REFERENCES
Alexander, M.E., Kaiser, H., Weyl, O.L.F., and Dick, J.T.A. 2015.
Habitat simplification increases the impact of a freshwater invasive
fish. Environ. Biol. Fishes 98 (2): 477–486.
doi:10.1007/s10641-014-0278-z.
Auer, N.A. 1982. Identification of larval fishes of the Great Lakes
Basin with emphasis on the Lake Michigan drainage. Great Lakes Fisheries
Commision, Special publication 82-3, Ann Arbor, Michigan.
Balon, E.K. 1975. Reproductive guilds of fishes: A proposal and
definition. J. Fish. Board Canada 32 (6): 821–864.
doi:10.1139/f75-110.
Becker, G.C. 1983. Fishes of Wisconsin. The University of Wisconsin
Press, Madison. doi:10.2307/1445079.
Bouska, W.W., Glover, D.C., Bouska, K.L., and Garvey, J.E. 2017. A
refined electrofishing technique for collecting Silver Carp:
implications for management. North Am. J. Fish. Manag. 37 (1):
101–107. doi:10.1080/02755947.2016.1240122.
Bozek, M., Baccante, D., and Lester, N. 2011. Walleye and sauger life
history. In Biology, Management, and Culture of Walleye and
Sauger. Edited by B.A. Barton. American Fisheries Society,
Bethesda, MD. pp. 233–301. doi:10.47886/9781934874226.
Burdick, S.M., Hendrixson, H.A., and VanderKooi, S.P. 2008. Age‐0 Lost
River sucker and shortnose sucker nearshore habitat use in Upper Klamath
Lake, Oregon: a patch occupancy approach. Trans. Am. Fish. Soc.137 (2): 417–430. doi:10.1577/t07-072.1.
Burnham, K.P., Anderson, D.R., and Huyvaert, K.P. 2011. AIC model
selection and multimodel inference in behavioral ecology: some
background, observations, and comparisons. Behav. Ecol. Sociobiol.65 : 23–35. doi:10.1007/s00265-010-1029-6.
Butler, R.L. 1965. Freshwater drum, Aplodinotus grunniens , in the
navigational impoundments of the Upper Mississippi River. Trans. Am.
Fish. Soc. 94 (4): 339–349.
doi:10.1577/1548-8659(1965)94[339:FDAGIT]2.0.CO;2.
Camacho, C.A., Sullivan, C.J., Weber, M.J., and Pierce, C.L. 2023.
Invasive carp reproduction phenology in tributaries of the Upper
Mississippi River. North Am. J. Fish. Manag. 43 (1): 61-80
doi:10.1002/nafm.10499.
Chapman, D.C. 2006. Early development of four cyprinids native to the
Yangtze River, China. U.S. Geol. Surv. Data Ser. 239: 51. Available from
https://pubs.er.usgs.gov/publication/ds239.
Collins, S.F., Butler, S.E., Diana, M.J., and Wahl, D.H. 2015. Catch
rates and cost effectiveness of entrapment gears for Asian carp: a
comparison of pound nets, hoop nets, and fyke nets in backwater lakes of
the Illinois River. North Am. J. Fish. Manag. 35 (6):
1219–1225. doi:10.1080/02755947.2015.1091799.
Coulter, A.A., Keller, D., Amberg, J.J., Bailey, E.J., and Goforth, R.R.
2013. Phenotypic plasticity in the spawning traits of bigheaded carp
(Hypophthalmichthys spp.) in novel ecosystems. Freshw. Biol.58 (5): 1029–1037. doi:10.1111/fwb.12106.
Cyr, H., Downing, J.A., Lalonde, S., Baines, S.B., and Pace, M.L. 1992.
Sampling larval fish populations: choice of sample number and size.
Trans. Am. Fish. Soc. 121 (3): 356–368.
doi:10.1577/1548-8659(1992)121<0356:SLFPCO>2.3.CO;2.
DeBoer, J.A., Anderson, A.M., and Casper, A.F. 2018. Multi-trophic
response to invasive silver carp (Hypophthalmichthys molitrix ) in
a large floodplain river. Freshw. Biol. 63 (6): 597–611.
doi:10.1111/FWB.13097.
DeGrandchamp, K.L., Garvey, J.E., and Csoboth, L.A. 2007. Linking adult
reproduction and larval density of invasive carp in a large river.
Trans. Am. Fish. Soc. 136 (5): 1327–1334.
doi:10.1577/t06-233.1.
Dudley, R.K., and Platania, S.P. 2007. Flow regulation and fragmentation
imperil pelagic-spawning riverine fishes. Ecol. Appl. 17 (7):
2074–2086. doi:10.1890/06-1252.1
Falke, J.A., Bailey, L.L., Fausch, K.D., and Bestgen, K.R. 2012.
Colonization and extinction in dynamic habitats: an occupancy approach
for a Great Plains stream fish assemblage. Ecology 93 (4):
858–867. doi:10.1890/11-1515.1.
Falke, J.A., Fausch, K.D., Bestgen, K.R., and Bailey, L.L. 2010.
Spawning phenology and habitat use in a great plains, USA, stream fish
assemblage: an occupancy estimation approach. Can. J. Fish. Aquat. Sci.67 (12): 1942–1956. doi:10.1139/F10-109.
Fritts, A.K., Knights, B.C., Stanton, J.C., Milde, A.S., Vallazza, J.M.,
Brey, M.K., Tripp, S.J., Devine, T.E., Sleeper, W., Lamer, J.T., and
Mosel, K.J. 2021. Lock operations influence upstream passages of
invasive and native fishes at a Mississippi River high-head dam. Biol.
Invasions 23 : 771–794. doi:10.1007/s10530-020-02401-7.
Gallardo, B., Clavero, M., Sánchez, M.I., and Vilà, M. 2016. Global
ecological impacts of invasive species in aquatic ecosystems. Glob.
Chang. Biol. 22 (1): 151–163. doi:10.1111/gcb.13004.
Gherardi, F. 2007. Biological invasions in inland waters: an overview.In Biological invaders in inland waters: Profiles, distribution,
and threats. Edited by F. Gherardi Springer Dordrecht,
Netherlands. pp. 3–25. doi:10.1007/978-1-4020-6029-8_1.
Holland, L.E. 1986. Distribution of early life history stages of fishes
in selected pools of the Upper Mississippi River. Hydrobiologia136 : 121–130. doi:10.1007/BF00051509
La Hood, B.M., Thomsen, T.C., Lenaerts, A.W., Tomczak, M.G., Szott,
E.A., Woiak, Z., Von Ruden, K.M., Bockrath, K.D., Irons, K.S., and
Lamer, J.T. 2021. Light trapping reveals multiple bigheaded carp spawns
upstream of lock and dam 19 in the Upper Mississippi River. North Am. J.
Fish. Manag 43 (1): 81-91. doi:10.1002/nafm.10630.
Humphries, P., Serafini, L.G., and King, A.J. 2002. River regulation and
fish larvae: variation through space and time. Freshw. Biol.47 (7): 1307–1331. doi:10.1046/j.1365-2427.2002.00871.x.
Kelly, B., Siepker, M.J., and Weber, M.J. 2021. Factors associated with
detection and distribution of native brook trout and introduced brown
trout in the Driftless Area of Iowa. Trans. Am. Fish. Soc.150 (3): 388–406. doi:10.1002/tafs.10295.
King, A.J., Gwinn, D.C., Tonkin, Z., Mahoney, J., Raymond, S., and
Beesley, L. 2016. Using abiotic drivers of fish spawning to inform
environmental flow management. J. Appl. Ecol. 53 (1): 34–43.
doi:10.1111/1365-2664.12542.
Kocovsky, P.M., Chapman, D.C., and McKenna, J.E. 2012. Thermal and
hydrologic suitability of Lake Erie and its major tributaries for
spawning of Asian carps. J. Great Lakes Res. 38 (1): 159–166.
doi:10.1016/j.jglr.2011.11.015.
Kolar, C.S., Chapman, D.C., Courtenay W.R., Jr., Housel, C.M., Williams,
J.D., and Jennings, D.P. 2005. Asian carps of the genusHypophthalmichthys (Pisces, Cyprinidae) – A biological synopsis
and environmental risk assessment. American Fisheries Society Special
Publication 33. Bethesda, Maryland.
Kolar, C.S., Chapman, D.C., Courtenay, W.R., Housel, C.M., Williams,
J.D., and Jennings, D.P. 2007. Bigheaded carps: a biological synopsis
and environmental risk assessment. American Fisheries Society, Bethesda,
Maryland. doi:10.47886/9781888569797.
Van Der Kraak, G., and Pankhurst, N.W. 2011. Temperature effects on the
reproductive performance of fish in Global Warming: Implications
for Freshwater and Marine Fish. Edited by C.M. Wood and D.G.
McDonald. Cambridge University Press. pp. 159–176.
Krabbenhoft, T.J., Platania, S.P., and Turner, T. 2014. Interannual
variation in reproductive phenology in a riverine fish assemblage:
implications for predicting the effects of climate change and altered
flow regimes. Freshw. Biol. 59 (8): 1744–1754.
doi:10.1111/fwb.12379.
Kuehne, L.M., and Olden, J.D. 2016. Environmental drivers of occupancy
and detection of olympic mudminnow. Trans. Am. Fish. Soc.145 (1): 17–26. doi: 10.1080/00028487.2015.1091383.
Larson, J.H., Knights, B.C., McCalla, S.G., Monroe, E., Tuttle-Lau, M.,
Chapman, D.C., George, A.E., Vallazza, J.M., and Amberg, J. 2017.
Evidence of Asian carp spawning upstream of a key choke point in the
Mississippi River. North Am. J. Fish. Manag. 37 (4): 903–919.
doi:10.1080/02755947.2017.1327901.
Leonardsson, K., Hudd, R., Veneranta, L., Huhmarniemi, A., and
Jokikokko, E. 2016. Optimal time and sample allocation for unicohort
fish larvae, sea-spawning whitefish (Coregonus lavaretus s. l.)
as a case study. ICES J. Mar. Sci. 73 (2): 374–383.
doi:10.1093/icesjms/fsv178.
Lohmeyer, A.M., and Garvey, J.E. 2009. Placing the North American
invasion of Asian carp in a spatially explicit context. Biol. Invasions11 (4): 905–916. doi:10.1007/s10530-008-9303-5.
Lytle, D.A., and Poff, N.L. 2004. Adaptation to natural flow regimes.
Trends Ecol. Evol. 19 (2): 94–100.
doi:10.1016/j.tree.2003.10.002.
MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, A.A.,
and Langtimm, C.A. 2002. Estimating site occupancy rates when detection
probabilities are less than one. Ecology 83 (8): 2248–2255.
doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2.
MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey,
L.L., and Hines, J.E. 2018. Occupancy estimation and modeling. 2nd
edition. Academic Press, Cambridge. doi:10.1016/C2012-0-01164-7.
Majdoubi, F.Z., Ouizgane, A., Farid, S., Mossetti, L., Droussi, M.,
Guerriero, G., and Hasnaoui, M. 2022. Fry survival rate as a predictive
marker of optimal production of silver carp (Hypophthalmichthys
molitrix , Valenciennes 1844): A biostatistical study in Deroua Fish
Farm, Morocco. Proc. Zool. Soc. 75 (2): 152–160.
doi:10.1007/S12595-021-00383-5.
Michaletz, P.H., and Gale, C.M. 1999. Longitudinal gradients in age-0
gizzard shad density in large Missouri reservoirs. North Am. J. Fish.
Manag. 19 (3): 765–773.
doi:10.1577/1548-8675(1999)019<0765:lgiags>2.0.co;2.
Pankhurst, N.W., and Porter, M.J.R. 2003. Cold and dark or warm and
light: variations on the theme of environmental control of reproduction.
Fish Physiol. Biochem. 28 : 385–389. doi:
10.1023/B:FISH.0000030602.51939.50
Papoulias, D.M., Chapman, D., and Tillitt, D.E. 2006. Reproductive
condition and occurrence of intersex in bighead carp and silver carp in
the Missouri River. Hydrobiologia 571 : 355–360.
doi:10.1007/s10750-006-0260-7.
Peoples, B.K., and Frimpong, E.A. 2011. Among-pass, interregional, and
single- versus multiple-season comparisons of detection probabilities of
stream fishes. Trans. Am. Fish. Soc. 140 (1): 67–83.
doi:10.1080/00028487.2010.550237.
Potoka, K.M., Shea, C.P., and Bettoli, P.W. 2016. Multispecies occupancy
modeling as a tool for evaluating the status and distribution of darters
in the Elk River, Tennessee. Trans. Am. Fish. Soc. 145 (5):
1110–1121. doi:10.1080/00028487.2016.1201002.
Pritt, J.J., DuFour, M.R., Mayer, C.M., Roseman, E.F., and DeBruyne,
R.L. 2014. Sampling little fish in big rivers: larval fish detection
probabilities in two Lake Erie tributaries and implications for sampling
effort and abundance indices. Trans. Am. Fish. Soc. 143 (4):
1011–1027. doi:10.1080/00028487.2014.911204.
Pritt, J.J., Roseman, E.F., Ross, J.E., and Debruyne, R.L. 2015. Using
larval fish community structure to guide long-term monitoring of fish
spawning activity. North Am. J. Fish. Manag. 35 (2): 241–252.
doi:10.1080/02755947.2014.996687.
Quist, M.C., Pember, K.R., and Guy, C.S. 2004. Variation in larval fish
communities: implications for management and sampling designs in
reservoir systems. Fish. Manag. Ecol. 11 (2): 107–116. doi:
10.1046/j.1365-2400.2003.00381.x
Rodtka, M.C., Judd, C.S., Aku, P.K.M., and Fitzsimmons, K.M. 2015.
Estimating occupancy and detection probability of juvenile bull trout
using backpack electrofishing gear in a west-central Alberta watershed.
Can. J. Fish. Aquat. Sci. 72 (5): 742–750.
doi:10.1139/cjfas-2014-0175.
Roth, D.R., Pesik, J.J., Effert-Fanta, E.L., Wahl, D.H., Colombo, R.E.
2023. Comparison of active and passive larval sampling gears in
monitoring reproduction of invasive bigheaded carps in large-river
tributaries. North Am. J. Fish. Manag. 43 (1): 35-45. doi:
10.1002/nafm.10548.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J.,
Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A.,
Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L.R.,
Sykes, M.T., Walker, B.H., Walker, M., and Wall, D.H. 2000. Global
biodiversity scenarios for the year 2100. Science 287 (5459):
1770–1774. doi:10.1126/science.287.5459.1770.
Schaick, S.J., Moody-Carpenter, C.J., Effert-Fanta, E.L., Hanser, K.N.,
Roth, D.R., and Colombo, R.E. 2020. Bigheaded carp spatial reproductive
dynamics in Illinois and Wabash River tributaries. North Am. J. Fish.
Manag 43 (1): 101–111. doi:10.1002/nafm.10573.
Schrank, S.J., Braaten, P.J., and Guy, C.S. 2001. Spatiotemporal
variation in density of larval bighead carp in the Lower Missouri River.
Trans. Am. Fish. Soc. 130 (5): 809–814.
doi:10.1577/1548-8659(2001)130<0809:svidol>2.0.co;2.
Schumann, D.A., Colvin, M.E., Miranda, L.E., and Todd Jones-Farrand, D.
2020. Occurrence and co-occurrence patterns of gar in river-floodplain
habitats: methods to leverage species coexistence to benefit
distributional models. North Am. J. Fish. Manag. 40 (3):
622–637. doi:10.1002/nafm.10402.
Simon, T.P. 1998. Assessment of Balon’s reproductive guilds with
application to midwestern North American freshwater fishes. InAssessing the Sustainability and Biological Integrity of Water Resources
Using Fish Communities. Edited by T.P. Simon. CRC Press. pp.
97–121. doi:10.1201/9781003068013-8.
Solomon, L.E., Pendleton, R.M., Chick, J.H., and Casper, A.F. 2016.
Long-term changes in fish community structure in relation to the
establishment of Asian carps in a large floodplain river. Biol.
Invasions 18 (10): 2883–2895. doi:10.1007/s10530-016-1180-8.
Sullivan, C.J., Weber, M.J., Pierce, C.L., and Camacho, C.A. 2018.
Influence of river discharge on grass carp occupancy dynamics in
south-eastern Iowa rivers. River Res. Appl. 35 (1): 60–67.
doi:10.1002/rra.3385.
Swedberg, D. V., and Walburg, C.H. 1970. Spawning and early life history
of the freshwater drum in Lewis and Clark Lake, Missouri River. Trans.
Am. Fish. Soc. 99 (3): 560–570.
doi:10.1577/1548-8659(1970)99<560:saelho>2.0.co;2.
Tillotson, N.A., Weber, M.J., and Pierce, C.L. 2022. Zooplankton
community dynamics along the bigheaded carp invasion front in the Upper
Mississippi River. Hydrobiologia 849 : 1659–1675.
doi:10.1007/s10750-022-04809-9.
Tripp, S., Brooks, R., Herzog, D., and Garvey, J. 2013. Patterns of fish
passage in the Upper Mississippi River. River Res. Appl. 30 (8):
1056–1064. doi:10.1002/rra.2696.
U.S. Geological Survey. 2022. Nonindigenous Aquatic Species Database.
Available from http://nas.er.usgs.gov.
Vanni, M.J. 2021. Invasive mussels regulate nutrient cycling in the
largest freshwater ecosystem on Earth. 118 (8): 10–12.
doi:10.1073/pnas.2100275118.
Weber, M.J., and Brown, M.L. 2011. Relationships among invasive common
carp , native fishes and physicochemical characteristics in upper
Midwest (USA) lakes. Ecol. Freshw. Fish 20 (2): 270–278.
doi:10.1111/j.1600-0633.2011.00493.x
Weber, M.J., and Brown, M.L. 2019. Application of a robust design
occupancy model for assessing fish recruitment. Can. J. Fish. Aquat.
Sci. 76 (4): 561–568. doi:10.1139/cjfas-2018-0083.
Weber, M.J., Matthews, A., and Pierce, C.L. 2021. Effects of adult
biomass and environmental conditions on bigheaded carp reproductive
output. J. Fish Wildl. Manag. 12 (2): 373–382.
doi:10.3996/JFWM-20-068.
Welcomme, R.L., Winemiller, K.O., and Cowx, I.G. 2006. Fish
environmental guilds as a tool for assessment of ecological condition of
rivers. River Res. Appl. 22 (3): 377–396. doi:10.1002/rra.914.
Werner, R.G. 2002. Habitat Requirements. In Fishery science: the
unique contributions of early life stages. Edited by L.A. Fuiman
and R.G. Werner. Blackwell Science Ltd., Oxford, United Kingdom. pp.
161–182.
Whitledge, G.W., Knights, B.C., Vallazza, J.M., Larson, J.H., Weber,
M.J., Lamer, J.T., Phelps, Q.E., and Norman, J.D. 2019. Identification
of bighead carp and silver carp early-life environments and inferring
lock and Dam 19 passage in the Upper Mississippi River: insights from
otolith chemistry. Biol Invasions 21 : 1007–1020.
doi:10.1007/s10530-018-1881-2.
Yang, Z., Zhu, Q., Cao, J., Jin, Y., Zhao, N., Xu, W., Liu, H., Tang,
H., Qiao, Y., and Chen, X. 2021. Using a hierarchical model framework to
investigate the relationships between fish spawning and abiotic factors
for environmental flow management. Sci. Total Environ. 787 .
doi:10.1016/J.SCITOTENV.2021.147618.
TABLE 1. Detection probability (p) models ranked by
ΔAICc. We compared 39 models and presented those with
ΔAICc ≤ 3. All models included constant occupancy [Ψ
(.)]. We used top ranked species models for carp (bigheaded carp),
drum (freshwater drum), shad (Clupeidae), and percids to formulate
habitat models and top ranked habitat models to form environmental
models. Covariates include backwater (BW), thalweg (TH), channel border
(CB), and water volume filtered (VOL). (+) indicates additive effects,
(x) indicates interactive effects, and (=) indicates combined variables.