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Abstract

The problem of fixed-time formation tracking for multi-spacecraft systems without
internal collisions is investigated in this paper. A novel adaptive immersion and in-
variance (I&I)-based control protocol is designed to solve this technical problem,
with the goal of driving formation members to accurately realize and maintain the re-
quired configuration within the user-given time. The novelty here lies in two things.
First and foremost, unlike the asymptotic convergence of the traditional I&I related
works, the proposed protocol guarantees the fixed-time stability by integrating the
prescribed performance control. Secondly, the event-triggered mechanism is adopted
to alleviate the pressure of communication resources between formation members
and reduce unnecessary information interaction. Lyapunov stability analysis shows
that the proposed protocol can enable the defined implicit manifold to converge
to the origin for most initial conditions. Also, benefiting from the prescribed per-
formance techniques, the convergence time eliminates the dependence of designed
controller parameters or initial system conditions, relying only on the actual mission
requirements. In addition, we adopt a linear extended state observer to deal with the
parameter uncertainties and external disturbances, and use the I&I adaption to es-
timate the observer errors to further improve the system performance. Moreover, a
new exponential-type artificial potential function is designed to avoid close proxim-
ity between formation members and prevent internal collisions. Finally, numerical
simulations are provided to verify the theoretical results.

KEYWORDS:
Formation tracking for multi-spacecraft systems; Adaptive immersion and invariance-based control pro-
tocol; Event-triggered mechanism; Exponential-type artificial potential function; Required formation
configuration

1 INTRODUCTION

The concept of multi-spacecraft formation was put forward by Sholomitsky et al. in 1977 when conducting infrared synthetic
aperture imaging of multiple spacecraft1. Spacecraft formation flying (SFF) is a way to spread the functions of a large space-
craft over numerous smaller ones, which can improve system reliability, robustness, and launch flexibility while reducing costs2.

0Abbreviations: LVLH, local vertical local horizontal; ECI, Earth center inertial
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These advantages make SFF receive extensive attention, and has been widely used in complicated space missions3,4,5. Gener-
ally, SFF technique contains formation reconstruction and formation maintenance. Formation reconstruction is needed to adapt
to the expected configuration changes caused by different mission requirements. Formation maintenance requires that the nom-
inal configuration can be accurately maintained even in the presence of space disturbance6. While SFF is evolving, there are
still significant technical challenges in the area of control design for formation reconfiguration and maintenance. Parametric
uncertainties, mission timeliness, formation accuracy, communication resource pressure and possible internal collisions are all
problems faced by SFF research. Nevertheless, the search for SFF control is still in full swing and has yielded fruitful results6,7,8,9.

Adaptive control is a useful tool for uncertain systems with unknown or slow time-varying parameters. Since emerging in
the 1950s, it has been extensively studied in various practical situations such as flight control and robotic systems, especially in
recent decades10,11. Lyapunov synthesis method is one of the most well-known techniques in adaptive control, which requires
to construct a Lyapunov function. But at present, the choice of the Lyapunov function still depends on experience accumulation
and trial-and-error, lack of systematic methods. This becomes even more difficult when faced with complex nonlinear systems.
Furthermore, due to its inherent nonlinearity, adaptive control is very sensitive to model uncertainties and external disturbances,
which may lead to system performance degradation or even instability. This greatly limits its scope of application12. Many
efforts have been made to bridge this gap. Among them, one representative result is the adaptive immersion and invariance (I&I)
control, which is a model reduction method that does not require the theory of a Lyapunov function, thus circumventing the
problem of Lyapunov function selection in the adaptive law design of conventional adaptive control13. Adaptive I&I control is
the inheritance and development of I&I technology. The essence of I&I theory is to select an appropriate immersion mapping
and a target system with desired behavior, so that the states of the controlled system are the images of the target system under the
selected mapping, and then design a control law to transform the image into an invariant attractive manifold to ensure the stability
of the controlled system. Obviously, the proper selection of the target system plays an important part in obtaining the mapping.
I&I theory has been widely used since it was designed by Astolfi et al. in 2003, i.e., flight control systems, electromechanical
system, mobile Robots and so on14,15,16,17. As a derivative of the I&I theory, the adaptive I&I control has a notable innovation
compared with other adaptive control techniques is the addition of an auxiliary regulation term 𝛽 to the adaptive law, which not
only reduces the parameter estimation error, but also facilitates the subsequent stability analysis12. Naturally, the adaptive I&I
control has also been widely sought after since it was proposed, and has obtained many successful applications. Related works
can be found in 18,19,20,21 and references therein. Recently, I&I related techniques have also been applied to the cooperative
control of the multi-agent systems, and many interesting results have been derived22,23.

Notably, the aforementioned related works are continuous-time-based formation control methods, which forces uninterrupted
communication among spacecraft. This means that each spacecraft needs to exchange information with its neighbors at every
sampling instant. Actually, when the measurement output changes only slightly in some time intervals, information transmis-
sion can be unnecessary, otherwise some redundant data packets that need to waste communication resources for transmission
will be generated. In practice, the communication between spacecraft is usually based on wireless network, which makes its
communication bandwidth limited. Especially for small spacecraft with power-limited communication equipments, the unin-
terrupted information transmission will cause the overutilization of communication resources and adversely affect the control
of SFF system24,25. Event-triggered mechanism (ETM) can alleviate the pressure on the communication network by reducing
the frequency of information transmission between formation members, so it can perfectly circumvent the above-mentioned
problems26. Unlike the existing time-triggered methods, the communication of ETMs depends on a triggering condition (also
named as event) related to the system states. Only when the defined condition is met will the formation members transfer infor-
mation with their neighbors. This non-periodic information exchange successfully avoids unnecessary communication between
agents, thereby releasing the pressure of the wireless network. Event-triggered mechanism is also fully applied in the forma-
tion controller design of multi-spacecraft system. In 27, an adaptive event-triggered cooperative controller is designed to solve
the attitude consensus problem of the SFF system. In 28, a sliding mode controller with a novel triggering condition is pro-
posed to achieve attitude consensus and angular velocity consensus. In 29, the formation reconstruction and maintenance of the
six-degree-of-freedom spacecraft with multiple uncertainties as well as communication and computation constraints is consid-
ered. Relevant results continue to appear in 30,31 and references therein. However, an ongoing drawback of the ETM is that its
aperiodic information transmission may cause degradation of system performance. Therefore, how to balance the desired per-
formance of multi-spacecraft system and the utilization of communication resources is a challenge. Further study of ETM is
worthwhile if system performance is guaranteed.

The problem mentioned above can be solved by the prescribed performance control (PPC), which can achieve the pre-specified
dynamic and steady-state performance through performance functions and transform errors32,33,34. Inspired by the case of funnel
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control, the methodology of PPC was first developed in 2008 and has since been widely used in tracking control35,36,37. In
addition to these routine applications, researchers try to combine the PPC method with the finite-time control, so that the transient
performance of the system can be realized more quickly. This combination usually manifests itself in two ways. One is to design
a finite-time performance function to improve the transient performance, and the other is to combine the conventional PPC with
other finite-time designs to ensure the performance and enhance the robustness of the system. In 38, a finite-time performance
function was used to design a controller for pure-feedback system to ensure that the tracking error can converge to a predefined
precision within a finite time. In 39, a composite finite-time control was designed for permanent-magnet synchronous motors,
in which the PPC was introduced to improve the control performance and a finite-time observer was proposed to estimate the
undesired disturbance. Ref. 40 addressed the adaptive dynamic positioning problem of an unmanned surface vehicle by a model-
free prescribed performance controller, in which a "softening" sign function is proposed to ensure robustness and finite-time
stability. The combination of PPC and finite-time theory is indeed beneficial to system performance. However, there are still
two imperfections on the finite-time theory. One is that it converges more slowly than the asymptotic one when the system state
is far from the equilibrium point, and the other is that its convergence time depends mainly on the initial conditions or controller
gains of the system41.

Motivated by the above technical gaps, in this paper, an I&I-based event-triggered controller with guaranteed performance is
proposed, so as to solve the formation problem of SFF system. Wherein, the I&I control combined with the PPC method is applied
to design the formation controller for the whole system. The adaptive I&I technique is introduced to estimate the uncertain
parameters during formation phase. Compared with the existing works, this paper possess the following main contributions.

1. The I&I technique is used as a foundation to design the distributed formation tracking controller for multi-spacecraft
system. Different from the existing related works, the proposed I&I-based controller, which absorbs the properties of the
PPC method the and fixed-time technology, can equivalently turn the tracking problem into a stabilization one through
the transform errors. With the designer-specific performance function, the tracking errors can converge to the desired
accuracy smoothly within the user-given time, without the need to repeatedly adjust the controller parameters.

2. The event-triggered mechanism is incorporated into the formation controller design. Compared with the existing I&I
researches based on continuous sampling, this combination enables information transfer between spacecraft to occur
only when needed, greatly reducing the burden on communication resources. Furthermore, an exponential-type artificial
potential function is designed to avoid collisions between members during formation.

3. We introduce a linear extended state observer to deal with the parameter uncertainties and external disturbances, and use
the adaptive I&I technique to realize the online estimation of observer errors through local and neighbors’ information,
so as to further improve the system performance. Different from the direct estimation of conventional adaptive control,
an auxiliary tuning term is added here. Such design can fully inherit the invariant and attractive properties of the implicit
manifold under the I&I control, and show more design freedom in reducing the error of parameter estimation.

The remainder of this paper is structured as follows. In Section 2, the dynamics of the multi-spacecraft system and I&I control
are introduced, and the algebraic graph theory and the control objective of this paper are also expounded. Section 3 describes
the main results of this paper. The core idea of section 4 is simulation verification. Finally, the conclusion is given in Section 5.

Notations: 𝑙 and 𝑙×𝑚 stand for the 𝑙-dimensional real vector and 𝑙 × 𝑚-dimensional real matrix, respectively. 𝑇 , |⋅| , ‖⋅‖
refer to the vector transpose, the absolute value of a constant and the Euclidean norm of a vector, respectively. 𝑰𝑛×𝑛 represents
the 𝑛 × 𝑛 identity matrix, 𝑰𝑛 represents the 𝑛-dimensional vector with element 1. 𝒅𝒊𝒂𝒈(∗) is defined as the diagonal matrix.

2 PRELIMINARY

In this paper, we hope to construct an appropriate I&I-based controller to achieve and maintain the desired geometry within the
fixed time. To this end, we first introduce some necessary preliminaries.
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2.1 I&I control
The essence of I&I technique is to ensure stability by immerging the controlled system into a reduced-order stable target system.
Its implementation depends on four steps: finding an appropriate target system, ensuring the existence of the immersion con-
ditions, selecting an implicit manifold, designing a controller to ensure the manifold invariance and attractivity, and trajectory
boundedness22,23.

Consider a controlled system 𝒙̇ = 𝑓 (𝒙)+𝑔(𝒙)𝒖 with a stable equilibrium point 𝒙∗, where 𝒙,𝒙∗ ∈ 𝑛, 𝒖 ∈ 𝑝. Suppose there
is a constant 𝑚 that satisfies 𝑚 < 𝑛. Assume that we have the following mappings 𝛼1(⋅) ∶ 𝑚 → 𝑚, 𝜋1(⋅) ∶ 𝑚 → 𝑛, 𝑐1(⋅) ∶𝑚 → 𝑝, 𝜙1(⋅) ∶ 𝑛 → 𝑛−𝑚, 𝜗1(⋅, ⋅) ∶ 𝑛×𝑚 → 𝑝. According to the aforementioned four steps, the premise of the I&I tech-
nique is to find a stable target system 𝜻̇ = 𝛼1(𝜻) with a globally asymptotically stable equilibrium point 𝜻∗ , where 𝜻 , 𝜻∗ ∈ 𝑚,
𝒙∗ = 𝜋1(𝜻∗). Then, we can find the following immersion condition 𝑓 (𝜋1(𝜻)) + 𝑔(𝜋1(𝜻))𝜗1(𝜋1(𝜻)) =

𝜕𝜋1
𝜕𝜻

𝛼1(𝜻), for all 𝜻 ∈ 𝑚.
Next, an appropriate implicit manifold should be chosen so that the following set identity  =

{
𝒙 ∈ 𝑛|𝜙1(𝒙) = 0

}
={

𝒙 ∈ 𝑛|𝒙 = 𝜋1(𝜻)
}

holds for some 𝜻 ∈ 𝑚. Finally, a control law is designed to ensure all trajectories of the system
̇ = 𝜕𝜙1

𝜕𝒙

[
𝑓 (𝒙) + 𝑔(𝒙)𝜗1(𝒙, )

]
, 𝒙̇ = 𝑓 (𝒙) + 𝑔(𝒙)𝜗1(𝒙, ) are bounded and satisfy lim

𝑡→∞
 (𝑡) = 0. Then, 𝒙∗ is the globally

asymptotically stable equilibrium of the following system 𝒙̇ = 𝑓 (𝒙) + 𝑔(𝒙)𝜗1(𝒙, 𝜙1(𝒙)).

2.2 Algebraic graph theory
Consider the multi-spacecraft system with 𝑁 followers and a virtual leader. These 𝑁 + 1 members are communicated via an
undirected graph  = (𝜐, ), where 𝜐 = 0, 1,⋯ , 𝑁 represents the set of 𝑁 followers (labeled as ’1,⋯ , 𝑁’) and the virtual
leader (labeled as ’0’),  ⊆ 𝜐 × 𝜐 refers to as the edge set. (𝑖, 𝑗) ∈  indicates that there is an edge between the 𝑖𝑡ℎ and 𝑗𝑡ℎ
followers, that is, information can be exchanged between the two spacecraft. 𝑖 represents the neighbor set of the 𝑖𝑡ℎ follower,
i.e., 𝑖 = { 𝑗 ∈ 𝜐| (𝑖, 𝑗) ∈ }. Neighbors can communicate with each other.  =

[
𝑎𝑖𝑗

]
𝑁×𝑁 represents the adjacency weighted

matrix with its element 𝑎𝑖𝑗 . If there is an edge betwwen the 𝑖𝑡ℎ and the 𝑗𝑡ℎ spacecraft, 𝑎𝑖𝑗 = 1, otherwise 𝑎𝑖𝑗 = 0. Information
exchange cannot occur on a single agent, therefore 𝑎𝑖𝑖 = 0. For an undirected graph, (𝑖, 𝑗) ∈  ⇔ (𝑗, 𝑖) ∈  is hold. Furthermore,
define the Laplacian matrix as ̄ = −, where  = 𝑑𝑖𝑎𝑔(𝑑1,⋯ , 𝑑𝑁 ) refers to as the degree diagonal matrix and 𝑑𝑖 =

∑
𝑗∈𝑖

𝑎𝑖𝑗 .

Naturally, there is communication between the virtual leader and followers, but it is one-way.  = 𝑑𝑖𝑎𝑔(𝑏1,⋯ , 𝑏𝑁 ) represents
the leader adjacency matrix, where 𝑏𝑖 > 0 means that the 𝑖𝑡ℎ follower can get the leader’s information, otherwise 𝑏𝑖 = 0. To
facilitate subsequent controller design, it is assumed that at least one follower has access to the leader’s information, namely
𝑏1 + 𝑏2 +⋯ + 𝑏𝑁 > 0 .

2.3 Dynamics of the multi-spacecraft system
Assume that the members of the controlled multi-spacecraft system are identical. Let  = {𝑋, 𝑌 ,𝑍} refer to as the ECI
coordinate frame and  =

{
𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐

}
stands for the LVLH frame. The schematic of the multi-spacecraft system is given

in Figure 1, where a virtual leader is introduced to help followers move from the initial positiosn to the desired formation
configuration. Note that the virtual leader is not a real spacecraft, but a virtual one moving on a specific orbit around the
earth. 𝑹𝒄 =

[
𝑅𝑐 , 0, 0

]𝑇 is the distance vector from the center of the earth, pointing toward the virtual leader, where 𝑅𝑐 =
𝑎𝑐

(
1 − 𝑒2𝑐

)/(
1 + 𝑒𝑐 cos 𝜃

)
. 𝜃, 𝑎𝑐 , 𝑒𝑐 are respectively, denoted as the true anomaly, semimajor axis, and orbit eccentricity. Further,

we define 𝒑𝒊 = [𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝑧]𝑇 ∈ 3, (𝑖 = 1,⋯ 𝑛) as the position vector of the 𝑖𝑡ℎ follower with respect to the LVLH frame
and 𝒗𝒊 as the velocity vector correspondingly. Then, one can obtain the following relevant motion dynamics of the 𝑖𝑡ℎ follower
spacecraft42.

𝒑̇𝒊 = 𝒗𝒊
𝑚𝑖𝒗̇𝒊 + 𝑪𝒊𝒗𝒊 +𝑫𝒊𝒑𝒊 + 𝒏𝒊 = 𝒖𝒊 + 𝒅𝒊

(1)

where for the 𝑖𝑡ℎ spacecraft, 𝑚𝑖, 𝒖𝑖 and 𝒅𝑖 represent its mass, the actual control input and the external disturbance vector,
respectively. 𝑪𝒊 = 2𝑚𝑖

[
0,−𝜃̇, 0; 𝜃̇, 0, 0; 0, 0, 0

]
refers to as the skew-symmetric matrix. 𝒏𝒊 = 𝑚𝑖𝜇[𝑅𝑐

/
𝑟3𝑖−1

/
𝑅2

𝑐 , 0, 0]
𝑇 stands

for the gravity vector, of which 𝑟𝑖 =
√[(

𝑅𝑐 + 𝑝𝑖𝑥
)2 + 𝑝2𝑖𝑦 + 𝑝2𝑖𝑧

]
denotes the distance of the 𝑖𝑡ℎ follower relative to the center
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of the earth. 𝜇 represents the earth’s gravitational constant. The term 𝑫𝒊 has the following expression.

𝑫 𝑖 = 𝑚𝑖

⎡⎢⎢⎣
𝜇
/
𝑟3𝑖 − 𝜃̇2 −𝜃̈ 0
𝜃̈ 𝜇

/
𝑟3𝑖 − 𝜃̇2 0

0 0 𝜇
/
𝑟3𝑖

⎤⎥⎥⎦ (2)

where the first and second derivatives of the true anomaly 𝜃 are respectively denoted as 𝜃̇ = 𝑛𝑐
(
1 + 𝑒𝑐 cos 𝜃

)2/(
1 − 𝑒2𝑐

)3∕2 and

𝜃̈ = −2𝑛2𝑐𝑒𝑐
(
1 + 𝑒𝑐 cos 𝜃

)3 sin 𝜃/(
1 − 𝑒2𝑐

)3 with 𝑛𝑐 =
√

𝜇
/
𝑎3𝑐 is the leader’s mean orbital angular velocity.
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Figure 1 Schematic of the multi-spacecraft system.
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Figure 2 Two circular regions of the multi-
spacecraft system.

Before we proceed, we would like to stress the control objective of this work, which is to design an event-triggered I&I-based
formation tracking controller for the multi-spacecraft system to realize high-precision, performance guaranteed and collision-
free formation reconstruction within the fixed-time under the aperiodic controller updates.
Assumption 1 The external disturbance 𝒅𝑖 is unknown but bounded, that is, ‖‖𝒅𝑖

‖‖ ≤ 𝑑0 with 𝑑0 is an uncertain positive constant.

3 MAIN RESULTS

In this section, the details of the proposed I&I-based formation tracking controller is presented, and the corresponding stability
analysis is explicitly conducted. Because the proposed controller expects to realize formation tracking without internal collisions,
the actual control input consists of two parts, as following shows.

𝒖𝒊 = 𝒖𝒊,𝒄
⏟⏟⏟

𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑟𝑎𝑐𝑘𝑖𝑛𝑔

+
𝑚𝑖

𝑀𝑖
⋅ 𝜼−12,𝑖𝑢𝑖,𝑐𝑜𝑙

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑎𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒

(3)

where 𝒖𝒊,𝒄 is designed for formation reconfiguration, 𝒖𝒊,𝒄𝒐𝒍 is applied to achieve collision-free formation tracking,𝑀𝑖 =
∑

𝑗∈𝑖

𝑎𝑖𝑗+

𝑏𝑖. The gain coefficient 𝑚𝑖

𝑀𝑖
exists for the convenience of subsequent controller design.

3.1 Design of the collision-avoidance control item
The collision-avoidance control item 𝒖𝒊,𝒄𝒐𝒍 is designed to ensure that each spacecraft is always in the safe zone of its neighbors.
For this purpose, it can be constructed as the following form.

𝒖𝑖,𝑐𝑜𝑙 = 𝑘𝑐,𝑖
∑

𝑗∈ 𝑐𝑜𝑙
𝑖

− ∇𝒑𝑖Ψ𝑐,𝑖𝑗
(
𝑙𝑖𝑗
)
= −𝑘𝑐,𝑖

∑
𝑗∈ 𝑐𝑜𝑙

𝑖

𝜑𝑐,𝑖𝑗
(
𝑙𝑖𝑗
) 𝒅𝑖𝑗

𝑙𝑖𝑗
(4)
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where ∇𝒑𝑖 represents the gradient along 𝒑𝒊. The negative sign means that the 𝑖𝑡ℎ spaceraft exerts a repulsive force on the 𝑗𝑡ℎ
follower that is likely to collide. 𝑘𝑐,𝑖 is a user-designed positive constant. For the 𝑖-th follower,  𝑐𝑜𝑙

𝑖 = {𝑗|𝑟𝑐,𝑖 ≤ 𝑙𝑖𝑗 ≤ 𝑅𝑐,𝑖} stands
for its collision-avoidance neighbor. It is worth emphasizing that the two neighbor sets in this paper are different in definition.
The collision-avoidance neighbor set  𝑐𝑜𝑙

𝑖 is only related to distance. And the topology neighbor set 𝑖 depends on whether
information can be directly exchanged between two agents. When 𝑙𝑖𝑗 ≤ 𝑟𝑐,𝑖 holds, it indicates that there is a collision between

the formation members. Also, Ψ𝑐,𝑖𝑗
(
𝑙𝑖𝑗
)
=

𝑙𝑖𝑗∫
𝑟𝑐,𝑖

𝜑𝑐,𝑖𝑗(𝑠)𝑑𝑠 in 𝒖𝒊,𝒄𝒐𝒍 is called the artificial potential function, and 𝜑𝑐,𝑖𝑗(⋅) is its action

function, which has the following form.

𝜑𝑐,𝑖𝑗(𝑙𝑖𝑗) =

⎧⎪⎨⎪⎩
−exp

(
𝑅2

𝑐,𝑖−𝑙𝑖𝑗
2

𝑙𝑖𝑗
2−𝑟2𝑐,𝑖+𝑄𝑖

)
, 𝑟𝑐,𝑖 ≤ 𝑙𝑖𝑗 ≤ 𝑅𝑐,𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5)

where 𝒅𝑖𝑗 = 𝒑𝑖 − 𝒑𝑗 is the position vector of the 𝑖𝑡ℎ spacecraft with respect to the 𝑗𝑡ℎ member, and 𝑙𝑖𝑗 =
‖‖‖𝒅𝑖𝑗

‖‖‖ is the distance
between the two members. 𝑟𝑐,𝑖 and 𝑅𝑐,𝑖 are the two circular intervals, as shown in Figure 2, called collision zone and safety zone,
respectively. 𝑄𝑖 > 0 is introduced so that 𝜑𝑐,𝑖𝑗(⋅) is not unbounded. 𝜑𝑐,𝑖𝑗(𝑙𝑖𝑗) → ∞ holds if 𝑄𝑖 is small enough and 𝑙𝑖𝑗 → 𝑟𝑐,𝑖.

3.2 Design of the I&I-based formation tracking controller
For the 𝑖𝑡ℎ follower, assume that 𝒑𝑖,𝑑 is defined as the desired position vector relaive to the virtual leader, the corresponding
position tracking error can be expressed as 𝒑̃𝑖 = 𝒑𝑖−𝒑𝑖,𝑑 . Meanwhile, 𝒗𝒊,𝒅 is the desired velocity vector, then we have 𝒑̇𝑖,𝑑 = 𝒗𝒊,𝒅
and 𝒗̃𝑖 = 𝒗𝑖 − 𝒗𝑖,𝑑 . Further, let 𝒚𝑟 be the moving trajectory of the formation center in the LVLH frame, and 𝚫𝑖 be the desired
position of the 𝑖𝑡ℎ spacecraft with respect to the formation center. According to the vector addition rule, one can obtain 𝒑𝑖,𝑑 =
𝒚𝑟 + 𝚫𝑖. Here we assume that the desired formation configuration is time-invariant, that is, 𝚫𝑖 is constant. Then , based on the
above analysis, the global formation tracking error and velocity error can be expressed as

𝒆𝑖 =
∑

𝑗∈𝑖

𝑎𝑖𝑗(𝒑𝑖 − 𝒑𝑗 − 𝚫𝑖𝑗) + 𝑏̄𝑖(𝒑𝑖 − 𝒚𝑟 − 𝚫𝑖)

𝒆𝑣,𝑖 =
∑

𝑗∈𝑖

𝑎𝑖𝑗(𝒗𝑖 − 𝒗𝑗) + 𝑏̄𝑖(𝒗𝑖 − 𝒚̇𝑟)
(6)

In order to deal well with the possible unmodeled dynamics and external disturbances, the following extended state observer
(ESO) is designed ⎧⎪⎨⎪⎩

𝒛̇1,𝑖 = 𝒛2,𝑖 − 𝛽1,𝑖
(
𝒛1,𝑖 − 𝒑𝑖

)
𝒛̇2,𝑖 = 𝒛3,𝑖 − 𝛽2,𝑖

(
𝒛1,𝑖 − 𝒑𝑖

)
+ 𝒖𝑖

𝑚𝑖

𝒛̇3,𝑖 = −𝛽3,𝑖
(
𝒛1,𝑖 − 𝒑𝑖

) (7)

where 𝒛1,𝑖, 𝒛2,𝑖 are the estimations of 𝒑𝑖 and 𝒗𝑖, respectively. 𝒛3,𝑖 is the estimation of the defined extended state 𝒙3,𝑖 with 𝒙3,𝑖 =
−𝐶𝑖

𝑚𝑖
⋅ 𝒗𝑖 −

𝐷𝑖

𝑚𝑖
⋅ 𝒑𝑖 −

𝑛𝑖
𝑚𝑖

+ 𝒅𝑖

𝑚𝑖
. Note that 𝒙3,𝑖 encapsulates all system uncertainties that may exist. 𝛽𝑘,𝑖, 𝑘 = 1, 2, 3 are the observer

gains, satisfying the following polynomials 𝑠3 + 𝛽1,𝑖𝑠2 + 𝛽2,𝑖𝑠 + 𝛽3,𝑖 = (𝑠 + 𝜔𝑜,𝑖)3, where 𝜔𝑜,𝑖 is the obsever bandwidth. Let
𝒆𝑜3,𝑖 = 𝒙3,𝑖 − 𝒛3,𝑖 be the estimation error of the extended state. The convergence of ESO has been verified in Ref.43, which will
not be described here for brevity. Therefore, 𝒆𝑜3,𝑖 is bounded and can be estimated by the adaptive technique.

Taking the derivative of (6) with respect to time yields

𝒆̇𝑖 = 𝒆𝑣,𝑖
𝒆̇𝑣,𝑖 = 𝑀𝑖𝒀 𝑖 +

𝑀𝑖

𝑚𝑖
𝒖𝑖 − 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑖

𝑎𝑖𝑗
𝒖𝑗
𝑚𝑗

−
∑

𝑗∈𝑖

𝑎𝑖𝑗𝒀 𝑗
(8)

where 𝑀𝑖 =
∑

𝑗∈𝑖

𝑎𝑖𝑗 + 𝑏𝑖, 𝒀 𝑖 = 𝒆𝑜3,𝑖 + 𝒛3,𝑖, 𝒀 𝑗 = 𝒆𝑜3,𝑗 + 𝒛3,𝑗 . The purpose of this paper is to achieve the formation tracking

within the specified time. Here we hope the convergence time to depend only on the users’ requirements, rather than the designed
controller parameters or the initial system conditions. Therefore, the SMC-based technique or the previously mentioned fixed-
time control will not be applicable. Fortunately, the PPC method provides an available tool for solving this problem. We first
apply corresponding boundary constraints to the global errors in (8).

−𝜌1,𝑖 < 𝒆𝑖 < 𝜌1,𝑖,−𝜌2,𝑖 < 𝒆𝑣,𝑖 < 𝜌2,𝑖 (9)
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where 𝜌1,𝑖 and 𝜌2,𝑖, called PPF, are the main factors that determine the transient and steady-state performance of the global errors.
Here, in order to enable the error signals to converge within the user-given time, a fixed-time PPF is proposed in the authors’
previous work, which can be written as the following form44.

𝜌̇𝑘,𝑖(𝑡) =
{

−𝑝𝑘,0
(
𝜌𝑘,𝑖(𝑡) − 𝜌𝑘,∞

)𝜄𝑘 , if 𝑡 ≤ 𝑇𝑓,𝑘
0 , otherwise , 𝑘 = 1, 2 (10)

where 𝑝𝑘,0 =
((

𝜌𝑘,0 − 𝜌𝑘,∞
)1−𝜄𝑘)/(

(1 − 𝜄𝑘)𝑇𝑓,𝑘
)
, 𝜄𝑘 ∈ (0.5, 1) ⊆ , 𝜌𝑘,0, 𝜌𝑘,∞ > 0 are user-given positive constants. 𝑇𝑓,𝑘 is the

preassigned convergence time.
According to (9), we have

−1 < 𝒆𝑖
/
𝜌1,𝑖, 𝒆𝑣,𝑖

/
𝜌2,𝑖 < 1 (11)

Since the additional constraints in (9) increase the difficulty of the controller design, the following one-to-one homeomorphic
mapping function is introduced to transform the constrained system (11) into unconstrained one

𝝃1,𝑖 = ln
1 + 𝒆𝑖

/
𝜌1,𝑖

1 − 𝒆𝑖
/
𝜌1,𝑖

, 𝝃2,𝑖 = ln
1 + 𝒆𝑣,𝑖

/
𝜌2,𝑖

1 − 𝒆𝑣,𝑖
/
𝜌2,𝑖

(12)

Taking the time-derivative of 𝝃1,𝑖(𝑡) and 𝝃2,𝑖(𝑡) generates

𝝃̇1,𝑖 = 𝜼1,𝑖
(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)
, 𝝃̇2,𝑖 = 𝜼2,𝑖

(
𝒆̇𝑣,𝑖 −

𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖
)

(13)

where 𝜼𝑘,𝑖 ∈ 3×3, 𝑘 = 1, 2 are diagonal matrices with the element 𝜂𝑘,𝑖,𝑚, and 𝜂1,𝑖,𝑚 = 2
(1+𝑒𝑖,𝑚∕𝜌1,𝑖)(1−𝑒𝑖,𝑚∕𝜌1,𝑖)

1
𝜌1,𝑖

> 0, 𝜂2,𝑖,𝑚 =
2

(1+𝑒𝑣,𝑖,𝑚∕𝜌2,𝑖)(1−𝑒𝑣,𝑖,𝑚∕𝜌2,𝑖)
1
𝜌2,𝑖

> 0, 𝑒𝑖,𝑚 and 𝑒𝑣,𝑖,𝑚 are the 𝑚𝑡ℎ(𝑚 = 1, 2, 3) elements of 𝒆𝑖 and 𝒆𝑣,𝑖, respectively. According to (12)
and (13), the additional constraints in (9) are removed owing to 𝝃1,𝑖, 𝝃2,𝑖 ∈ (−∞,∞). Therefore, when the designed controller
guarantee the boundedness of 𝝃1,𝑖, 𝝃2,𝑖, the additional constraints can be satisfied, in which case the desired fixed-time stability
is achieved.

Since the designed formation controller is based on the I&I technique, the four steps mentioned in section 2.1 should be
followed. Before we proceeded, the following mapping functions are given: 𝛼𝑖(⋅),Π𝑖(⋅), 𝑐𝑖(⋅), 𝜙𝑖(⋅), 𝜗𝑖(⋅, ⋅). We first define a
reduced-order and asymptotically stable target system.

𝜻̇ 𝑖 = −𝜎𝑖𝜻 𝑖 (14)

where 𝜻 𝑖 ∈ 3 represents the states of the target system, 𝜎𝑖 is a user-decided positive constant. Apparently, the origin is an
asymptotically stable equilibrium point of the target system. Then, construct a mapping between the global error system (8) and
the target system (13) as Π𝑖

(
𝜻 𝑖
)
=

[
𝜻 𝑖, 𝜋2,𝑖

(
𝜻 𝑖
)]𝑇 , where 𝜋2,𝑖 (⋅) is a function to be designed. Then, we can get the immersion

condition as

𝜋2,𝑖
(
𝜻 𝑖
)
= −𝜎𝑖𝜻 𝑖

𝜕𝜋2,𝑖
𝜕𝜁𝑖

(
−𝜎𝑖𝜁𝑖

)
= 𝑀𝑖𝒙3,𝑖 +

𝑀𝑖

𝑚𝑖
𝑐𝑖
(
Π𝑖(𝜻 𝑖)

)
− 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑖

𝑎𝑖𝑗
𝑐𝑗(Π𝑗 (𝜻 𝑗 ))

𝑚𝑗
−

∑
𝑗∈𝑖

𝑎𝑖𝑗𝒙3,𝑗
(15)

Then, we have 𝜋2,𝑖
(
𝜻 𝑖
)

= −𝜎𝑖𝜻 𝑖, that is, 𝜋2,𝑖
(
𝒆𝑖
)

= −𝜎𝑖𝒆𝑖. In this way, an implicit manifold can be obtained as ̄𝑖 ={
𝜙𝑖(𝑬𝑖) = 0

}
=
{
𝒆𝑣,𝑖 = 𝜋2,𝑖

(
𝜻 𝑖
)
,𝑬𝑖 =

[
𝒆𝑇𝑖 , 𝒆

𝑇
𝑣,𝑖

]𝑇}
.

One of limitations, in existing related works, is that most I&I-based controls can only guarantee asymptotic convergence of
tracking errors, consistent with the performance of the target system. What’s worse, the transient and steady-state behaviors of
the controlled system can only be guaranteed by repeated tuning of controller parameters, which requires a large amount of time
consumption. For this end, we introduce a fixed-time PPC to break these gaps. Through a one-to-one mapping, the initial error
system (8) is transformed into the form shown in (13). Detailedly, a modified implicit manifold is defined as the following form.

𝑖 = 𝝃2,𝑖 + 𝜎𝑖𝝃1,𝑖 (16)

Accordingly, we can design the following distributed I&I formation tracking controller as

𝑼 𝑖 =
𝑚𝑖

𝑀𝑖
⋅
⎛⎜⎜⎝
𝑘𝑖,1𝑖 + 𝑘𝑖,2𝜼−12,𝑖𝑖 +𝑀𝑖𝒛3,𝑖 − 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑖

𝑎𝑖𝑗
𝒖𝑗
𝑚𝑗

−
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝒛3,𝑗 −
∑

𝑗∈𝑖

𝑎𝑖𝑗𝒆𝑜3,𝑗

+𝑀𝑖𝒆𝑜3,𝑖 −
𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖 + 𝜎𝑖𝜼−12,𝑖𝜼1,𝑖
(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)
+ 𝑀𝑖

𝑚𝑖

(
1 − 𝜆1,𝑖

)−1𝜆2,𝑖𝑰3

⎞⎟⎟⎠ (17)
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where 𝑘𝑖 > 0 is the controller gain to be designed. Note that the observer errors should not be ignored in controller design,
otherwise it may cause the performance degradation of the system. It should be stressed here that in order to facilitate subsequent
approximation, the observer errors are assumed to be slow time-varying compared to the system states. Define 𝜽𝑖 as the total
estimation error, then we have 𝜽𝑖 =

∑
𝑗∈𝑖

𝑎𝑖𝑗𝒆𝑜3,𝑗 − 𝑀𝑖𝒆𝑜3,𝑖. In adaptive I&I technique, an auxiliary regulation term 𝛽 is added

to the adaptive law, which provides greater design freedom for improving the estimation accuracy. In this way, 𝜽̂𝑖 + 𝜷 𝑖 is the
estimation of 𝜽𝑖, and the corresponding estimation error can be defined as the following form.

𝜽̃𝑖 = 𝜽̂𝑖 + 𝜷 𝑖
(
𝝃1,𝑖, 𝝃2,𝑖

)
− 𝜽𝑖 (18)

Taking the time-derivative of 𝜽̃𝑖 yields

̇̃𝜽𝑖 =
̇̂𝜽𝑖 +

𝜕𝜷 𝑖

𝜕𝝃1,𝑖
⋅ 𝝃̇1,𝑖 +

𝜕𝜷 𝑖

𝜕𝝃2,𝑖
⋅ 𝝃̇2,𝑖 =

̇̂𝜽𝑖 +
𝜕𝜷 𝑖

𝜕𝝃1,𝑖
⋅ 𝜼1,𝑖

(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)
+

𝜕𝜷 𝑖

𝜕𝝃2,𝑖
⋅ 𝜼2,𝑖

(
𝒆̇𝑣,𝑖 −

𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖
)

(19)

Here for ease of understanding, we can think of 𝜕𝜷 𝑖

𝜕𝝃1,𝑖
and 𝜕𝜷 𝑖

𝜕𝝃2,𝑖
as 3×3-dimensional diagonal matrices with elements 𝜕𝛽𝑖,𝑚

𝜕𝜉1,𝑖,𝑚
and 𝜕𝛽𝑖,𝑚

𝜕𝜉2,𝑖,𝑚
,

respectively, where 𝛽𝑖,𝑚, 𝜉1,𝑖,𝑚 and 𝜉2,𝑖,𝑚 are the 𝑚th elements of 𝜷 𝑖, 𝝃1,𝑖 and 𝝃2,𝑖, respectively. According to (19), the following
adaptive law can be designed.

̇̂𝜽𝑖 = −
𝜕𝜷 𝑖

𝜕𝜉1,𝑖
⋅ 𝜼1,𝑖

(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)
−

𝜕𝜷 𝑖

𝜕𝜉2,𝑖
⋅ 𝜼2,𝑖

(
𝜺𝑖 + 𝜽̂𝑖 + 𝜷 𝑖 −

𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖
)

(20)

where 𝜺𝑖 = 𝑀𝑖𝒛3,𝑖 +
𝑀𝑖

𝑚𝑖
𝒖𝑖 − 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑖

𝑎𝑖𝑗
𝒖𝑗
𝑚𝑗

−
∑

𝑗∈𝑖

𝑎𝑖𝑗𝒛3,𝑗 Substituting (20) into (19) yields

̇̃𝜽𝑖 = −
𝜕𝜷 𝑖

𝜕𝝃2,𝑖
⋅ 𝜼2,𝑖𝜽̃𝑖 (21)

In order to guarantee the convergence of the estimation error 𝜽̃𝑖, the auxiliary regulation term 𝜷 𝑖 can be given as

𝜷 𝑖 =
𝑐1,𝑖
12

𝜼−22,𝑖𝝃
3
2,𝑖 +

1
5
𝑐2,𝑖𝝃21,𝑖 (22)

where 𝑐1,𝑖, 𝑐2,𝑖 > 0 are user-designed constants. After estimating the total observer error, the formation control input in (17) can
be written as follows.

𝑼 𝑖 =
𝑚𝑖

𝑀𝑖
⋅
⎛⎜⎜⎝
𝑘𝑖,1𝑖 + 𝑘𝑖,2𝜼−12,𝑖𝑖 +𝑀𝑖𝒛3,𝑖 − 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑖

𝑎𝑖𝑗
𝒖𝑗
𝑚𝑗

−
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝒛3,𝑗 − (𝜽̂𝑖 + 𝜷 𝑖)

− 𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖 + 𝜎𝑖𝜼−12,𝑖𝜼1,𝑖
(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)
+ 𝑀𝑖

𝑚𝑖

(
1 − 𝜆1,𝑖

)−1𝜆2,𝑖𝑰3

⎞⎟⎟⎠ (23)

In order to achieve a collision-free formation phase, according to (3), 𝑼 𝑖 can be expressed as

𝑼 𝑖 =
𝑚𝑖

𝑀𝑖
⋅
⎛⎜⎜⎝
𝑘𝑖,1𝑖 + 𝑘𝑖,2𝜼−12,𝑖𝑖 +𝑀𝑖𝒛3,𝑖 − 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑖

𝑎𝑖𝑗
𝒖𝑗
𝑚𝑗

−
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝒛3,𝑗 − (𝜽̂𝑖 + 𝜷 𝑖)

− 𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖 + 𝜎𝑖𝜼−12,𝑖𝜼1,𝑖
(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)
+ 𝑀𝑖

𝑚𝑖

(
1 − 𝜆1,𝑖

)−1𝜆2,𝑖𝑰3 − 𝜼−12,𝑖𝒖𝑖,𝑐𝑜𝑙

⎞⎟⎟⎠ (24)

The communication of multi-spacecraft system depends on the wireless network, which leads to the limited communication
bandwidth. At this point, continuous controller updates may cause communication congestion and increase the probability of
packet loss, resulting in problems such as increased latency and power consumption. To solve the problem, in this paper, the
event-triggered mechanism is introduced, then the final control input can be given as the following form.

𝒖𝑖,𝑐 =
{

−(1 + 𝜆1,𝑖)𝑼 𝑖,𝑼 𝑖 > 0
−(1 − 𝜆1,𝑖)𝑼 𝑖,𝑼 𝑖 ≤ 0 , 𝒖𝑖 = 𝒖𝑖,𝑐

(
𝑡𝑖𝑘
)

(25)

where 𝜆1,𝑖 < 1 is a parameter to be designed. 𝑡𝑖𝑘 is the triggering time, which is determined by the following triggering condition.

𝑡𝑖𝑘+1 = inf
{
𝑡 ∈ | ‖‖‖̄𝑟,𝑖(𝑡)

‖‖‖ ≥ 𝜆1,𝑖 ‖‖𝒖𝑖(𝑡)‖‖ + 𝜆2,𝑖
}

(26)

where ̄𝑟,𝑖(𝑡) = 𝒖𝑖,𝑐 − 𝒖𝑖. 𝜆2,𝑖 = 𝜏1,𝑖
/(

𝜏2,𝑖 + 𝜏3,𝑖
√
𝑡
)

is called the triggering threshold with 𝜏1,𝑖, 𝜏2,𝑖, 𝜏3,𝑖 > 0. Obviously, 𝜆2,𝑖 is
bounded in the whole time domain. Eq.(26) indicates that controller updates occur only when the inequality in (26) is satisfied,
which will greatly reduce the controller update frequency and unnecessary communication resource consumption.
Remark 1. The essence of the I&I techniques is to construct a mapping, so that the target system with the desired performance
can be immersed into the controlled system to ensure its performance. In this way, the fixed-time convergence can be achieved
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only if the controller is properly designed. The proposed formation controller provide a new tool for I&I techniques to achieve the
non-asymptotic convergence. Here, the PPC method is introduced, so that, based on the transformed error system, the designer
can realize the fixed-time convergence only by following the design steps of the conventional I&I-based controller. This further
increases the flexibility of controller design. Additionally, in this paper, the fixed-time convergence does not rely on any SMC-
based techniques, making the convergence time free from the constraints of initial conditions or controller parameters. A real
sense of fixed-time stability is achieved.
Remark 2. In this paper, the estimation 𝜽̂𝑖 + 𝜷 𝑖 is used for compensating the uncertain parameters and optimal the performance
of the system. Obviously, compared with the traditional adaptive laws based on the equivalence principle, such design adds
an additional compensation term. This changes the estimation of system parameters from the original integral action to the
proportional integral one, thus increasing the flexibility of parameters estimation and improving the control performance of the
system.
Remark 3. Figure 3 gives the structure of the proposed controller. When the event in (26) is triggered, the 𝑖𝑡ℎ formation member
broadcasts its current information 𝒖𝑖,𝑐

(
𝑡𝑖𝑘
)

to its neighbors immediately, and the event-triggered error ̄𝑟,𝑖(𝑡) is updated to 0
synchronously. Notably, the control input will remain 𝒖𝑖,𝑐

(
𝑡𝑖𝑘
)

during the event-triggered intervals. If the triggering condition in
(26) is not met, there is no communication among the formation members.

 Desired position Δi

Leader position yr

I&I based formation 

tracking controller (17)

Information about 

itself and its neighbors

+

+

Collision-avoidance 

control input (5)

Adaptive I&I 

technique (20)

ui,col 

ˆ
i+ i

 Finite-time 

PPC (10)

ESO 

(7)

ui,c

Event-triggered 

mechanism

Multi-spacecraft 

system

ui

Output

ui,c(tk
i
)

Figure 3 Structure of the proposed formation controller.

3.3 Stability analysis
Before proceeding, we first summarize the crucial theorem of this work as follows.

Theorem 1. Consider the multi-spacecraft system with relative dynamics (1), the collision-avoidance control input (5), the
fixed-time PPC technique (10), the adaptive law (20), the formation tracking controller (23)-(25) and the triggering condition
(26). If Assumption 1 is valid, then the control objective in 2.3 can be satisfied. Specifically, the desired configuration can be
achieved within the user-specfied time, and the bounded constraints in (9) are always satisfied. Also, no collisions occur during
formation. Furthermore, Zeno behavior is excluded, that is, the triggering interval is always positive, i.e., 𝑡𝑖𝑘+1 − 𝑡𝑖𝑘 > 0.

Proof. The proof here needs to be considered in three aspects.
1. Convergence of the whole system

According to the triggering condition in (26), we have

𝒖𝑐,𝑖 =
(
𝑰3×3 + 𝝀̄1(𝑡)𝜆1,𝑖

)
𝒖𝑖 + 𝝀̄2(𝑡)𝜆2,𝑖 (27)

where 𝝀̄1 ∈ 3×3, 𝝀̄2 ∈ 3, ||𝜆̄1,𝑚(𝑡)|| , ||𝜆̄2,𝑚(𝑡)|| ≤ 1 with 𝜆̄1,𝑚(𝑡) and 𝜆̄2,𝑚(𝑡) are respectively, the 𝑚th element of 𝝀̄1 and 𝝀̄2.
Eq.(27) can be transformed into the following form.

𝒖𝑐,𝑖 ≥ 0, 𝒖𝑖 =
(
1 + 𝝀̄1(𝑡)𝜆1,𝑖

)−1 (𝒖𝑐,𝑖 − 𝝀̄2(𝑡)𝜆2,𝑖
) ≤ (

1 − 𝜆1,𝑖
)−1𝒖𝑐,𝑖 + (

1 − 𝜆1,𝑖
)−1𝜆2,𝑖𝑰3

𝒖𝑐,𝑖 < 0, 𝒖𝑖 =
(
1 + 𝝀̄1(𝑡)𝜆1,𝑖

)−1 (𝒖𝑐,𝑖 − 𝝀̄2(𝑡)𝜆2,𝑖
) ≤ (

1 + 𝜆1,𝑖
)−1𝒖𝑐,𝑖 + (

1 − 𝜆1,𝑖
)−1𝜆2,𝑖𝑰3

(28)



10

Substituting (28) into (25) yields
𝒖𝑖 ≤ −𝑼 𝑖 +

(
1 − 𝜆1,𝑖

)−1𝜆2,𝑖𝑰3 (29)
Taking the derivative of (16) with respect to time generates

̇𝑖 = 𝝃̇2,𝑖 + 𝜎𝑖𝝃̇1,𝑖 = 𝜼2,𝑖
(
𝒆̇𝑣,𝑖 −

𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖
)
+ 𝜎𝑖𝜼1,𝑖

(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
)

= 𝜼2,𝑖

(
𝑀𝑖𝒀 𝑖 +

𝑀𝑖

𝑚𝑖
𝒖𝑖 − 𝑏𝑖𝒚̈𝑟 −

∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗
𝒖𝑗
𝑚𝑗

−
∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝒀 𝑗 −
𝜌̇2,𝑖
𝜌2,𝑖

𝒆𝑣,𝑖

)
+ 𝜎𝑖𝜼1,𝑖

(
𝒆𝑣,𝑖 −

𝜌̇1,𝑖
𝜌1,𝑖

𝒆𝑖
) (30)

According to (24), (29) and (30), one can obtain

̇𝑖 ≤ 𝜼2,𝑖
(
−𝑘𝑖,1𝑖 − 𝑘𝑖,2𝜼−12,𝑖𝑖 + 𝜽̃𝑖 + 𝜼−12,𝑖𝒖𝑖,𝑐𝑜𝑙

)
(31)

We first define the Lyapunov function as 𝑉𝑖,1 = 1
2
𝜽̃𝑇
𝑖 𝜽̃𝑖 to verify the convergence of the estimation error. Then taking the

time-derivative of it, we have
𝑉̇𝑖,1 = 𝜽̃𝑇

𝑖
̇̃𝜽𝑖 ≤ −

𝑐1,𝑖
4
‖‖𝜼2,𝑖‖‖−1‖‖‖𝜽̃𝑖

‖‖‖2‖‖𝝃2,𝑖‖‖2 ≤ 0 (32)

Eq.(32) shows that 𝜽̃𝑖 is a bounded variable, and will converge to the origin asymptotically.
To facilitate the convergence analysis of the whole system, a Lyapunov function is defined as 𝑉𝑖 =

1
2
𝑇

𝑖 𝑖+𝑉𝑖,1. Then taking
the time-derivative of it generates

𝑉̇𝑖 = 𝑇
𝑖 ̇𝑖 + 𝑉̇𝑖,1 ≤ −𝑘𝑖,1 ‖‖𝜼2,𝑖‖‖ ‖‖𝑖

‖‖2 − 𝑘𝑖,2 ‖‖𝑖
‖‖2 + ‖‖𝑖

‖‖ ‖‖𝜼2,𝑖‖‖ ‖‖‖𝜽̃𝑖
‖‖‖ +𝑇

𝑖 𝒖𝑖,𝑐𝑜𝑙 + 𝑉̇𝑖,1 (33)

According to the Young’s inequality, one can obtain ‖‖𝜼2,𝑖‖‖ ‖‖𝑖
‖‖ ‖‖𝜽̃𝑖

‖‖ ≤ 1
2𝜛1

‖‖𝜽̃𝑖
‖‖2 + 𝜛1

2
‖‖𝜼2,𝑖‖‖2 ‖‖𝑖

‖‖2 with 𝜛1 > 0. Then we
plug it into (33) yields

𝑉̇𝑖 = 𝑇
𝑖 ̇𝑖 + 𝑉̇𝑖,1 ≤ −

(
𝑘𝑖,1 −

𝜛1

2
‖‖𝜼2,𝑖‖‖) ‖‖𝜼2,𝑖‖‖ ‖‖𝑖

‖‖2 − 𝑘𝑖,2‖‖𝑖
‖‖2 + 1

2𝜛1

‖‖𝜽̃𝑖
‖‖2 +𝑇

𝑖 𝒖𝑖,𝑐𝑜𝑙 + 𝑉̇𝑖,1 (34)

Reviewing the definition of the collision-avoidance control item in (5), we have the conclusion that when the distance between
any two spacecraft is more than 𝑅𝑐,𝑖, 𝒖𝑖,𝑐𝑜𝑙 = 0 is workable, and then 𝑇

𝑖 𝒖𝑖,𝑐𝑜𝑙 = 0. Since the main purpose of this work is to
achieve and maintain the desired geometry, this means that each spacecraft stays in the region Θ𝑖𝑗 = {𝑙𝑖𝑗|𝑟𝑐 ,𝑖 ≤ 𝑙𝑖𝑗 ≤ 𝑅𝑐 ,𝑖} only
for a short time. Then, for continuous systems such as the spacecraft, 𝑖 is bounded during this short residence time, meaning
that𝑇

𝑖 𝒖𝑖,𝑐𝑜𝑙 is also bounded. In conclusion,𝑇
𝑖 𝒖𝑖,𝑐𝑜𝑙 is bounded at all time domain. Additionally, 𝜽̃𝑖 is asymptotically convergent,

which means we have ||| 1
2𝜛1

‖‖𝜽̃𝑖
‖‖2 +𝑇

𝑖 𝒖𝑖,𝑐𝑜𝑙
||| ≤ 𝑖 with 𝑖 > 0 is an unknown costant. Then according to (34), as long as the

choice of 𝑘𝑖,1 satisfies 𝑘𝑖,1 >
𝜛1

2
‖‖𝜼2,𝑖‖‖, one can obtain

𝑉̇𝑖 = 𝑇
𝑖 ̇𝑖 + 𝑉̇𝑖,1 ≤ −𝑖𝑉𝑖 +𝑖 (35)

where 𝑖 = 2𝑚𝑖𝑛
{
𝑘𝑖,2,

𝑐1,𝑖
4
‖‖𝜼2,𝑖‖‖−1‖‖𝝃2,𝑖‖‖2}. Eq.(35) indicates that 𝑖 is a bounded signal. According to this, the convergence

of the transformed error signals can be analyzed.
Here we use the proof by contradiction. For a bounded signal 𝑖, assume that 𝒆𝑖 is unbounded, then 𝒆𝑣,𝑖 is also unbounded

according to (8). Since 𝜌1,𝑖 and 𝜌2,𝑖 are bounded by definition, it follows from (12) that unbounded 𝒆𝑖 and 𝒆𝑣,𝑖 lead to unbounded
𝝃1,𝑖 and 𝝃2,𝑖. Then, according to (16), 𝑖 is unbounded, which contradicts the fact. So, 𝒆𝑖 and 𝒆𝑣,𝑖 are bounded signals. Moreover,
considering the fact that the mapping 𝐹1 ∶ 𝑒𝑖

/
𝜌1,𝑖 → 𝝃1,𝑖, 𝐹2 ∶ 𝑒𝑣,𝑖

/
𝜌2,𝑖 → 𝝃2,𝑖 are homeomorphous, then the bounded 𝒆𝑖 and 𝒆𝑣,𝑖

means that 𝝃1,𝑖 and 𝝃2,𝑖 are also bounded. Therefore, according to the property of the fixed-time PPC technique, the global error
signals 𝒆𝑖 and 𝒆𝑣,𝑖 can converge to the prescribed region within the user-specified time and the desired formation configuration
can also be achieved and preserved.
2. Collision-avoidance performance analysis

Here we will validate that no collision occurrs between the 𝑖-th spacecraft and its neighbor 𝑗(𝑗 ∈  𝑐𝑜𝑙
𝑖 ) during formation, so

define the a Lyapunov-like function as
𝐸𝑖(𝑡) =

1
2
𝒅𝑇
𝑖𝑗𝒅𝑖𝑗 +

1
2
𝒗𝑇𝑖 𝒗𝑖 (36)

Taking the time-derivative of 𝐸𝑖(𝑡) and substituting 𝒖𝑖 = 𝒖𝑖,𝑐 +
𝑚𝑖

𝑀𝑖
𝒖𝑖,𝑐𝑜𝑙 into it generates

𝐸̇𝑖(𝑡) = 𝒅𝑇
𝑖𝑗 𝒅̇𝑖𝑗 + 𝒗𝑇𝑖 𝒗̇𝑖 = 𝒅𝑇

𝑖𝑗

(
𝒑̇𝑖 − 𝒑̇𝑗

)
+ 𝒗𝑇𝑖

(
𝒙3,𝑖 +

𝑀𝑖

𝑚𝑖
𝒖𝑖
)

= 𝒅𝑇
𝑖𝑗

(
𝒗𝑖 − 𝒗𝑗

)
+ 𝒗𝑇𝑖

(
𝒙3,𝑖 +

𝑀𝑖

𝑚𝑖
𝒖𝑖,𝑐

)
+
(
−𝑘𝑐,𝑖𝒗𝑇𝑖

∑
𝑗∈ 𝑐𝑜𝑙

𝑖
𝜑𝑐,𝑖𝑗

(
𝑙𝑖𝑗
) 𝒅𝑖𝑗

𝑙𝑖𝑗

) (37)
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In the analysis of the first step, we know that 𝒖𝑖,𝑐 , 𝒑𝑖 and 𝒑𝑗 are all bounded signals. Also, according to the definition of the
designed collision-avoidance potential function, when 𝑙𝑖𝑗 → 𝑟𝑐 ,𝑖,

(
−𝑘𝑐,𝑖𝒗𝑇𝑖

∑
𝑗∈ 𝑐𝑜𝑙

𝑖
𝜑𝑐,𝑖𝑗

(
𝑙𝑖𝑗
) 𝒅𝑖𝑗

𝑙𝑖𝑗

)
→ +∞ holds if 𝑄𝑖 is small

enough. Then, with the appropriate design parameters, we have

⎛⎜⎜⎝−𝒗𝑇𝑖
∑

𝑗∈ 𝑐𝑜𝑙
𝑖

𝜑𝑐,𝑖𝑗
(
𝑙𝑖𝑗
) 𝒅𝑖𝑗

𝑙𝑖𝑗

⎞⎟⎟⎠ ≥ 1
2
𝒅𝑇
𝑖𝑗𝒅𝑖𝑗 +

1
2
𝒗𝑇𝑖 𝒗𝑖 −

𝒅𝑇
𝑖𝑗

(
𝒗𝑖 − 𝒗𝑗

)
𝑘𝑐,𝑖

−
𝒗𝑇𝑖

(
𝒙3,𝑖 +

𝑀𝑖

𝑚𝑖
𝒖𝑖,𝑐

)
𝑘𝑐,𝑖

(38)

From (37) and (38), we have 𝐸̇𝑖(𝑡) ≥ 𝑘𝑐,𝑖𝐸𝑖(𝑡). Then according to Lemma 6 in46, we have the following inequality.

𝒅𝑇
𝑖𝑗𝒅𝑖𝑗 ≥ 2𝑒𝑘𝑐,𝑖(𝑡)𝐸𝑖 (0) − 𝒗𝑇𝑖 𝒗𝑖 (39)

Note that 𝒗𝑇𝑖 𝒗𝑖 is bounded. Therefore, when 𝑘𝑐,𝑖 is large enough, under a suitable initial state, the inequality 2𝑒𝑘𝑐,𝑖(𝑡)𝐸𝑖 (0)−𝒗𝑇𝑖 𝒗𝑖 >(
𝑟𝑐,𝑖

)2 can be obtained, that is, ‖‖‖𝒅𝑖𝑗
‖‖‖ > 𝑟𝑐,𝑖. It indicates that the internal collisions can be effectively avoided by the designed

collision-avoidance control input in (5).
3. Zeno behavior

According to the event-triggered mechanism in (26), we have ̄𝑟,𝑖(𝑡) = 𝒖𝑖,𝑐 − 𝒖𝑖. We know that when 𝑡 ∈
[
𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1

)
, 𝒖𝑖 =

𝒖𝑖,𝑐
(
𝑡𝑖𝑘
)
, that is, 𝒖̇𝑖(𝑡) = 0. In this case, ̇̄𝑟,𝑖(𝑡) = 𝒖̇𝑖,𝑐 for 𝑡 ∈

[
𝑡𝑖𝑘, 𝑡

𝑖
𝑘+1

)
. Then, 𝑑

𝑑𝑡
‖‖‖̄𝑟,𝑖(𝑡)

‖‖‖2 = 2̄𝑇
𝑟,𝑖

̇̄𝑟,𝑖 = 2̄𝑇
𝑟,𝑖𝒖̇𝑖,𝑐 .According to

the analysis in step 1, we known that 𝒖𝑖,𝑐 is a bounded signal, therefore, ̄𝑟,𝑖 and 𝒖̇𝑖,𝑐 are all bounded,that is, 𝑑
𝑑𝑡
‖‖‖̄𝑟,𝑖(𝑡)

‖‖‖2 ≤ 𝑖
with 𝑖 is an unknown positive constant. Then the following inequality

‖‖‖̄𝑟,𝑖
‖‖‖2 ≤

𝑡

∫
𝑡𝑖𝑘

𝑖𝑑𝑡 = 𝑖
(
𝑡 − 𝑡𝑖𝑘

)
(40)

is always satisfied. Therefore, we have

𝑖
(
𝑡 − 𝑡𝑖𝑘

) ≥ (
𝜆1,𝑖 ‖‖𝒖𝑖(𝑡)‖‖ + 𝜆2,𝑖

)2 = 𝑡∗ > 0 (41)

where 𝑡∗ is the lower bound. Eq.(41) indicates that 𝑡 − 𝑡𝑖𝑘 ≥ 𝑡∗

𝑖
> 0. Therefore, Zeno-behavior can be successfully circumvented.

Remark 4. Considering the real flight scenario of the spacecraft, 𝒖𝑖(𝑡) is required here not to exceed its amplitude, that is||𝑢𝑖,𝑚(𝑡)|| ≤ 𝑖, where 𝑢𝑖,𝑚 is the 𝑚𝑡ℎ element of 𝒖𝑖(𝑡) and 𝑖 represents the amplitude. When the controller is properly designed,
the time that 𝒖𝑖(𝑡) stays at its amplitude is extremely short. During the short dwell time, all the variables of the closed-loop
system can be considered bounded, that is, 𝑖 is bounded, i.e., 𝝃1,𝑖 and 𝝃2,𝑖 are also bounded. It indicates that the fixed-time
convergence can be also guaranteed when the control input reaches its amplitude.
Remark 5. The proposed protocol can be extended to the formation tracking control for configuration switching. Note that
the configuration switching here refers only to the change of the desired formation shape, not to the communication topology
between formation members. In order to ensure that the switched configuration can be quickly realized and maintained, it is
necessary to make corresponding changes to the performance function so that the output error is always constrained within the
prescribed boundaries.

4 SIMULATION ANALYSIS

In this section, different simulations will be constructed to further verify the performance of the proposed controller. The
multi-spacecraft system with 4 followers and a virtual leader is considered. The purpose of this paper is to realize formation re-
construction by moving each member from any position to the desired geometry configuration. Figure 4 gives the communication
topology among formation members.

Note that configuration switching is implemented in the simulation. Here we assume that the virtual leader is always moving
in an elliptical orbit with 𝑎𝑐 = 7178𝑘𝑚, 𝑒𝑐 = 0.01 and 𝜃(0) = 0𝑟𝑎𝑑. The gravitational constant is set as 𝜇 = 3.986×1014𝑚3∕𝑠2.
Each spacecraft here weighs 100𝑘𝑔, i.e., 𝑚𝑖 = 100𝑘𝑔. Additionally, due to the limitations of actual physical conditions,
the thrust generated by the spacecraft is not infinite, that is, the control input has a amplitude constraint, assumed to be
10𝑁 42. Furthermore, in the simulation, it is assumed that there will be external disturbances during the formation, that is,
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𝒅𝑖 = 0.05[𝑠𝑖𝑛(𝑡∕10), 𝑐𝑜𝑠(𝑡∕15), 𝑠𝑖𝑛(𝑡∕20)]𝑇𝑁 , (𝑖 = 1,⋯ , 6). Consider the change of the desired configuration. If the simula-
tion time is less than 300 seconds, we set the desired configuration to a square, i.e., 𝜹1= [20, 20, 10]𝑇 , 𝜹2= [20,−20, 10]𝑇 , 𝜹3 =
[−20,−20, 5]𝑇 , 𝜹4 = [−20, 20, 5]𝑇 . For the remainder of the simulation, the desired configuration is switched to a trape-
zoid, i.e., 𝜹1= [50, 20,−10]𝑇 , 𝜹2= [50,−20,−10]𝑇 , 𝜹3= [−50,−50,−20]𝑇 , 𝜹4= [−50, 50,−20]𝑇 . Other necessary conditions
for simulation are presented in Table 1.

Follower 1

Follower 3Follower 4

Follower 2Virtual leader

Figure 4 Communication topology among formation members.

Table 1 Necessary conditions for simulation.

Parameters Values

Initial conditions

𝒑1 (0) = [20,−20
√
2, 10

√
2]𝑇𝑚

𝒑2 (0) = [−15
√
2,−30

√
2, 40]𝑇𝑚

𝒑3 (0) = [−10
√
3,−20

√
2, 20]𝑇𝑚

𝒑4 (0) = [10,−10,−15
√
2]𝑇𝑚

𝒗𝑖(0) = [0, 0, 0]𝑇𝑚∕𝑠(𝑖 = 1,⋯ , 4)
Other conditions 𝒚𝒓= [0.5𝑡, 0.5𝑡, 0]𝑇 , 𝒚̇𝒓= [0.5, 0.5, 0]𝑇

Table 2 Controller parameters of the three examples.

Examples Controller parameters

Proposed controller 𝜌1,0 = 500, 𝜌1,∞ = 2, 𝜄1 = 0.6, 𝜌2,0 = 20, 𝜌2,∞ = 0.1, 𝜄2 = 0.6, 𝑇𝑓,1 = 80, 𝑇𝑓,2 = 100, 𝑘𝑖,1 = 1, 𝑘𝑖,2 = 0.01
𝑘𝑐,𝑖 = 0.01, 𝜎𝑖 = 1.5, 𝑐1,𝑖 = 0.05, 𝑐2,𝑖 = 0.05, 𝜏1,𝑖 = 𝜏2,𝑖 = 𝜏3,𝑖 = 0.1, 𝜆1,𝑖 = 0.01, 𝜔𝑜,𝑖 = 10

Example 1 𝜌1,0 = 500, 𝜌1,∞ = 8, 𝜅1 = 0.04, 𝜌2,0 = 40, 𝜌2,∞ = 0.1, 𝜅2 = 0.04, 𝑘𝑖,1 = 𝑘𝑖,2 = 0.01
𝑘𝑐,𝑖 = 0.001, 𝜎𝑖 = 1.5, 𝑐1,𝑖 = 0.05, 𝑐2,𝑖 = 0.05, 𝜆1,𝑖 = 0.01, 𝜆2,𝑖 = 0.1𝜔𝑜,𝑖 = 10

Example 2 𝜌1,0 = 400, 𝜌1,∞ = 5, 𝜄1 = 0.55, 𝑇𝑓,1 = 140, 𝜌2,0 = 20, 𝜌2,∞ = 0.1
𝜄2 = 0.6, 𝑇𝑓,2 = 120, 𝑘𝑖,1 = 2, 𝑘𝑖,2 = 1, 𝑘𝑐,𝑖 = 0.001, 𝜔𝑜,𝑖 = 10

4.1 Performance verification
We first need to exhibit the performance of the proposed controller, whose design parameters are shown in Table 2. The two
circular intervals are chosen as 𝑟𝑐,𝑖 = 22, 𝑅𝑐,𝑖 = 35. Simulation results are shown in Figures 5-13, including the global forma-
tion tracking errors and the velocity errors, relative distances between spacecraft with/without collision avoidance, the control
inputs of the proposed controller, the estimation errors under the adaptive I&I techniques, the inter-execution intervals of each
spacecraft and the moving trajectories of the four formation members.

Results show that with resort to the PPC method, the global error signals are always confined within the constrained boundaries
defined by PPFs, which ensure their fixed-time convergence and enable the proposed I&I-based formation tracking controller to
realize and maintain the desired geometry configuration within the user-given time. Also, although configuration switching oc-
curs, the proposed protocol can still track the formation shape rapidly and accurately within the pre-appointed time. Moreover,
the designed event-triggered mechanism can make the controller update only at the required time, rather than the conventional
continuous/periodic update, thus reducing the probability of communication congestion and packet loss, eliminating unneces-
sary power consumption, and further realizing the full utilization of limited resources. Also, the Zeno-behavior is effectively
excluded. Specifically, as shown in Figures 11 and 12, the designed event-triggered mechanism can reduce communication re-
source consumption by up to 91.4%, which is extremely useful for spacecraft with limited communication bandwidth. Figures
7 and 8 validate that the designed collision-avoidance potential function can effectively prevent collisions between formation
members and ensure a safe formation process. Additionally, Figure 10 indicates that the designed adaptive I&I technique can
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Figure 5 Global formation errors of the proposed controller.
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Figure 6 Global velocity errors of the proposed controller.
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Figure 7 Relative distance with collision avoidance.
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Figure 8 Relative distance without collision avoidance.

estimate the unknown system arameters timely and accurately. In summary, the proposed controller provide a new tool for
I&I-based technique to achieve a true sense of fixed-time stability.

4.2 Performance comparison
In this part, the proposed controller with static event-triggered mechanism and conventional exponential- type PPF (Example 1
for short) and a model-free PPC-based method in 47 (also named as Example 2) are chosen as comparison cases to further verify
the superiority of the proposed controller. Configuration switching ia also considered here. In example 1, the threshold 𝜆2,𝑖 in (26)
is a user-designed positive constant and the PPFs are construcedt as 𝜌1,𝑖 =

(
𝜌1,0 − 𝜌1,∞

)
𝑒−𝜅1𝑡 + 𝜌1,∞, 𝜌2,𝑖 =

(
𝜌2,0 − 𝜌2,∞

)
𝑒−𝜅2𝑡 +

𝜌2,∞ with 𝜅1, 𝜅2 decides the convergence rate of the PPF. For example 2, owing to the different model dynamics, the developed
method in 47 is not directly applicable. In this case, following the design steps in 47, the formation control protocol for the
𝑖𝑡ℎ follower can be designed as 𝜶𝑖 = −𝑘𝑖,1 ln

[(
1 + 𝒆𝑖

𝜌1,𝑖

)/(
1 − 𝒆𝑖

𝜌1,𝑖

)]
, 𝒖𝒊 = 𝑚𝑖

(
−𝒛3,𝑖 − 𝑘𝑖,2 ln

[(
1 + 𝒔𝒊

𝜌2,𝑖

)/(
1 − 𝒔𝒊

𝜌2,𝑖

)])
with

𝒔𝒊 = 𝒗𝑖 − 𝜶𝑖. To make it fair, the designed parameters in both examples are also based on the principle of achieving the desired
performance, as shown in Table 2. The remaining simulation conditions are the same as the proposed controller. Furthermore,
in order to show the performance of the designed controller quantitatively, a comprehensive performance indexes (CPI) is
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Figure 9 Control inputs of the proposed controller.
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Figure 10 Estimation errors of the adaptive law.

Figure 11 Inter-execution intervals of each spacecraft. Figure 12 Inter-execution intervals of each spacecraft.

constructed as 𝐶𝑃𝐼=

(
4∑
𝑖=1

‖‖𝒆𝑖‖‖2
)1∕2

. Corresponding results are shown in the Figures 14-25 and Table 3, where the convergence

time in Table 3 represents the time consumed when 𝐶𝑃𝐼 converges to 0.01 before and after switching, and ’-’ indicates that
during the simulation time, the global formation tracking errors 𝒆𝑖 in example 2 cannot reach the specified precision.

Results show that the two comparison examples can also achieve the desired formation shape. Nevertheless, the proposed
protocol still possesses the highest tracking accuracy and the fastest convergence rate among the three techniques, regardless
of whether configuration switching occurs, which is also clearly reflected in Table 3. Specifically, the steady-state accuracy of
the proposed controller is more than 3 times better than examples 1 and 2, and the convergence time is nearly half of that of
example 1. Additionally, in example 1, although the update frequency of the controller under the event-triggered mechanism
with constant threshold is reduced by 71.1%, it still consumes more communication resources than the time-varying one in
(26). What’s more, it can be concluded that, with the aid of the PPC method, the aperiodic controller update of event-triggered
mechanism does not cause the system performance degradation, and the fixed-time PPF plays an important role in improving
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Figure 13 Moving trajectories under the proposed controller.
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Figure 14 Global formation errors of the example 1.
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Figure 15 Relative distance between spacecraft under the
example 1.
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Figure 16 Control inputs of the system under example 1.

the tracking performance. Moreover, figures 15 and 22 indicates that the proposed collision-avoidance potential function is very
flexible and can be applied to many different formation controllers. In summary, the designed controller can find a better balance
between communication resource consumption and formation accuracy.

5 CONCLUSIONS

In this paper, a distributed I&I-based formaton tracking controller is constructed for multi-spacecraft system with limited com-
munication capacity, uncertain parameters and external disturbances. Here, by incorporating the strengths of the PPC method
and the fixed-time technique, the proposed controller can convert the tracking problem into a stability one via error transforma-
tion. Then, relying on the transformed system, the implicit manifold can be designed, in which case the high-precision formation
tracking can be achieved within the user-given time by simply following the design steps of the conventional I&I-based con-
troller. To effectively address the problem of communication constraints, the event-triggered mechanism is intruduced to make
the controller update only when needed, thus saving resources to the maximum extent. Furthermore, we use the extended state
observer to deal with the model uncertainties, and introduce the adaptive I&I technique to estimate the observer errors, so as
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Figure 17 Inter-execution intervals under example 1. Figure 18 Inter-execution intervals under example 1.
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Figure 19 Estimation errors of the adaptive law under the
example 1.

Figure 20 Moving trajectories under the example 1.

to further improve the performance of the closed-loop system. Finally, the effectiveness of the proposed controller is verified
through comparative simulations. Results show that the proposed controller is superior to the two comparison examples in
convergence rate (at least 3 times improvement) and tracking accuracy (more than 3 times optimazation). Also, the proposed
controller can utilize the limited communication resources more effectively. In conclusion, the designed I&I-based formaton
tracking controller can better trade off between resource consumption and convergence accuracy.
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