REFERENCES
Alexander, M.E., Kaiser, H., Weyl, O.L.F., and Dick, J.T.A. 2015. Habitat simplification increases the impact of a freshwater invasive fish. Environ. Biol. Fishes 98 (2): 477–486. doi:10.1007/s10641-014-0278-z.
Auer, N.A. 1982. Identification of larval fishes of the Great Lakes Basin with emphasis on the Lake Michigan drainage. Great Lakes Fisheries Commision, Special publication 82-3, Ann Arbor, Michigan.
Balon, E.K. 1975. Reproductive guilds of fishes: A proposal and definition. J. Fish. Board Canada 32 (6): 821–864. doi:10.1139/f75-110.
Becker, G.C. 1983. Fishes of Wisconsin. The University of Wisconsin Press, Madison. doi:10.2307/1445079.
Bouska, W.W., Glover, D.C., Bouska, K.L., and Garvey, J.E. 2017. A refined electrofishing technique for collecting Silver Carp: implications for management. North Am. J. Fish. Manag. 37 (1): 101–107. doi:10.1080/02755947.2016.1240122.
Bozek, M., Baccante, D., and Lester, N. 2011. Walleye and sauger life history. In Biology, Management, and Culture of Walleye and Sauger. Edited by B.A. Barton. American Fisheries Society, Bethesda, MD. pp. 233–301. doi:10.47886/9781934874226.
Burdick, S.M., Hendrixson, H.A., and VanderKooi, S.P. 2008. Age‐0 Lost River sucker and shortnose sucker nearshore habitat use in Upper Klamath Lake, Oregon: a patch occupancy approach. Trans. Am. Fish. Soc.137 (2): 417–430. doi:10.1577/t07-072.1.
Burnham, K.P., Anderson, D.R., and Huyvaert, K.P. 2011. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol.65 : 23–35. doi:10.1007/s00265-010-1029-6.
Butler, R.L. 1965. Freshwater drum, Aplodinotus grunniens , in the navigational impoundments of the Upper Mississippi River. Trans. Am. Fish. Soc. 94 (4): 339–349. doi:10.1577/1548-8659(1965)94[339:FDAGIT]2.0.CO;2.
Camacho, C.A., Sullivan, C.J., Weber, M.J., and Pierce, C.L. 2023. Invasive carp reproduction phenology in tributaries of the Upper Mississippi River. North Am. J. Fish. Manag. 43 (1): 61-80 doi:10.1002/nafm.10499.
Chapman, D.C. 2006. Early development of four cyprinids native to the Yangtze River, China. U.S. Geol. Surv. Data Ser. 239: 51. Available from https://pubs.er.usgs.gov/publication/ds239.
Collins, S.F., Butler, S.E., Diana, M.J., and Wahl, D.H. 2015. Catch rates and cost effectiveness of entrapment gears for Asian carp: a comparison of pound nets, hoop nets, and fyke nets in backwater lakes of the Illinois River. North Am. J. Fish. Manag. 35 (6): 1219–1225. doi:10.1080/02755947.2015.1091799.
Coulter, A.A., Keller, D., Amberg, J.J., Bailey, E.J., and Goforth, R.R. 2013. Phenotypic plasticity in the spawning traits of bigheaded carp (Hypophthalmichthys spp.) in novel ecosystems. Freshw. Biol.58 (5): 1029–1037. doi:10.1111/fwb.12106.
Cyr, H., Downing, J.A., Lalonde, S., Baines, S.B., and Pace, M.L. 1992. Sampling larval fish populations: choice of sample number and size. Trans. Am. Fish. Soc. 121 (3): 356–368. doi:10.1577/1548-8659(1992)121<0356:SLFPCO>2.3.CO;2.
DeBoer, J.A., Anderson, A.M., and Casper, A.F. 2018. Multi-trophic response to invasive silver carp (Hypophthalmichthys molitrix ) in a large floodplain river. Freshw. Biol. 63 (6): 597–611. doi:10.1111/FWB.13097.
DeGrandchamp, K.L., Garvey, J.E., and Csoboth, L.A. 2007. Linking adult reproduction and larval density of invasive carp in a large river. Trans. Am. Fish. Soc. 136 (5): 1327–1334. doi:10.1577/t06-233.1.
Dudley, R.K., and Platania, S.P. 2007. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes. Ecol. Appl. 17 (7): 2074–2086. doi:10.1890/06-1252.1
Falke, J.A., Bailey, L.L., Fausch, K.D., and Bestgen, K.R. 2012. Colonization and extinction in dynamic habitats: an occupancy approach for a Great Plains stream fish assemblage. Ecology 93 (4): 858–867. doi:10.1890/11-1515.1.
Falke, J.A., Fausch, K.D., Bestgen, K.R., and Bailey, L.L. 2010. Spawning phenology and habitat use in a great plains, USA, stream fish assemblage: an occupancy estimation approach. Can. J. Fish. Aquat. Sci.67 (12): 1942–1956. doi:10.1139/F10-109.
Fritts, A.K., Knights, B.C., Stanton, J.C., Milde, A.S., Vallazza, J.M., Brey, M.K., Tripp, S.J., Devine, T.E., Sleeper, W., Lamer, J.T., and Mosel, K.J. 2021. Lock operations influence upstream passages of invasive and native fishes at a Mississippi River high-head dam. Biol. Invasions 23 : 771–794. doi:10.1007/s10530-020-02401-7.
Gallardo, B., Clavero, M., Sánchez, M.I., and Vilà, M. 2016. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Chang. Biol. 22 (1): 151–163. doi:10.1111/gcb.13004.
Gherardi, F. 2007. Biological invasions in inland waters: an overview.In Biological invaders in inland waters: Profiles, distribution, and threats. Edited by F. Gherardi Springer Dordrecht, Netherlands. pp. 3–25. doi:10.1007/978-1-4020-6029-8_1.
Holland, L.E. 1986. Distribution of early life history stages of fishes in selected pools of the Upper Mississippi River. Hydrobiologia136 : 121–130. doi:10.1007/BF00051509
La Hood, B.M., Thomsen, T.C., Lenaerts, A.W., Tomczak, M.G., Szott, E.A., Woiak, Z., Von Ruden, K.M., Bockrath, K.D., Irons, K.S., and Lamer, J.T. 2021. Light trapping reveals multiple bigheaded carp spawns upstream of lock and dam 19 in the Upper Mississippi River. North Am. J. Fish. Manag 43 (1): 81-91. doi:10.1002/nafm.10630.
Humphries, P., Serafini, L.G., and King, A.J. 2002. River regulation and fish larvae: variation through space and time. Freshw. Biol.47 (7): 1307–1331. doi:10.1046/j.1365-2427.2002.00871.x.
Kelly, B., Siepker, M.J., and Weber, M.J. 2021. Factors associated with detection and distribution of native brook trout and introduced brown trout in the Driftless Area of Iowa. Trans. Am. Fish. Soc.150 (3): 388–406. doi:10.1002/tafs.10295.
King, A.J., Gwinn, D.C., Tonkin, Z., Mahoney, J., Raymond, S., and Beesley, L. 2016. Using abiotic drivers of fish spawning to inform environmental flow management. J. Appl. Ecol. 53 (1): 34–43. doi:10.1111/1365-2664.12542.
Kocovsky, P.M., Chapman, D.C., and McKenna, J.E. 2012. Thermal and hydrologic suitability of Lake Erie and its major tributaries for spawning of Asian carps. J. Great Lakes Res. 38 (1): 159–166. doi:10.1016/j.jglr.2011.11.015.
Kolar, C.S., Chapman, D.C., Courtenay W.R., Jr., Housel, C.M., Williams, J.D., and Jennings, D.P. 2005. Asian carps of the genusHypophthalmichthys (Pisces, Cyprinidae) – A biological synopsis and environmental risk assessment. American Fisheries Society Special Publication 33. Bethesda, Maryland.
Kolar, C.S., Chapman, D.C., Courtenay, W.R., Housel, C.M., Williams, J.D., and Jennings, D.P. 2007. Bigheaded carps: a biological synopsis and environmental risk assessment. American Fisheries Society, Bethesda, Maryland. doi:10.47886/9781888569797.
Van Der Kraak, G., and Pankhurst, N.W. 2011. Temperature effects on the reproductive performance of fish in Global Warming: Implications for Freshwater and Marine Fish. Edited by C.M. Wood and D.G. McDonald. Cambridge University Press. pp. 159–176.
Krabbenhoft, T.J., Platania, S.P., and Turner, T. 2014. Interannual variation in reproductive phenology in a riverine fish assemblage: implications for predicting the effects of climate change and altered flow regimes. Freshw. Biol. 59 (8): 1744–1754. doi:10.1111/fwb.12379.
Kuehne, L.M., and Olden, J.D. 2016. Environmental drivers of occupancy and detection of olympic mudminnow. Trans. Am. Fish. Soc.145 (1): 17–26. doi: 10.1080/00028487.2015.1091383.
Larson, J.H., Knights, B.C., McCalla, S.G., Monroe, E., Tuttle-Lau, M., Chapman, D.C., George, A.E., Vallazza, J.M., and Amberg, J. 2017. Evidence of Asian carp spawning upstream of a key choke point in the Mississippi River. North Am. J. Fish. Manag. 37 (4): 903–919. doi:10.1080/02755947.2017.1327901.
Leonardsson, K., Hudd, R., Veneranta, L., Huhmarniemi, A., and Jokikokko, E. 2016. Optimal time and sample allocation for unicohort fish larvae, sea-spawning whitefish (Coregonus lavaretus s. l.) as a case study. ICES J. Mar. Sci. 73 (2): 374–383. doi:10.1093/icesjms/fsv178.
Lohmeyer, A.M., and Garvey, J.E. 2009. Placing the North American invasion of Asian carp in a spatially explicit context. Biol. Invasions11 (4): 905–916. doi:10.1007/s10530-008-9303-5.
Lytle, D.A., and Poff, N.L. 2004. Adaptation to natural flow regimes. Trends Ecol. Evol. 19 (2): 94–100. doi:10.1016/j.tree.2003.10.002.
MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, A.A., and Langtimm, C.A. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83 (8): 2248–2255. doi:10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2.
MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., and Hines, J.E. 2018. Occupancy estimation and modeling. 2nd edition. Academic Press, Cambridge. doi:10.1016/C2012-0-01164-7.
Majdoubi, F.Z., Ouizgane, A., Farid, S., Mossetti, L., Droussi, M., Guerriero, G., and Hasnaoui, M. 2022. Fry survival rate as a predictive marker of optimal production of silver carp (Hypophthalmichthys molitrix , Valenciennes 1844): A biostatistical study in Deroua Fish Farm, Morocco. Proc. Zool. Soc. 75 (2): 152–160. doi:10.1007/S12595-021-00383-5.
Michaletz, P.H., and Gale, C.M. 1999. Longitudinal gradients in age-0 gizzard shad density in large Missouri reservoirs. North Am. J. Fish. Manag. 19 (3): 765–773. doi:10.1577/1548-8675(1999)019<0765:lgiags>2.0.co;2.
Pankhurst, N.W., and Porter, M.J.R. 2003. Cold and dark or warm and light: variations on the theme of environmental control of reproduction. Fish Physiol. Biochem. 28 : 385–389. doi: 10.1023/B:FISH.0000030602.51939.50
Papoulias, D.M., Chapman, D., and Tillitt, D.E. 2006. Reproductive condition and occurrence of intersex in bighead carp and silver carp in the Missouri River. Hydrobiologia 571 : 355–360. doi:10.1007/s10750-006-0260-7.
Peoples, B.K., and Frimpong, E.A. 2011. Among-pass, interregional, and single- versus multiple-season comparisons of detection probabilities of stream fishes. Trans. Am. Fish. Soc. 140 (1): 67–83. doi:10.1080/00028487.2010.550237.
Potoka, K.M., Shea, C.P., and Bettoli, P.W. 2016. Multispecies occupancy modeling as a tool for evaluating the status and distribution of darters in the Elk River, Tennessee. Trans. Am. Fish. Soc. 145 (5): 1110–1121. doi:10.1080/00028487.2016.1201002.
Pritt, J.J., DuFour, M.R., Mayer, C.M., Roseman, E.F., and DeBruyne, R.L. 2014. Sampling little fish in big rivers: larval fish detection probabilities in two Lake Erie tributaries and implications for sampling effort and abundance indices. Trans. Am. Fish. Soc. 143 (4): 1011–1027. doi:10.1080/00028487.2014.911204.
Pritt, J.J., Roseman, E.F., Ross, J.E., and Debruyne, R.L. 2015. Using larval fish community structure to guide long-term monitoring of fish spawning activity. North Am. J. Fish. Manag. 35 (2): 241–252. doi:10.1080/02755947.2014.996687.
Quist, M.C., Pember, K.R., and Guy, C.S. 2004. Variation in larval fish communities: implications for management and sampling designs in reservoir systems. Fish. Manag. Ecol. 11 (2): 107–116. doi: 10.1046/j.1365-2400.2003.00381.x
Rodtka, M.C., Judd, C.S., Aku, P.K.M., and Fitzsimmons, K.M. 2015. Estimating occupancy and detection probability of juvenile bull trout using backpack electrofishing gear in a west-central Alberta watershed. Can. J. Fish. Aquat. Sci. 72 (5): 742–750. doi:10.1139/cjfas-2014-0175.
Roth, D.R., Pesik, J.J., Effert-Fanta, E.L., Wahl, D.H., Colombo, R.E. 2023. Comparison of active and passive larval sampling gears in monitoring reproduction of invasive bigheaded carps in large-river tributaries. North Am. J. Fish. Manag. 43 (1): 35-45. doi: 10.1002/nafm.10548.
Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A., Oesterheld, M., Poff, N.L.R., Sykes, M.T., Walker, B.H., Walker, M., and Wall, D.H. 2000. Global biodiversity scenarios for the year 2100. Science 287 (5459): 1770–1774. doi:10.1126/science.287.5459.1770.
Schaick, S.J., Moody-Carpenter, C.J., Effert-Fanta, E.L., Hanser, K.N., Roth, D.R., and Colombo, R.E. 2020. Bigheaded carp spatial reproductive dynamics in Illinois and Wabash River tributaries. North Am. J. Fish. Manag 43 (1): 101–111. doi:10.1002/nafm.10573.
Schrank, S.J., Braaten, P.J., and Guy, C.S. 2001. Spatiotemporal variation in density of larval bighead carp in the Lower Missouri River. Trans. Am. Fish. Soc. 130 (5): 809–814. doi:10.1577/1548-8659(2001)130<0809:svidol>2.0.co;2.
Schumann, D.A., Colvin, M.E., Miranda, L.E., and Todd Jones-Farrand, D. 2020. Occurrence and co-occurrence patterns of gar in river-floodplain habitats: methods to leverage species coexistence to benefit distributional models. North Am. J. Fish. Manag. 40 (3): 622–637. doi:10.1002/nafm.10402.
Simon, T.P. 1998. Assessment of Balon’s reproductive guilds with application to midwestern North American freshwater fishes. InAssessing the Sustainability and Biological Integrity of Water Resources Using Fish Communities. Edited by T.P. Simon. CRC Press. pp. 97–121. doi:10.1201/9781003068013-8.
Solomon, L.E., Pendleton, R.M., Chick, J.H., and Casper, A.F. 2016. Long-term changes in fish community structure in relation to the establishment of Asian carps in a large floodplain river. Biol. Invasions 18 (10): 2883–2895. doi:10.1007/s10530-016-1180-8.
Sullivan, C.J., Weber, M.J., Pierce, C.L., and Camacho, C.A. 2018. Influence of river discharge on grass carp occupancy dynamics in south-eastern Iowa rivers. River Res. Appl. 35 (1): 60–67. doi:10.1002/rra.3385.
Swedberg, D. V., and Walburg, C.H. 1970. Spawning and early life history of the freshwater drum in Lewis and Clark Lake, Missouri River. Trans. Am. Fish. Soc. 99 (3): 560–570. doi:10.1577/1548-8659(1970)99<560:saelho>2.0.co;2.
Tillotson, N.A., Weber, M.J., and Pierce, C.L. 2022. Zooplankton community dynamics along the bigheaded carp invasion front in the Upper Mississippi River. Hydrobiologia 849 : 1659–1675. doi:10.1007/s10750-022-04809-9.
Tripp, S., Brooks, R., Herzog, D., and Garvey, J. 2013. Patterns of fish passage in the Upper Mississippi River. River Res. Appl. 30 (8): 1056–1064. doi:10.1002/rra.2696.
U.S. Geological Survey. 2022. Nonindigenous Aquatic Species Database. Available from http://nas.er.usgs.gov.
Vanni, M.J. 2021. Invasive mussels regulate nutrient cycling in the largest freshwater ecosystem on Earth. 118 (8): 10–12. doi:10.1073/pnas.2100275118.
Weber, M.J., and Brown, M.L. 2011. Relationships among invasive common carp , native fishes and physicochemical characteristics in upper Midwest (USA) lakes. Ecol. Freshw. Fish 20 (2): 270–278. doi:10.1111/j.1600-0633.2011.00493.x
Weber, M.J., and Brown, M.L. 2019. Application of a robust design occupancy model for assessing fish recruitment. Can. J. Fish. Aquat. Sci. 76 (4): 561–568. doi:10.1139/cjfas-2018-0083.
Weber, M.J., Matthews, A., and Pierce, C.L. 2021. Effects of adult biomass and environmental conditions on bigheaded carp reproductive output. J. Fish Wildl. Manag. 12 (2): 373–382. doi:10.3996/JFWM-20-068.
Welcomme, R.L., Winemiller, K.O., and Cowx, I.G. 2006. Fish environmental guilds as a tool for assessment of ecological condition of rivers. River Res. Appl. 22 (3): 377–396. doi:10.1002/rra.914.
Werner, R.G. 2002. Habitat Requirements. In Fishery science: the unique contributions of early life stages. Edited by L.A. Fuiman and R.G. Werner. Blackwell Science Ltd., Oxford, United Kingdom. pp. 161–182.
Whitledge, G.W., Knights, B.C., Vallazza, J.M., Larson, J.H., Weber, M.J., Lamer, J.T., Phelps, Q.E., and Norman, J.D. 2019. Identification of bighead carp and silver carp early-life environments and inferring lock and Dam 19 passage in the Upper Mississippi River: insights from otolith chemistry. Biol Invasions 21 : 1007–1020. doi:10.1007/s10530-018-1881-2.
Yang, Z., Zhu, Q., Cao, J., Jin, Y., Zhao, N., Xu, W., Liu, H., Tang, H., Qiao, Y., and Chen, X. 2021. Using a hierarchical model framework to investigate the relationships between fish spawning and abiotic factors for environmental flow management. Sci. Total Environ. 787 . doi:10.1016/J.SCITOTENV.2021.147618.
TABLE 1. Detection probability (p) models ranked by ΔAICc. We compared 39 models and presented those with ΔAICc ≤ 3. All models included constant occupancy [Ψ (.)]. We used top ranked species models for carp (bigheaded carp), drum (freshwater drum), shad (Clupeidae), and percids to formulate habitat models and top ranked habitat models to form environmental models. Covariates include backwater (BW), thalweg (TH), channel border (CB), and water volume filtered (VOL). (+) indicates additive effects, (x) indicates interactive effects, and (=) indicates combined variables.