References
Adams, R. A. (2018).
Dark side of climate change: Species-specific responses and first
indications of disruption in spring altitudinal migration in myotis
bats. Journal of Zoology, 304(4), 268–275.
https://doi.org/10.1111/jzo.12526
Alerstam, T., &
Bäckman, J. (2018). Ecology of animal migration. Current Biology,28(17), R968–R972. https://doi.org/10.1016/j.cub.2018.04.043
Bacon, B., Khatiri,
A., Palmer, J., Freeth, T., Pettitt, P., & Kentridge, R. (2023). An
Upper Palaeolithic Proto-writing System and Phenological Calendar.Cambridge Archaeological Journal, 33(3), 371–389.
https://doi.org/10.1017/S0959774322000415
Barçante, L., M. Vale,
M., & S. Alves, M. A. (2017). Altitudinal migration by birds: A review
of the literature and a comprehensive list of species. Journal of
Field Ornithology, 88(4), 321–335.
https://doi.org/10.1111/jofo.12234
Battey, C. J., & Klicka, J. (2017). Cryptic speciation and gene flow in
a migratory songbird Species Complex: Insights from the Red-Eyed Vireo
(Vireo olivaceus). Molecular Phylogenetics and Evolution,113, 67–75.https://doi.org/10.1016/j.ympev.2017.05.006Börger, L., Bijleveld, A. I., Fayet, A. L., Machovsky‐Capuska, G. E.,
Patrick, S. C., Street, G. M., & Vander Wal, E. (2020). Biologging
Special Feature. Journal of Animal Ecology, 89(1), 6–15.https://doi.org/10.1111/1365-2656.13163Boyle, W. A., Guglielmo, C. G., Hobson, K. A., & Norris, D. R. (2011).
Lekking birds in a tropical forest forego sex for migration.Biology Letters, 7(5), 661–663.
https://doi.org/10.1098/rsbl.2011.0115
Boyle, W. A. (2017).
Altitudinal bird migration in North America. The Auk,134(2), 443–465. https://doi.org/10.1642/AUK-16-228.1
Brodie, J. F.,
Williams, S., & Garner, B. (2021). The decline of mammal functional and
evolutionary diversity worldwide. Proceedings of the National
Academy of Sciences, 118(3), e1921849118.
https://doi.org/10.1073/pnas.1921849118
Burgess, N. D., & Mlingwa, C. O. F. (2000). Evidence for altitudinal
migration of forest birds between montane Eastern Arc and lowland
forests in East Africa. Ostrich, 71(1–2), 184–190.
https://doi.org/10.1080/00306525.2000.9639908
Carboneras, C., Jutglar, F., & Kirwan, G. M. (2020). Snow Petrel
(Pagodroma nivea). Birds of the World.
https://birdsoftheworld.org/bow/species/snopet1/cur/introduction
Chapman, B. B., Skov, C., Hulthén, K., Brodersen, J., Nilsson, P. A.,
Hansson, L.-A., & Brönmark, C. (2012). Partial migration in fishes:
Definitions, methodologies and taxonomic distribution. Journal of
Fish Biology, 81(2), 479–499.
https://doi.org/10.1111/j.1095-8649.2012.03349.x
Chen, I.-C., Hill, J.
K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid Range
Shifts of Species Associated with High Levels of Climate Warming.Science, 333(6045), 1024–1026.
https://doi.org/10.1126/science.1206432
Cheng, Y., Wen, Z., He, X., Dong, Z., Zhangshang, M., Li, D., Wang, Y.,
Jiang, Y., and Wu, Y. (2022). Ecological traits affect the seasonal
migration patterns of breeding birds along a subtropical altitudinal
gradient. Avian Research 13:100066.
Chowdhury, S., Fuller, R. A., Dingle, H., Chapman, J. W., & Zalucki, M.
P. (2021). Migration in butterflies: A global overview. Biological
Reviews, brv.12714. https://doi.org/10.1111/brv.12714
Cosgrove, A. J.,
McWhorter, T. J., & Maron, M. (2018). Consequences of impediments to
animal movements at different scales: A conceptual framework and review.Diversity and Distributions, 24(4), 448–459.
https://doi.org/10.1111/ddi.12699
Crossin, G. T., Hinch, S. G., Farrell, A. P., Higgs, D. A., Lotto, A.
G., Oakes, J. D., & Healey, M. C. (2004). Energetics and morphology of
sockeye salmon: Effects of upriver migratory distance and elevation.Journal of Fish Biology, 65(3), 788–810.https://doi.org/10.1111/j.0022-1112.2004.00486.xDeSaix, M. G., Bulluck, L. P., Eckert, A. J., Viverette, C. B., Boves,
T. J., Reese, J. A., Tonra, C. M., & Dyer, R. J. (2019). Population
assignment reveals low migratory connectivity in a weakly structured
songbird. Molecular Ecology, 28(9), 2122–2135.https://doi.org/10.1111/mec.15083
DeSaix, M. G., Anderson, E. C., Bossu, C. M., Rayne, C. E., Schweizer,
T. M., Bayly, N. J., Narang, D. S., Hagelin, J. C., Gibbs, H. L.,
Saracco, J. F., Sherry, T. W., Webster, M. S., Smith, T. B., Marra, P.
P., & Ruegg, K. C. (2023). Low-coverage whole genome sequencing for
highly accurate population assignment: Mapping migratory connectivity in
the American Redstart (Setophaga ruticilla). Molecular Ecology, 32,
5528–5540. https://doi-org.libezp.lib.lsu.edu/10.1111/mec.17137
Dingle, H., & Drake, V. A. (2007). What Is Migration?BioScience, 57(2), 113–121.https://doi.org/10.1641/B570206Do, H., and Dobrovic, A. (2015). Sequence Artifacts in DNA from
Formalin-Fixed Tissues: Causes and Strategies for Minimization. Clinical
Chemistry 61:64–71.
Edwards, M. S., T. F. Turner, and Z. D. Sharp (2022). Short- and
Long-Term Effects of Fixation and Preservation on Stable Isotope Values
(s13C, s’5N, 834S) of Fluid-Preserved Museum Specimens. Coepia.
Eggert, L. S.,
Terwilliger, L. A., Woodworth, B. L., Hart, P. J., Palmer, D., &
Fleischer, R. C. (2008). Genetic structure along an elevational gradient
in Hawaiian honeycreepers reveals contrasting evolutionary responses to
avian malaria. BMC Evolutionary Biology, 8(1), 315.
https://doi.org/10.1186/1471-2148-8-315
Gadek, C. R., Newsome, S. D., Beckman, E. J., Chavez, A. N., Galen, S.
C., Bautista, E., & Witt, C. C. (2018). Why are tropical mountain
passes “low” for some species? Genetic and stable-isotope tests for
differentiation, migration and expansion in elevational generalist
songbirds. Journal of Animal Ecology, 87(3), 741–753.https://doi.org/10.1111/1365-2656.12779Gomez, L., Larsen, K. W., & Gregory, Patrick. T. (2015). Contrasting
Patterns of Migration and Habitat Use in Neighboring Rattlesnake
Populations. Journal of Herpetology, 49(3), 371–376.
https://doi.org/10.1670/13-138
Gómez-Bahamón, V.,
Márquez, R., Jahn, A. E., Miyaki, C. Y., Tuero, D. T., Laverde-R, O.,
Restrepo, S., & Cadena, C. D. (2020). Speciation Associated with Shifts
in Migratory Behavior in an Avian Radiation. Current Biology,30(7), 1312-1321.e6. https://doi.org/10.1016/j.cub.2020.01.064
Green, K. (2010).
Alpine taxa exhibit differing responses to climate warming in the Snowy
Mountains of Australia. Journal of Mountain Science, 7(2),
167–175. https://doi.org/10.1007/s11629-010-1115-2
Guaraldo, A. de C., Bczuska, J. C., & Manica, L. T. (2022).Turdus flavipes altitudinal migration in the Atlantic Forest The
Yellow-legged Thrush is a partial altitudinal migrant in the Atlantic
Forest. Avian Biology Research, 15(3), 117–124.
https://doi.org/10.1177/17581559221097269
Gutiérrez, D., & Wilson, R. J. (2014). Climate conditions and resource
availability drive return elevational migrations in a single-brooded
insect. Oecologia, 175(3), 861–873.
https://doi.org/10.1007/s00442-014-2952-4
Harzing, A.W. (2007). Publish or Perish, available from
https://harzing.com/resources/publish-or-perish
Hobson, K. A., S. L. Van Wilgenburg, L. I. Wassenaar, and K. Larson
(2012). Linking hydrogen (δ2H) isotopes in feathers and precipitation:
sources of variance and consequences for assignment to isoscapes. PLoS
ONE 7:e35137.
Hobson, K. A., Wassenaar, L. I., Bowen, G. J., Courtiol, A., Trueman, C.
N., Voigt, C. C., West, J. B., McMahon, K. W., & Newsome, S. D. (2019).
Outlook for Using Stable Isotopes in Animal Migration Studies. InTracking Animal Migration with Stable Isotopes (pp. 237–244).
Elsevier. https://doi.org/10.1016/B978-0-12-814723-8.00010-6
Holton, M. D., Wilson, R. P., Teilmann, J., & Siebert, U. (2021).
Animal tag technology keeps coming of age: An engineering perspective.Philosophical Transactions of the Royal Society B: Biological
Sciences, 376(1831), 20200229.https://doi.org/10.1098/rstb.2020.0229Holzhaider, J. & Zahn, A. (2001). Bats in the Bavarian Alps: Species
composition and utilization of higher altitudes in summer.Mammalian Biology, 66, 144–154.
Hsiung, A. C., Boyle, W. A., Cooper, R. J., & Chandler, R. B. (2018).
Altitudinal migration: Ecological drivers, knowledge gaps, and
conservation implications: Animal altitudinal migration review.Biological Reviews, 93(4), 2049–2070.
https://doi.org/10.1111/brv.12435
Inouye, D. W., Barr,
B., Armitage, K. B., & Inouye, B. D. (2000). Climate change is
affecting altitudinal migrants and hibernating species.Proceedings of the National Academy of Sciences, 97(4),
1630–1633. https://doi.org/10.1073/pnas.97.4.1630
Jacobsen, D. (2020).
The dilemma of altitudinal shifts: Caught between high temperature and
low oxygen. Frontiers in Ecology and the Environment,18(4), 211–218. https://doi.org/10.1002/fee.2161
Justen, H., &
Delmore, K. E. (2022). The genetics of bird migration. Current
Biology, 32(20), R1144–R1149.
https://doi.org/10.1016/j.cub.2022.07.008
Kimura, M. T. (2021). Altitudinal migration of insects.Entomological Science, 24(1), 35–47.https://doi.org/10.1111/ens.12444
Leeming J. (2023) Searching the web for science: how small mistakes
create big problems. Nature. 2023 Apr 6. doi:
10.1038/d41586-023-01011-2. Epub ahead of print. PMID: 37024585.
Liang, D., Pan, X. Luo, X., Wenda, C., Zhao, Y., Hu, Y., Robinson, S.
K., and Liu, Y. (2021). Seasonal variation in community composition and
distributional ranges of birds along a subtropical elevation gradient in
China. Diversity and Distributions 27:2527–2541.
Loiselle, B. A., &
Blake, J. G. (1992). Population Variation in a Tropical Bird Community.BioScience, 42(11), 838–845.
https://doi.org/10.2307/1312083
Maicher, V., Sáfián,
S., Murkwe, M., Delabye, S., Przybyłowicz, Ł., Potocký, P., Kobe, I. N.,
Janeček, Š., Mertens, J. E. J., Fokam, E. B., Pyrcz, T., Doležal, J.,
Altman, J., Hořák, D., Fiedler, K., & Tropek, R. (2020). Seasonal
shifts of biodiversity patterns and species’ elevation ranges of
butterflies and moths along a complete rainforest elevational gradient
on Mount Cameroon. Journal of Biogeography, 47(2),
342–354. https://doi.org/10.1111/jbi.13740
Mallory, M. L., Stenhouse, I. J., Gilchrist, H. G., Robertson, G. J.,
Haney, J. C., & Macdonald, S. D. (2020). Ivory Gull (Pagophila
eburnea). Birds of the World.https://birdsoftheworld.org/bow/species/ivogul/cur/introductionMatsubayashi, J., Y. Osada, K. Tadokoro, Y. Abe, A. Yamaguchi, K.
Shirai, K. Honda, C. Yoshikawa, N. O. Ogawa, N. Ohkouchi, N. F.
Ishikawa, et al. (2020). Tracking long‐distance migration of marine
fishes using compound‐specific stable isotope analysis of amino acids.
Ecology Letters 23:881–890.
McGuire, L. P., &
Boyle, W. A. (2013). Altitudinal migration in bats: Evidence, patterns,
and drivers: Bat altitudinal migration. Biological Reviews,88(4), 767–786. https://doi.org/10.1111/brv.12024
McMahon, K. W., and S. D. Newsome (2019). Amino Acid Isotope Analysis: A
New Frontier in Studies of Animal Migration and Foraging Ecology. In
Tracking Animal Migration with Stable Isotopes. Elsevier, pp. 173–190.
Merlin, C., &
Liedvogel, M. (2019). The genetics and epigenetics of animal migration
and orientation: Birds, butterflies and beyond. Journal of
Experimental Biology, 222(Suppl_1), jeb191890.
https://doi.org/10.1242/jeb.191890
Middleton, A. D., Sawyer, H., Merkle, J. A., Kauffman, M. J., Cole, E.
K., Dewey, S. R., Gude, J. A., Gustine, D. D., McWhirter, D. E.,
Proffitt, K. M., & White, P. (2020). Conserving transboundary wildlife
migrations: Recent insights from the Greater Yellowstone Ecosystem.Frontiers in Ecology and the Environment, 18(2), 83–91.
https://doi.org/10.1002/fee.2145
Milligan, R. J., Scott, E. M., Jones, D. O. B., Bett, B. J., Jamieson,
A. J., O’Brien, R., Pereira Costa, S., Rowe, G. T., Ruhl, H. A., Smith,
K. L., Susanne, P., Vardaro, M. F., & Bailey, D. M. (2020). Evidence
for seasonal cycles in deep‐sea fish abundances: A great migration in
the deep SE Atlantic? Journal of Animal Ecology, 89(7),
1593–1603.https://doi.org/10.1111/1365-2656.13215Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource
uses of flower- and fruit-feeding drosophilid flies (Diptera;
Drosophilidae) in Central Japan. Entomological Science 13,60–67.
Morrissey, C. A., Bendell-Young, L. I., & Elliott, J. E. (2004).
Seasonal trends in population density, distribution, and movement of
American Dippers within a watershed of southwestern British Columbia,
Canada. The Condor, 106, 815-825.
Moussy, C., Hosken, D.J., Mathews, F., Smith, G.C., Aegerter, J.N. and
Bearhop, S. (2013). Bat movements and genetic structure. Mammal Review,
43: 183-195.
https://doi-org.10.1111/j.1365-2907.2012.00218.x
Nachman, M. W., E. J. Beckman,E. J., Bowie, R. C., Cicero, C., Conroy,
C. J., R. Dudley, R., Hayes, T. B., Koo, M. S., Lacey, E. A., Martin, C.
H., McGuire, J. A., et al. (2023). Specimen collection is essential for
modern science. PLOS Biology 21:e3002318.
Newsome, S. D., Sabat, P., Wolf, N., Rader, J. A., & del Rio, C. M.
(2015). Multi-tissue δ 2 H analysis reveals
altitudinal migration and tissue-specific discrimination patterns inCinclodes. Ecosphere, 6(11), art213.https://doi.org/10.1890/ES15-00086.1
Newton, I. (2012).
Obligate and facultative migration in birds: Ecological aspects.Journal of Ornithology, 153(S1), 171–180.
https://doi.org/10.1007/s10336-011-0765-3
Norbu, N., Wikelski, M. C., Wilcove, D. S., Partecke, J., Ugyen, Tenzin,
U., Sherub, & Tempa, T. (2013). Partial Altitudinal Migration of a
Himalayan Forest Pheasant. PLoS ONE, 8(4), e60979.
https://doi.org/10.1371/journal.pone.0060979
Nussbaumer, R.,
Gravey, M., Briedis, M., & Liechti, F. (2023). Global positioning with
animal‐borne pressure sensors. Methods in Ecology and Evolution,14(4), 1104–1117. https://doi.org/10.1111/2041-210X.14043
O’Neill, J. P., & Parker, T. A. (1978). Responses of Birds to a
Snowstorm in the Andes of Southern Peru. THE WILSON BULLETIN,90(3), 4.
Pageau, C., Vale, M.
M., Menezes, M. A., Barçante, L., Shaikh, M., S. Alves, M. A., &
Reudink, M. W. (2020). Evolution of altitudinal migration in passerines
is linked to diet. Ecology and Evolution, 10(7),
3338–3345. https://doi.org/10.1002/ece3.6126
Presnall, C. C. (1935). Altitudinal migration in southern Utah.The Condor, 37(1) , 37-38.
Qu, Y., Tian, S., Han,
N., Zhao, H., Gao, B., Fu, J., Cheng, Y., Song, G., Ericson, P. G. P.,
Zhang, Y. E., Wang, D., Quan, Q., Jiang, Z., Li, R., & Lei, F. (2015).
Genetic responses to seasonal variation in altitudinal stress:
Whole-genome resequencing of great tit in eastern Himalayas.Scientific Reports, 5(1), 14256.
https://doi.org/10.1038/srep14256
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B.
G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså,
J. (2019). Humboldt’s enigma: What causes global patterns of mountain
biodiversity? Science, 365(6458), 1108–1113.
https://doi.org/10.1126/science.aax0149
Rappole, J. H. (2013).The avian migrant: The biology of bird migration. Columbia
University Press.
Rappole, J. H., Aung,
T., Rasmussen, P. C., & Renner, S. C. (2011). Ornithological
Exploration in the Southeastern Sub-Himalayan Region of Myanmar.Ornithological Monographs, 70(1), 10–29.
https://doi.org/10.1525/om.2011.70.1.10
Rime, Y., Nussbaumer,
R., Briedis, M., Sander, M. M., Chamberlain, D., Amrhein, V., Helm, B.,
Liechti, F., & Meier, C. M. (2023). Multi-sensor geolocators unveil
global and local movements in an Alpine-breeding long-distance migrant.Movement Ecology, 11(1), 19.
https://doi.org/10.1186/s40462-023-00381-6
Rocque, D. A., and K. Winker (2005). Use of Bird Collections in
Contaminant and Stable-isotope Studies. The Auk 122:990–994.
Rougemont, Q., Xuereb, A., Dallaire, X., Moore, J.-S., Normandeau, E.,
Perreault-Payette, A., Bougas, B., Rondeau, E. B., Withler, R. E., Van
Doornik, D. M., Crane, P. A., Naish, K. A., Garza, J. C., Beacham, T.
D., Koop, B. F., & Bernatchez, L. (2023). Long-distance migration is a
major factor driving local adaptation at continental scale in Coho
salmon. Molecular Ecology , 32, 542–559.
https://doi-org.libezp.lib.lsu.edu/10.1111/mec.16339
Rueda-Uribe C., Herrera-Alsina L., Lancaster, L. T., Capellini, I.,
Layton, K. K. S., & Travis J. M. J. (2023). Citizen science data reveal
altitudinal movement and seasonal ecosystem use by hummingbirds in the
Andes Mountains. Ecography, 2023:e06735.
https://doi-org.libezp.lib.lsu.edu/10.1111/ecog.06735
Ruegg, K. C., Anderson, E. C., Harrigan, R. J., Paxton, K. L., Kelly, J.
F., Moore, F., & Smith, T. B. (2017). Genetic assignment with isotopes
and habitat suitability ( gaiah ), a migratory bird case study.Methods in Ecology and Evolution, 8(10), 1241–1252.https://doi.org/10.1111/2041-210X.12800Runge, C. A., Martin, T. G., Possingham, H. P., Willis, S. G. and
Fuller, R. A. 2014. Conserving mobile species. Frontiers in
Ecology and the Environment, 12, 395–402.
Schmitt, C. J., Cook, J. A., Zamudio, K. R., & Edwards, S. V. (2019).
Museum specimens of terrestrial vertebrates are sensitive indicators of
environmental change in the Anthropocene. Philosophical
Transactions of the Royal Society B: Biological Sciences,374(1763), 20170387.https://doi.org/10.1098/rstb.2017.0387
Schunck, F., Silveira,
L. F., & Candia-Gallardo, C. (2023). Seasonal altitudinal movements of
birds in Brazil: A review. Zoologia (Curitiba), 40,
e22037. https://doi.org/10.1590/s1984-4689.v40.e22037
Scott, G. R., Hawkes, L. A., Frappell, P. B., Butler, P. J., Bishop, C.
M., & Milsom, W. K. (2015). How Bar-Headed Geese Fly Over the
Himalayas. Physiology, 30(2), 107–115.https://doi.org/10.1152/physiol.00050.2014Sokolovskis, K., M. Lundberg, S. Åkesson, M. Willemoes, T. Zhao, V.
Caballero-Lopez, and S. Bensch (2023). Migration direction in a songbird
explained by two loci. Nature Communications 14:165.
Soriano-Redondo, A.,
Gutiérrez, J. S., Hodgson, D., & Bearhop, S. (2020). Migrant birds and
mammals live faster than residents. Nature Communications,11(1), 5719. https://doi.org/10.1038/s41467-020-19256-0
Talla, V., Pierce, A.
A., Adams, K. L., De Man, T. J. B., Nallu, S., Villablanca, F. X.,
Kronforst, M. R., & De Roode, J. C. (2020). Genomic evidence for gene
flow between monarchs with divergent migratory phenotypes and flight
performance. Molecular Ecology, 29(14), 2567–2582.
https://doi.org/10.1111/mec.15508
Teitelbaum, C. S.,
Fagan, W. F., Fleming, C. H., Dressler, G., Calabrese, J. M.,
Leimgruber, P., & Mueller, T. (2015). How far to go? Determinants of
migration distance in land mammals. Ecology Letters,18(6), 545–552. https://doi.org/10.1111/ele.12435
Terrill, S. B., & Able, K. P. (1988). Bird Migration Terminology.The Auk, 105(1), 205–206.
https://doi.org/10.1093/auk/105.1.205
Tigano, A., &
Russello, M. A. (2022). The genomic basis of reproductive and migratory
behaviour in a polymorphic salmonid. Molecular Ecology,31(24), 6588–6604. https://doi.org/10.1111/mec.16724
Tinoco, B. A., Astudillo, P. X., Latta, S. C., & Graham, C. H. (2009).
Distribution, ecology and conservation of an endangered Andean
hummingbird: The Violet-throated Metaltail ( Metallura baroni ).Bird Conservation International, 19(1), 63–76.https://doi.org/10.1017/S0959270908007703Todd W. E. & Carriker, M. A. (1922). The birds of the Santa Marta
region of Colombia: a study in altitudinal distribution. Annals of the
Carnegie Museum 14, 611 pp.
Toews, D. P. L., S. A. Taylor, H. M. Streby, G. R. Kramer, and I. J.
Lovette (2019). Selection on VPS13A linked to migration in a songbird.
Proceedings of the National Academy of Sciences 116:18272–18274.
Tsai, P., Ko, C., Chia, S. Y., Lu, Y., & Tuanmu, M. (2021). New
insights into the patterns and drivers of avian altitudinal migration
from a growing crowdsourcing data source. Ecography,44(1), 75–86. https://doi.org/10.1111/ecog.05196
Villeneuve, A. R., Thornhill, I., & Eales, J. (2019). Upstream
migration and altitudinal distribution patterns of Nereina punctulata
(Gastropoda: Neritidae) in Dominica, West Indies. Aquatic
Ecology, 53(2), 205–215.https://doi.org/10.1007/s10452-019-09683-7Wandeler, P., P. E. A. Hoeck, and L. F. Keller (2007). Back to the
future: museum specimens in population genetics. Trends in Ecology &
Evolution 22:634–642.
Williamson, J. L., & Witt, C. C. (2021). Elevational niche-shift
migration: Why the degree of elevational change matters for the ecology,
evolution, and physiology of migratory birds. Ornithology,
ukaa087. https://doi.org/10.1093/ornithology/ukaa087
Winker, K. (2010). On
the Origin of Species Through Heteropatric Differentiation: A Review and
a Model of Speciation in Migratory Animals. Ornithological
Monographs, 69(1), 1–30.
https://doi.org/10.1525/om.2010.69.1.1
Wootton, K. L.,
Curtsdotter, A., Bommarco, R., Roslin, T., & Jonsson, T. (2023). Food
webs coupled in space: Consumer foraging movement affects both stocks
and fluxes. Ecology, 104(8), e4101.
https://doi.org/10.1002/ecy.4101
Figure Legends
Figure 1:
: Altitudinal migration is a widespread phenomenon that occurs in many
different taxonomic groups and across habitat types. Here, we show seven
different examples of altitudinal migration that illustrate differences
in the magnitude of altitudinal shifts as well as physiological and/or
ecological changes across seasons. These examples are taken from recent
studies of altitudinal migration on snails (Villeneuve et al., 2019),
Common Brimstone (Gutiérrez & Wilson, 2014), Elk (Middleton et al.,
2020), Northern Bat (Holzhaider & Zahn, 2001), Pacific Rattlesnake
(Gomez et al., 2015), American Dipper (Morrissey et al., 2004), and
Salmon (Crossin et al., 2004). Illustrations were provided by Ann
Sanderson.
Figure 2:
A simplified, multivariate space that conceptualizes migration behavior
continua. Altitudinal migration is part of the broader study of animal
migration, which in turn is part of the even broader study of animal
movement. Though most animal populations can be classified as either
altitudinal or latitudinal migrants and obligate or partial migrants,
many taxa and/or populations do not fit neatly into a single
categorization. Rather, migrants may undertake both latitudinal and
altitudinal migration, while populations or demographic classes within a
species may vary in migratory behavior, such that species can be placed
in a hypothetical “migration space” with continuous axes that describe
variation in different aspects of migration. Here, we illustrate this
conceptual framework with five examples: (1.) Gray-headed Flying FoxPteropus poliocephalus moves irruptively as food becomes
available. Although this movement is often referred to as “migration”,
it is not a regular seasonal occurrence. (2.) Geese are typically
thought of as “traditional” latitudinal migrants, moving from their
high-latitude breeding range to a low-latitude wintering range, but may
also move across large vertical distances during their migration (e. g.
Bar-headed Goose Anser indicus ). (3.) Monarchs Danaus
plexippus show a complex partial migration pattern that transverses
latitudinal and altitudinal distances, varies by population, and spans
multiple generations. (4.) Plains Zebra Equus quagga is well
known as part of the great Serengeti migration that is latitudinal but
does not change in elevation. However, at the species level it is a
partial migrant as some populations are resident. (5.) White-ruffed
Manakin Corapipo altera is a partial altitudinal migrant that
does not travel long longitudinal distances; only some age and sex
classes migrate to lower elevations during their non-breeding season.
Photos of the Gray-headed Flying Fox, White-ruffed Manakin, and Monarch
were taken by David Vander Pluym, Plains Zebra photo was provided by
Joachim Huber, CC BY-SA 2.0
<https://creativecommons.org/licenses/by-sa/2.0>
via Wikimedia Commons. Geese photo was provided by Thermos - Own work,
CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=1387483.
Figure 3: Histogram comparing the number of Google Scholar hits for
search terms “altitudinal migration” in purple and “elevational
migration” in yellow as quantified via the program Publish or Perish.
Both terms have seen a steady increase in the number of publications
over time, but altitudinal migration has historical precedence and is
used more often.