetectable in April 2022, and were 580 

slightly negative at -9 ± 4 nmol m
-2 

s
-1 

and -9 ± 5 nmol m
-2 

s
-1 

for February 2023 and April 2023, 581 

respectively. Similar negative fluxes have also been observed during the dry season in tropical 582 

upland forests in Costa Rica (Nahlik and Mitsch, 2011). In contrast, a large positive flux of 583 

methane (40 ± 19 nmol m
-2 

s
-1

) was observed during October 2022. Wet season methane 584 

emissions have been observed in upland regions of tropical and subtropical regions elsewhere, 585 

when upland forests and woodlands can switch from being a methane sink to a methane source 586 

(Megonigol and Guenther, 2008).  587 

3.2.2 Other surface properties 588 

Within each vegetation land classification, there still exists substantial surface 589 

heterogeneity. For example, comparing the extent of mangrove forests (Fig. 2) with the maps of 590 

observed fluxes (Fig 5), it is apparent that this ecosystem exhibits a range of midday fluxes, even 591 

within the same month. The interquartile range of CO2 fluxes observed where the footprint 592 
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consists of 80% mangrove forest is -15.1 to -6.5 µmol m
2
s

-1
 during April 2022. Similarly, the 593 

interquartile range of CH4 fluxes observed where the footprint consists of 80% freshwater marsh 594 

is 13 to 73 nmol m
2
 s

-1
 during April 2022. Vegetation type alone explains 35 - 53% of variability 595 

in observed fluxes (Fig S16). Variability in the underlying drivers of CO2 and CH4 exchange 596 

within an ecosystem type also influences heterogeneity in fluxes. For example, the range of LAI 597 

for footprints containing 80% or more mangrove forests in April 2022 was 1.9 to 6.3 m
2
/m

2
 and 598 

the range of canopy heights was 5—20 m. For footprints containing 80% or more freshwater 599 

marsh in October 2022, the range of water depths was 6—97 cm.  600 

Spearman’s correlation coefficients between 1 km averaged GHG fluxes and a variety of 601 

surface and atmospheric variables are shown in Table 1. For surface data sets (LAI, FPAR, EVI, 602 

NDVI, Canopy Height, AGBM, soil moisture, and water depth) correlation coefficients are 603 

calculated between GHG fluxes and footprint weighted variables. Vapor pressure deficit (VPD), 604 

temperature (T), and relative humidity (RH) are based on airborne temperature and water vapor 605 

measurements. Photosynthetically active radiation (PAR) was estimated from the NOAA High-606 

Resolution Rapid Refresh (HRRR) Model product at 3 km resolution interpolated to the 1 km 607 

averaged flight tracks. Spearman’s correlation coefficients were used over Pearson’s coefficients 608 

because many of the relationships between the environmental and surface variables are non-609 

linear (Fig. 7, Fig 8).  610 

The strongest predictors of CO2 fluxes for all flux data were LAI and FPAR (Table 1, Fig 611 

7). However, within mangrove ecosystems (forest, shrublands, and scrub), canopy height and 612 

above ground biomass had the most robust relationship with CO2 fluxes. In contrast, CH4 fluxes 613 

over all flight tracks and over freshwater marshes both correlate best with EDEN water depth 614 

(Table 1, Fig 8). The largest CH4 fluxes and EDEN water depths were over water management 615 

Table 1: Spearman’s correlation coefficients for GHG fluxes and surface properties. 

 

Data set CO2 all CO2 mangrove
a,b

 CH4 all CH4 freshwater marsh
a 

LAI -0.52 -0.36 -0.16 -0.02 

FPAR -0.52 -0.39 -0.07 0.07 

EVI -0.51 -0.51 -0.23 -0.17 

NDVI -0.46 -0.51 -0.14 0.06 

Canopy Height -0.35 -0.54 -0.33 -0.11 

AGBM -0.35 -0.54 -0.27 -0.13 

Soil moisture 0.17 0.05 0.27 0.16 

water depth 0.18 -0.33 0.53 0.44 

PAR -0.14 0.03 -0.10 -0.11 

VPD -0.32 -0.12 -0.02 -0.07 

T -0.06 0.02 -0.05 0.13 

RH 0.25 0.12 -0.02 0.15 

a. Considering footprints consisting of more than 80% of the given land type. 

b. All mangrove ecosystems (forest, shrubland, scrub) are combined. 
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regions outside of ENP or BCNP boundaries (Fig 3, Fig 5, Fig S17). The influence of water on 616 

the methane emissions is not surprising, as numerous studies have observed larger methane 617 

emissions in coastal wetlands during the wet season when soils are inundated and conditions in 618 

the soil become more anaerobic and ideal for methanogenesis (e.g. Nahlik and Mitsch 2011; 619 

Beringer et al., 2013; Marín-Muñiz et al., 2015; Dalmagro et al., 2019; Hondula et al., 2021). 620 

This relationship confirms that higher CH4 fluxes during October 2022 were likely due to 621 

inundation. This flight period occurred following Hurricane Ian. Analysis of EDEN water data 622 

sets since 2002 suggests that water levels were slightly elevated relative to the October average, 623 

but comparable to many other years on record (Fig S19).  624 

Interestingly, we observe a slightly negative relationship between VPD and CO2 flux. 625 

This is likely both due to the generally high humidity and water availability in the region (50—626 

90%) and because VPD was higher during the April months when there was greater sunlight 627 

Figure 7: Relationships between CO2 flux and leaf area index (LAI) (a, b) and between CO2 

flux and Canopy Height (c, d) for all 10 second averaged data (a, c), and for data where 

footprints were comprised of 80% mangroves (mangrove forests, mangrove shrublands, and 

mangrove scrubs) (b, d). CO2 data are averaged over 0.25 m
2 

m
-2

 LAI bins or 2 m canopy 

height bins. Solid black, blue, magenta, turquoise, and red lines are the average for all flights, 

April 2022, October 2022, February 2023, and April 2023, respectively. Shaded areas are the 

95% confidence interval of the mean.  



manuscript submitted to Journal of Geophysical Research: Biogeosciences 

 

availability and the deciduous bald cypress trees were green. Similar relationships between VPD 628 

and mangrove NEE have also been reported for mangroves in the Yucatan (Alvarado-Barrientos 629 

et al., 2020).  630 

Some relationships between fluxes and environmental variables likely come about 631 

because of redundant and non-causational correlations. For example, the negative relationship 632 

between canopy height and CH4 fluxes, are likely due to correlations between surface variables. 633 

In this case, greater canopy height likely does not cause lower CH4 emissions, but areas with 634 

greater canopy heights are often mangrove forests and areas with less surface water extent where 635 

there are low CH4 emissions. Many of the variables tested, such as EVI, NDVI, Canopy Height, 636 

LAI, and AGBM also co-vary with each other. 637 

The relationships between remotely sensed vegetation and soil properties and carbon 638 

fluxes demonstrate the potential predictive power of remote sensing for greenhouse gas fluxes. 639 

Incorporation of remotely sensed data sets into a predictive machine learning model of southern 640 

Florida CO2 and CH4 fluxes is a part of ongoing work.  641 

Figure 8: Relationships between CH4 flux and EDEN surface water depth all 10 second 

averaged data (a), and for data where footprints were comprised of 80% freshwater marsh (b). 

CH4 fluxes are averaged over water depth in 5 cm bins. Solid black, blue, magenta, turquoise, 

and red lines are the average for all flights, April 2022, October 2022, February 2023, and 

April 2023, respectively. Shaded areas are 95% confidence intervals. All 10-second averaged 

data include areas outside of the national park boundaries where vegetation data area available.  

 642 

3.3 Flux tower comparisons 643 

Comparison of airborne fluxes to EC flux tower measurements requires careful 644 

consideration of flux footprints (Hannun et al., 2020). Only one flight had a flux footprint that 645 

directly overlapped with the mangrove forest tower site (SRS-6) while that tower site was active, 646 

and measurements only overlapped for several seconds, making a direct comparison with the 647 

flux towers impossible. Indirect comparison of airborne and EC tower fluxes is complicated by 648 

surface variability and resulting heterogeneity of fluxes. Each airborne flux footprint typically 649 
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consisted of several vegetation types and a further range of surface properties (LAI, canopy 650 

heights, soil moisture, surface water extent, etc.). In contrast, the EC tower footprints typically 651 

covered only single ecosystem type with greater homogeneity.  652 

We indirectly compare the average monthly fluxes of CH4 and CO2 from eddy covariance 653 

tower ground sites (when available) to airborne flux measurements with footprints consisting 654 

primarily of similar surface properties as the ground sites. Airborne CO2 and CH4 fluxes were 655 

averaged over all flight days during a given month after selecting for data that met certain criteria 656 

for comparison with the EC tower. For CH4 flux comparisons with SRS-2 and TS/Ph-1, airborne 657 

data were filtered to only include points where freshwater marsh constituted more than 80% of 658 

the footprint and the footprint weighted average water depth was within 10 cm of the EC tower 659 

for the given month (Table S6). For SRS-6 comparison, airborne fluxes were included in the 660 

average if footprints contained more than 80% mangrove forest. Airborne CO2 fluxes were 661 

averaged during each flight day where footprints constituted over 80% of the EC tower land 662 

classification and had a footprint weighted LAI within 1 m
2
/m

2
 of the EC tower footprint LAI for 663 

the given month (Table S7). EC tower fluxes were averaged for all available data during a given 664 

month from 10:00—17:00 local time (LT).  665 

Comparisons indicate relatively good agreement between EC flux tower and airborne 666 

flux measurements (Fig. 9). These comparisons provide a validation of our airborne CWT fluxes, 667 

as well as confirm that surface water extent, LAI, and vegetation class indeed capture much of 668 

the observed variability in carbon exchange. Tower comparisons with latent heat (LE) and 669 

sensible heat (H) are discussed in Supplementary Information section S4 and Figures S6-S8. 670 

Figure 9: Comparison of EC fluxes from flux tower sites with airborne fluxes measured from 

the King Air for a) CO2 and b) CH4. EC tower CH4 and CO2 NEE (flux – storage) for a given 

month were averaged over all available data between 10:00 and 16:00 LT. Airborne CH4 fluxes 

were averaged over all flight days for data with the same vegetation class and surface water as 

the EC tower. Airborne CO2 fluxes were averaged during each flight day after filtering data for 

the same vegetation class and LAI as the EC tower. EC towers SRS6, SRS2, TSPh1, and 

TSPh7 sample mangrove forest, freshwater marsh, freshwater marsh, and mangrove scrub, 

respectively. Error bars are one standard deviation. The dashed line is the 1:1 line.    
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 671 

3.4. Net carbon fluxes 672 

 673 

The balance between CH4 emissions and CO2 uptake partially determines the impact of 674 

wetland ecosystems on carbon sequestration and climate change mitigation. To estimate the net 675 

impact of the entire Everglades region on carbon exchange during our sampling periods, we first 676 

scaled CH4 fluxes by their CO2 equivalent global warming potential (GWP) using a factor of 677 

27.9 g CH4/g CO2 in accordance with the latest IPCC report (Forster et al., 2021) and then 678 

calculated the net CO2  equivalent exchange rate and the fraction of total CO2  uptake that is 679 

offset by CH4 emissions for each vegetation region based on disaggregated fluxes. These values 680 

were then scaled by the total area of each vegetation region adequately sampled in ENP and 681 

BCNP (Fig. S20, Fig. S21). During daytime sampling periods, the 6,237 km
2
 area of south 682 

Florida represented by the sampled land classes has a total CO2 equivalent exchange rate of -5.3 683 

± 2.6 to -2.7 ± 1.5 Gg CO2 hr
-1

, with CH4 emissions offsetting CO2 by 3 ± 1% to 14 ± 4 %, 684 

depending on the month. The largest CH4 emissions relative to CO2 uptake occurred during the 685 

October 2022 deployment (Fig. S21). However, midday airborne flux measurements do not 686 

include nighttime CO2 respiration which is required for an estimate of daily carbon exchange. 687 

Figure 10: Linear fit of daily integrated net ecosystem exchange (NEE) and the integrated 

daytime NEE between LT 10:00 and 17:00 for all tower sites in the flight domain. Each 

marker represents a monthly average from data available between 2020 and 2023. Larger 

black markers are monthly averages for the months of BlueFlux flights. The line of best fit and 

the 95% confidence interval are solid and dotted lines, respectively. Error bars are 1𝜎.  

 

 688 
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Tower flux observations constrain the diurnal cycle of carbon exchange in several 689 

locations. We use this diurnal temporal information from the Everglades tower network to 690 

extrapolate to total daily carbon exchange in ENP and BCNP as in Hannun et al. (2020) (Figure 691 

S22). The tower sites in the BlueFlux/FCE LTER domain are located in three different 692 

vegetation regions that represent the three dominant vegetation types, including tall riverine 693 

mangrove forests (SRS-6), scrub mangroves (TS/Ph-7), and freshwater marshes (SRS-2 and 694 

TS/Ph-1). These tower sites demonstrate a linear relationship between the total CO2- NEE 695 

between LT 10:00 and 17:00 and the total daily integrated NEE (Fig. 10). A similar relationship 696 

was also derived for EC tower sites in the mid-Atlantic region (Hannun et al., 2020). This 697 

relationship is used to scale the CO2 fluxes measured by CARAFE during LT 10:00—17:00 and 698 

provide an estimate of the total daily carbon exchange. The domain of swamp forests, swamp 699 

scrubs, and upland woodlands were outside the FCE LTER study area.  However, chamber 700 

experiments conducted in BCNP during 2012—2014 measured average CO2 NEE of -108 ± 5 g 701 

C m
-2

 month
-1

, -48 ± 3 g C m
-2 

month
-1

, and -68 ± 5 g C m
-2 

month
-1

 during April months at a 702 

cypress swamp (swamp forest), dwarf cypress (swamp scrub), and pine upland (upland 703 

woodland) site, respectively (Shoemaker et al., 2015). We obtain slightly lower average 704 

estimates for these vegetation areas during our April deployments of -85 ± 40 g C m
-2 

month
-1

, -705 

Figure 11: (a) GWP-scaled CH4 emissions as a fraction of the CO2 uptake for each month 

across the BlueFlux experimental domain. Colors indicate the contribution of each ecosystem 

classification. CH4 offset fractions are weighted by the area of each ecosystem type.  (b) 

Average daily net CO2 equivalent uptake for each deployment period, calculated as the sum of 

CO2 and GWP-scaled CH4 fluxes. Total daily CO2 fluxes were calculated by from the daytime 

airborne measurements using the linear fit of daily integrated NEE and daytime NEE from 

Figure 10. CH4 fluxes were assumed to be constant throughout the day so average 

disaggregated CH4 fluxes for each deployment period were scaled by 24 hours. Ecosystem 

contributions are scaled by area. Error bars are 1𝜎.  
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16 ± 10 g C m
-2 

month
-1

, and -51 ± 30 g C m
-2 

month
-1

, respectively, when scaling using the 706 

relationship derived in Figure 10.  707 

The CH4 average midday flux measured by the tower sites was not significantly different 708 

from the daily average (Figure S23). Thus, CH4 fluxes are treated as constant throughout the day 709 

and average midday CH4 fluxes were assumed to be representative of daily averaged fluxes. 710 

 Figure 11 shows the resulting daily CH4 offsets to CO2 uptake and net daily CO2 711 

equivalent exchange for each deployment period across ENP and BCNP. CH4 emissions relative 712 

to CO2 uptake are lowest during April 2023, with CH4 emissions offsetting 11 ±4 % of CO2 713 

uptake and a total net carbon exchange rate of -26 ±20 Gg CO2-eq d
-1

. The largest CH4 emissions 714 

relative to CO2 uptake are during October 2022, with CH4 emissions offsetting 91 ± 27% of CO2 715 

uptake and a net carbon exchange rate of -1 ± 12 Gg CO2-eq d
-1

. The largest source of CH4 716 

emissions relative to CO2 uptake are the freshwater marshes, particularly during the October 717 

2022 wet season when they are estimated to provide 5 Gg CO2-eq d
-1 

source of carbon. 718 

Mangrove forests contribute a relatively small amount of CH4 emission and provide the largest 719 

net sink of carbon cumulatively across all deployment periods with an average net carbon flux of 720 

-5 ± 2 Gg CO2-eq d
-1

. Swamp forests provide the largest net carbon sink during the dry/growing 721 

season (almost double than that of mangroves), as observed during April 2022 and April 2023. 722 

Carbon exchange in southern Florida wetlands exhibits strong seasonality over the 723 

measurement period, with the ENP and BCNP region potentially serving as a net source of 724 

carbon to the atmosphere during the wet season and periods of high inundation. Mangrove and 725 

cypress swamp forests are large atmospheric sinks of carbon for the region, despite their 726 

relatively small extents. The importance of cypress swamp forests in CO2 removal is likely even 727 

greater than this study reflects, as we do not have measurements in the summer when leaf area is 728 

at a peak. 729 

It should also be noted that in tidal wetland regions like the Everglades, the net ecosystem 730 

carbon balance is affected by lateral aqueous transport of carbon in addition to NEE (Troxler et 731 

al., 2013). Carbon initially taken up in one area may be stored in above and below ground 732 

biomass, soils, and sediments, or it may laterally flow from the area of initial uptake to later be 733 

reemitted or stored in soils and sediments downstream (Bouillon et al., 2008; Alongi and 734 

Mukhopadhyay, 2015; Rosentreter et al., 2018b). Aquatic lateral transport in the Everglades has 735 

been estimated to be relatively small (~10%) compared to the NEE of mangrove forests (Troxler 736 

et al., 2013). However, freshwater marshes in the Everglades store a substantial amount of 737 

carbon (400-650 g C m
-2

 yr
-1

), with almost all the carbon input through aqueous lateral transport 738 

(Troxler et al., 2013). In this study we discuss the net vertical carbon exchange largely from an 739 

atmospheric perspective, but it should not be taken as the complete story of carbon storage in the 740 

Everglades. 741 

5 Conclusions 742 

Airborne eddy covariance with continuous wavelet transforms can resolve heterogenous 743 

fluxes over a diverse mosaic of ecosystems across the coastal landscape of southern Florida. The 744 

largest CO2 uptake fluxes were observed during April 2022 and 2023 over cypress swamp forests 745 

and over mangrove forests during all sampling periods. During the tail-end of the wet season and 746 
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near maximum water levels (October 2022 campaign), we observed the largest CH4 emission 747 

fluxes from all vegetation types. Across all deployments, we recorded the largest CH4 fluxes 748 

from freshwater marshes and freshwater swamp shrublands. Additionally, we see some evidence 749 

for CH4 uptake during the dry season in salt marshes and upland forests. Upscaling average 750 

ecosystem fluxes over the sample domain, we estimate average net CO2-eq fluxes of -4 ± 3 g 751 

CO2-eq m
-2

 d
-1

 in April and -0.2 ± 2 g CO2-eq m
-2

 d
-1

 in October (area-integrated rates of -26 ±20 752 

Gg CO2-eq d
-1

 and -1 ± 12 Gg CO2-eq d
-1

, respectively).  753 

Our findings highlight the role of freshwater swamp forests and mangrove forests as 754 

extremely productive coastal ecosystems. Rates of CO2 uptake and CH4 emission that we 755 

observe for these ecosystems fall within the range of observations for mangroves and swamp 756 

forests in similar subtropical and tropical regions globally. However, the diversity and 757 

vulnerability of these ecosystems necessitates continued ongoing research into the carbon storage 758 

potential and the effects of restoration and degradation on the role of swamp and mangrove 759 

forests in the global coastal carbon cycle.  760 

Combined with landcover information like vegetation type, leaf area, canopy height, 761 

vegetation indices, and surface water depth, airborne fluxes can help elucidate the underlying 762 

causes of the observed variability in carbon fluxes. In particular, surface water depth in the 763 

freshwater wetlands was strongly positively correlated with CH4 emissions. In a heavily water 764 

managed area like southern Florida, policy decisions related to agriculture and hydrology may 765 

overlap with greenhouse gas reduction strategies. Moreover, the ongoing large-scale 766 

hydrological restoration of the Greater Everglades under the Comprehensive Everglades 767 

Restoration Plan (CERP) will likely have significant effects on vegetation dynamics, especially 768 

carbon storage and sequestration potential, thereby influencing the role of wetlands in climate 769 

change mitigation and adaptation. The relationship between surface water and methane emission 770 

in this study relied heavily on the long-term Everglades Depth Estimation Network data set. 771 

However, such high-resolution surface information is currently extremely limited globally.  772 

Improvements in high resolution remotely sensed soil moisture and surface water data will be 773 

critical for ongoing research into relationships between regional hydrology and global methane 774 

emissions. Other surface information, such as high-density coastal wetland salinity maps, would 775 

also be beneficial to this analysis. 776 

This study focused on vegetation types and limited land cover data to demonstrate 777 

opportunities for airborne flux observations combined with surface data sets to assess drivers of 778 

variability in regional carbon exchange. Future work will combine remotely sensed data sets with 779 

airborne and long-term ground-based fluxes to develop historical products and predictive models 780 

for CO2 and CH4 exchange in southern Florida. Additional work will also quantify local and 781 

long-distance lateral fluxes to provide additional constraints on the carbon balance.  782 

A limitation of this study is the lack of observations during the peak of the wet season 783 

(May-September). During these months temperatures and rainfall tend to be higher, which may 784 

impact CO2 and CH4 exchange. However, BlueFlux measurements include periods where we 785 

would expect both near minimum (April) and near maximum (October) levels of inundation. 786 

Daily solar irradiance in April is also within ~5% of the summer maximum. We therefore expect 787 

minimal differences in CO2 fluxes in the summer relative to April due to differences in solar 788 

irradiance. Still, additional airborne flux measurements in southern Florida are needed to better 789 
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constrain seasonality (particularly wet-season fluxes), diurnal cycles, and tidal influences. These 790 

efforts would improve the ongoing carbon budget analysis of coastal wetlands in the Everglades 791 

region and add an understanding of the carbon sink and source capacity of these ecosystems 792 

exposed to increasing impacts of sea-level rise and climate change. 793 

The importance of vulnerable coastal wetland ecosystems to the CO2 and CH4 global 794 

budgets highlights the need for continued and sustained measurements in these regions. Airborne 795 

eddy covariance, especially paired with remote-sensing surface information, represents a 796 

powerful tool for constraining biogenic carbon cycles. 797 
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