References
1. Moore WC, Meyers DA, Wenzel SE, et al. Identification of Asthma
Phenotypes Using Cluster Analysis in the Severe Asthma Research Program.American journal of respiratory and critical care medicine . 2010
2010;181(4):315-323.
2. Haldar P, Pavord ID, Shaw DE, et al. Cluster Analysis and Clinical
Asthma Phenotypes. American journal of respiratory and critical
care medicine . 2008;178(3):218-224. doi:10.1164/rccm.200711-1754oc
3. Wu W, Bleecker E, Moore W, et al. Unsupervised phenotyping of Severe
Asthma Research Program participants using expanded lung data.Journal of Allergy and Clinical Immunology . 2014
2014;133(5):1280-1288.
4. Weatherall M, Travers J, Shirtcliffe P, et al. Distinct clinical
phenotypes of airways disease defined by cluster analysis.European Respiratory Journal . 2009;34(4):812-818.
5. Prosperi MC, Sahiner UM, Belgrave D, et al. Challenges in identifying
asthma subgroups using unsupervised statistical learning techniques.American journal of respiratory and critical care medicine .
2013;188(11):1303-1312.
6. Khanam UA, Gao Z, Adamko D, et al. A scoping review of asthma and
machine learning. Journal of Asthma . 2023;60(2):213-226.
doi:10.1080/02770903.2022.2043364
7. Deliu M, Yavuz TS, Sperrin M, et al. Features of asthma which provide
meaningful insights for understanding the disease heterogeneity.Clin Exp Allergy . Jan 2018;48(1):39-47. doi:10.1111/cea.13014
8. Global initative for asthma. Global Strategy For Asthma Management
And Prevention, 2022. 1/6/2023, 2023. https://ginasthma.org/
9. Nwaru BI, Ekerljung L, Rådinger M, et al. Cohort profile: the West
Sweden Asthma Study (WSAS): a multidisciplinary population-based
longitudinal study of asthma, allergy and respiratory conditions in
adults. BMJ open . 2019;9(6):e027808-e027808.
doi:10.1136/bmjopen-2018-027808
10. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value
imputation for mixed-type data. Bioinformatics .
2012;28(1):112-118. doi:10.1093/bioinformatics/btr597
11. Hong S, Lynn HS. Accuracy of random-forest-based imputation of
missing data in the presence of non-normality, non-linearity, and
interaction. BMC Medical Research Methodology .
2020;20(1)doi:10.1186/s12874-020-01080-1
12. Wilson S. miceRanger: Multiple Imputation by Chained Equations with
Random Forests. https://CRAN.R-project.org/package=miceRanger
13. Xie J, Girshick R, Farhadi A. Unsupervised deep embedding for
clustering analysis. PMLR; 2016:478-487.
14. Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package
for determining the relevant number of clusters in a data set.Journal of statistical software . 2014;61:1-36.
15. John CR, Watson D, Russ D, et al. M3C: Monte Carlo reference-based
consensus clustering. Sci Rep .
2020;10(1)doi:10.1038/s41598-020-58766-1
16. John CR, Watson D, Russ D, et al. M3C: Monte Carlo reference-based
consensus clustering. Sci Rep . 2020;10(1):1816.
17. Prosperi MCF, Sahiner UM, Belgrave D, et al. Challenges in
Identifying Asthma Subgroups Using Unsupervised Statistical Learning
Techniques. Article. American journal of respiratory and critical
care medicine . Dec 2013;188(11):1303-1312.
doi:10.1164/rccm.201304-0694OC
18. Weatherall M, Shirtcliffe P, Travers J, Beasley R. Use of cluster
analysis to define COPD phenotypes. Editorial Material. European
Respiratory Journal . Sep 2010;36(3):472-474.
doi:10.1183/09031936.00035210
19. Weatherall M, Travers J, Shirtcliffe PM, et al. Distinct clinical
phenotypes of airways disease defined by cluster analysis. Article.European Respiratory Journal . Oct 2009;34(4):812-818.
doi:10.1183/09031936.00174408
20. Bochenek G, Kuschill-Dziurda J, Szafraniec K, Plutecka H, Szczeklik
A, Nizankowska-Mogilnicka E. Certain subphenotypes of
aspirin-exacerbated respiratory disease distinguished by latent class
analysis. Journal of Allergy and Clinical Immunology . 2014
2014;133(1):98-103.
21. Jeong A, Imboden M, Hansen S, et al. Heterogeneity of obesity-asthma
association disentangled by latent class analysis, the SAPALDIA cohort.Respiratory medicine . 2017 2017;125:25-32.
22. Kaneko Y, Masuko H, Sakamoto T, et al. Asthma phenotypes in japanese
adults - their associations with the CCL5 and ADRB2 genotypes.Allergology International . 2013 2013;62(1):113-121.
23. Kim MA, Shin SW, Park JS, et al. Clinical characteristics of
exacerbation-prone adult asthmatics identified by cluster analysis.Allergy, Asthma and Immunology Research . 2017 2017;9(6):483-490.
24. Nadif R, Febrissy M, Andrianjafimasy M, et al. Adult asthma
phenotypes identified by a cluster analysis on clinical and biological
characteristics. European Respiratory Journal . 2018 2018;52:2.
25. Sakagami T, Hasegawa T, Koya T, et al. Identification Of Clinical
Asthma Phenotypes By Using Cluster Analysis With Simple Measurable
Variables In Japanese Population. American journal of respiratory
and critical care medicine . 2011 2011;183:1.
26. Loureiro CC, Sa-Couto P, Todo-Bom A, Bousquet J. Cluster analysis in
phenotyping a Portuguese population. Revista Portuguesa de
Pneumologia (English Edition) . 2015 2015;21(6):299-306.
27. Nadif R, Febrissy M, Andrianjafimasy MV, et al. Endotypes identified
by cluster analysis in asthmatics and non-asthmatics and their clinical
characteristics at follow-up: the case-control EGEA study. BMJ
open respiratory research . 2020;7(1):e000632.
28. Nagasaki T, Matsumoto H, Kanemitsu Y, et al. Integrating
longitudinal information on pulmonary function and inflammation using
asthma phenotypes. Journal of Allergy and Clinical Immunology .
2014 2014;133(5):1474-U406.
29. Tay TR, Choo XN, Yii A, et al. Asthma phenotypes in a multi-ethnic
Asian cohort. Respiratory medicine . 2019 2019;157:42-48.
30. Wang L, Liang R, Zhou T, et al. Identification and validation of
asthma phenotypes in Chinese population using cluster analysis.Annals of Allergy Asthma & Immunology . 2017 2017;119(4):324-332.
31. Seino Y, Hasegawa T, Koya T, et al. A Cluster Analysis of Bronchial
Asthma Patients with Depressive Symptoms. Internal Medicine . 2018
2018;57(14):1967-1975.
32. Ilmarinen P, Tuomisto LE, Niemela O, Tommola M, Haanpaa J,
Kankaanranta H. Cluster Analysis on Longitudinal Data of Patients with
Adult-Onset Asthma. Journal of Allergy and Clinical Immunology-in
Practice . 2017 2017;5(4):967-78.
33. Hsiao HP, Lin MC, Wu CC, Wang CC, Wang TN. Sex-Specific Asthma
Phenotypes, Inflammatory Patterns, and Asthma Control in a Cluster
Analysis. Journal of Allergy and Clinical Immunology-in Practice .
2019 2019;7(2):556-67.
34. Kim JH, Chang HS, Shin SW, Baek DG, Son JH, Park CS, Park JS. Lung
function trajectory types in never-smoking adults with asthma: Clinical
features and inflammatory patterns. Allergy, Asthma and Immunology
Research . 2018 2018;10(6):614-627.
35. Watanabe S, Koya T, Hasegawa T, et al. Cluster Analysis Of
Uncontrolled Asthma In Japanese Population. American journal of
respiratory and critical care medicine . 2016 2016;193:1.
36. Dudchenko LS, Savchenko VM. Cluster analysis classification of
asthmatic pathologic manifestations during stay at the resort.Tuberculosis and Lung Diseases . 2018 2018;96(2):16-21.
37. Boudier A, Curjuric I, Basagana X, et al. Ten-Year Follow-up of
Cluster-based Asthma Phenotypes in Adults A Pooled Analysis of Three
Cohorts. American journal of respiratory and critical care
medicine . 2013 2013;188(5):550-560.
38. Liang ZY, Liu LY, Zhao HJ, et al. A Systemic Inflammatory Endotype
of Asthma With More Severe Disease Identified by Unbiased Clustering of
the Serum Cytokine Profile. Medicine . 2016 2016;95(25):7.
39. Loza MJ, Djukanovic R, Chung KF, et al. Validated and longitudinally
stable asthma phenotypes based on cluster analysis of the ADEPT study.Respiratory Research . 2016 2016;17:21.
40. Kim TB, Jang AS, Kwon HS, et al. Identification of asthma clusters
in two independent Korean adult asthma cohorts. European
Respiratory Journal . 2013 2013;41(6):1308-1314.
41. Makikyro EMS, Jaakkola MS, Jaakkola JJK. Subtypes of asthma based on
asthma control and severity: a latent class analysis. Respiratory
Research . 2017 2017;18:11.
42. Zaihra T, Walsh CJ, Ahmed S, et al. Phenotyping of difficult asthma
using longitudinal physiological and biomarker measurements reveals
significant differences in stability between clusters. BMC Pulm
Med . 2016 2016;16:8.
43. De Vries R, Dagelet YWF, Spoor P, et al. Clinical and inflammatory
phenotyping by breathomics in chronic airway diseases irrespective of
the diagnostic label. European Respiratory Journal . 2018
2018;51(1):10.
44. Fingleton J, Huang KW, Weatherall M, et al. Phenotypes of
symptomatic airways disease in China and New Zealand. European
Respiratory Journal . 2017 2017;50(6):10.
45. Rootmensen G, van Keimpema A, Zwinderman A, Sterk P. Clinical
phenotypes of obstructive airway diseases in an outpatient population.Journal of Asthma . 2016 2016;53(10):1026-1032.
46. Zein JG, Erzurum SC. Asthma is Different in Women. Current
Allergy and Asthma Reports . 2015;15(6)doi:10.1007/s11882-015-0528-y
47. Koike F, Otani Y, Oyama S, et al. Cluster analysis of cough variant
asthma using exhaled value of forced oscillation technique.European Respiratory Journal . 2018 2018;52:3.
48. Amin K. Relationship between inflammatory cells and structural
changes in the lungs of asymptomatic and never smokers: a biopsy study.Thorax . 2003;58(2):135-142. doi:10.1136/thorax.58.2.135
49. Honkamäki J, Piirilä P, Hisinger-Mölkänen H, et al. Asthma Remission
by Age at Diagnosis and Gender in a Population-Based Study. The
Journal of Allergy and Clinical Immunology: In Practice .
2021;9(5):1950-1959.e4. doi:10.1016/j.jaip.2020.12.015