References
1. Woodruff PG, Modrek B, Choy DF, et
al. T-helper type 2-driven inflammation defines major subphenotypes of
asthma. Am J Respir Crit Care Med. 2009;180(5):388-395.
2. Chakir J, Shannon J, Molet S, et
al. Airway remodeling-associated mediators in moderate to severe asthma:
effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III
collagen expression. J Allergy Clin Immunol.2003;111(6):1293-1298.
3. Al-Ramli W, Prefontaine D, Chouiali
F, et al. T(H)17-associated cytokines (IL-17A and IL-17F) in severe
asthma. J Allergy Clin Immunol. 2009;123(5):1185-1187.
4. Zheng W, Flavell RA. The
transcription factor GATA-3 is necessary and sufficient for Th2 cytokine
gene expression in CD4 T cells. Cell. 1997;89(4):587-596.
5. Zhang DH, Yang L, Cohn L, et al.
Inhibition of allergic inflammation in a murine model of asthma by
expression of a dominant-negative mutant of GATA-3. Immunity.1999;11(4):473-482.
6. Mangan PR, Harrington LE, O’Quinn
DB, et al. Transforming growth factor-beta induces development of the
T(H)17 lineage. Nature. 2006;441(7090):231-234.
7. Veldhoen M, Hocking RJ, Atkins CJ,
Locksley RM, Stockinger B. TGFbeta in the context of an inflammatory
cytokine milieu supports de novo differentiation of IL-17-producing T
cells. Immunity. 2006;24(2):179-189.
8. Manel N, Unutmaz D, Littman DR. The
differentiation of human T(H)-17 cells requires transforming growth
factor-beta and induction of the nuclear receptor RORgammat. Nat
Immunol. 2008;9(6):641-649.
9. Ivanov, II, McKenzie BS, Zhou L, et
al. The orphan nuclear receptor RORgammat directs the differentiation
program of proinflammatory IL-17+ T helper cells. Cell.2006;126(6):1121-1133.
10. Miyamoto M, Prause O, Sjostrand
M, Laan M, Lotvall J, Linden A. Endogenous IL-17 as a mediator of
neutrophil recruitment caused by endotoxin exposure in mouse airways.J Immunol. 2003;170(9):4665-4672.
11. Sokol CL, Luster AD. The
chemokine system in innate immunity. Cold Spring Harb Perspect
Biol. 2015;7(5).
12. Elsner J, Petering H, Hochstetter
R, et al. The CC chemokine antagonist Met-RANTES inhibits eosinophil
effector functions through the chemokine receptors CCR1 and CCR3.Eur J Immunol. 1997;27(11):2892-2898.
13. Kampen GT, Stafford S, Adachi T,
et al. Eotaxin induces degranulation and chemotaxis of eosinophils
through the activation of ERK2 and p38 mitogen-activated protein
kinases. Blood. 2000;95(6):1911-1917.
14. White JR, Lee JM, Dede K, et al.
Identification of potent, selective non-peptide CC chemokine receptor-3
antagonist that inhibits eotaxin-, eotaxin-2-, and monocyte chemotactic
protein-4-induced eosinophil migration. J Biol Chem.2000;275(47):36626-36631.
15. Bonecchi R, Bianchi G, Bordignon
PP, et al. Differential expression of chemokine receptors and
chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s.J Exp Med. 1998;187(1):129-134.
16. Anderson CA, Patel P, Viney JM,
Phillips RM, Solari R, Pease JE. A degradatory fate for CCR4 suggests a
primary role in Th2 inflammation. J Leukoc Biol.2020;107(3):455-466.
17. Lin R, Choi YH, Zidar DA, Walker
JKL. beta-Arrestin-2-Dependent Signaling Promotes CCR4-mediated
Chemotaxis of Murine T-Helper Type 2 Cells. Am J Respir Cell Mol
Biol. 2018;58(6):745-755.
18. Panina-Bordignon P, Papi A,
Mariani M, et al. The C-C chemokine receptors CCR4 and CCR8 identify
airway T cells of allergen-challenged atopic asthmatics. J Clin
Invest. 2001;107(11):1357-1364.
19. Acosta-Rodriguez EV, Rivino L,
Geginat J, et al. Surface phenotype and antigenic specificity of human
interleukin 17-producing T helper memory cells. Nat Immunol.2007;8(6):639-646.
20. Annunziato F, Cosmi L,
Santarlasci V, et al. Phenotypic and functional features of human Th17
cells. J Exp Med. 2007;204(8):1849-1861.
21. Yu Q, Lou XM, He Y. Preferential
recruitment of Th17 cells to cervical cancer via CCR6-CCL20 pathway.PLoS One. 2015;10(3):e0120855.
22. Zhang K, Liu Y, Yang X, et al.
HBV promotes the recruitment of IL-17 secreting T cells via chemokines
CCL22 and CCL17. Liver Int. 2020;40(6):1327-1338.
23. Wang C, Kang SG, Lee J, Sun Z,
Kim CH. The roles of CCR6 in migration of Th17 cells and regulation of
effector T-cell balance in the gut. Mucosal Immunol.2009;2(2):173-183.
24. Ordonez CL, Shaughnessy TE,
Matthay MA, Fahy JV. Increased neutrophil numbers and IL-8 levels in
airway secretions in acute severe asthma: Clinical and biologic
significance. Am J Respir Crit Care Med. 2000;161(4 Pt
1):1185-1190.
25. Qiu Y, Zhu J, Bandi V, Guntupalli
KK, Jeffery PK. Bronchial mucosal inflammation and upregulation of CXC
chemoattractants and receptors in severe exacerbations of asthma.Thorax. 2007;62(6):475-482.
26. Hosoki K, Ying S, Corrigan C, et
al. Analysis of a Panel of 48 Cytokines in BAL Fluids Specifically
Identifies IL-8 Levels as the Only Cytokine that Distinguishes
Controlled Asthma from Uncontrolled Asthma, and Correlates Inversely
with FEV1. PLoS ONE. 2015;10(5):e0126035.
27. Lippert U, Zachmann K, Henz BM,
Neumann C. Human T lymphocytes and mast cells differentially express and
regulate extra- and intracellular CXCR1 and CXCR2. Exp Dermatol.2004;13(8):520-525.
28. Thomas KM, Taylor L, Navarro J.
The interleukin-8 receptor is encoded by a neutrophil-specific cDNA
clone, F3R. J Biol Chem. 1991;266(23):14839-14841.
29. Farkas L, Hahn MC, Schmoczer M,
et al. Expression of CXC chemokine receptors 1 and 2 in human bronchial
epithelial cells. Chest. 2005;128(5):3724-3734.
30. Hosoki K, Aguilera-Aguirre L,
Brasier AR, Kurosky A, Boldogh I, Sur S. Facilitation of Allergic
Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate
Neutrophil Recruitment. Am J Respir Cell Mol Biol.2016;54(1):81-90.
31. Hosoki K, Rajarathnam K, Sur S.
Attenuation of murine allergic airway inflammation with a CXCR1/CXCR2
chemokine receptor inhibitor. Clin Exp Allergy.2019;49(1):130-132.
32. Kemp DM, Pidich A, Larijani M, et
al. Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental
melanomas harboring different molecular defects by affecting malignant
cells and tumor microenvironment. Oncotarget.2017;8(9):14428-14442.
33. Hosoki K, Aguilera-Aguirre L,
Brasier AR, Kurosky A, Boldogh I, Sur S. Pollen-induced Innate
Recruitment of Neutrophils Facilitates Induction of Allergic
Sensitization and Airway Inflammation. Am J Respir Cell Mol Biol.2015.
34. Hosoki K, Jaruga P, Itazawa T, et
al. Excision release of 5?hydroxycytosine oxidatively induced DNA base
lesions from the lung genome by cat dander extract challenge stimulates
allergic airway inflammation. Clin Exp Allergy.2018;48(12):1676-1687.
35. Chakraborty A, Wakamiya M,
Venkova-Canova T, et al. Neil2-null Mice Accumulate Oxidized DNA Bases
in the Transcriptionally Active Sequences of the Genome and Are
Susceptible to Innate Inflammation. J Biol Chem.2015;290(41):24636-24648.
36. Hosoki K, Chakraborty A, Hazra
TK, Sur S. Protocols to Measure Oxidative Stress and DNA Damage in
Asthma. Methods Mol Biol. 2022;2506:315-332.
37. Palmqvist C, Wardlaw AJ, Bradding
P. Chemokines and their receptors as potential targets for the treatment
of asthma. Br J Pharmacol. 2007;151(6):725-736.
38. Borish LC, Steinke JW. 2.
Cytokines and chemokines. J Allergy Clin Immunol. 2003;111(2
Suppl):S460-475.
39. McGeachy MJ, Chen Y, Tato CM, et
al. The interleukin 23 receptor is essential for the terminal
differentiation of interleukin 17-producing effector T helper cells in
vivo. Nat Immunol. 2009;10(3):314-324.
40. Langrish CL, Chen Y, Blumenschein
WM, et al. IL-23 drives a pathogenic T cell population that induces
autoimmune inflammation. J Exp Med. 2005;201(2):233-240.
41. McGeachy MJ, Bak-Jensen KS, Chen
Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T
cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol.2007;8(12):1390-1397.
42. Irvin C, Zafar I, Good J, et al.
Increased frequency of dual-positive TH2/TH17 cells in bronchoalveolar
lavage fluid characterizes a population of patients with severe asthma.J Allergy Clin Immunol. 2014;134(5):1175-1186 e1177.
43. Liu W, Liu S, Verma M, et al.
Mechanism of TH2/TH17-predominant and neutrophilic TH2/TH17-low subtypes
of asthma. J Allergy Clin Immunol. 2017;139(5):1548-1558 e1544.
44. Cummings CJ, Martin TR, Frevert
CW, et al. Expression and function of the chemokine receptors CXCR1 and
CXCR2 in sepsis. J Immunol. 1999;162(4):2341-2346.
45. Rios-Santos F, Alves-Filho JC,
Souto FO, et al. Down-regulation of CXCR2 on neutrophils in severe
sepsis is mediated by inducible nitric oxide synthase-derived nitric
oxide. Am J Respir Crit Care Med. 2007;175(5):490-497.
46. Bakele M, Lotz-Havla AS, Jakowetz
A, et al. An interactive network of elastase, secretases, and PAR-2
protein regulates CXCR1 receptor surface expression on neutrophils.J Biol Chem. 2014;289(30):20516-20525.
47. Hosoki K, Redding D, Itazawa T,
et al. Innate mechanism of pollen- and cat dander-induced oxidative
stress and DNA damage in the airways. J Allergy Clin Immunol.2017;140(5):1436-1439 e1435.
48. Boldogh I, Bacsi A, Choudhury BK,
et al. ROS generated by pollen NADPH oxidase provide a signal that
augments antigen-induced allergic airway inflammation. J Clin
Invest. 2005;115(8):2169-2179.
49. Bacsi A, Aguilera-Aguirre L,
Szczesny B, et al. Down-regulation of 8-oxoguanine DNA glycosylase 1
expression in the airway epithelium ameliorates allergic lung
inflammation. DNA Repair (Amst). 2013;12(1):18-26.
50. Ortega HG, Liu MC, Pavord ID, et
al. Mepolizumab treatment in patients with severe eosinophilic asthma.N Engl J Med. 2014;371(13):1198-1207.
51. Castro M, Zangrilli J, Wechsler
ME, et al. Reslizumab for inadequately controlled asthma with elevated
blood eosinophil counts: results from two multicentre, parallel,
double-blind, randomised, placebo-controlled, phase 3 trials.Lancet Respir Med. 2015;3(5):355-366.
52. FitzGerald JM, Bleecker ER, Nair
P, et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal
antibody, as add-on treatment for patients with severe, uncontrolled,
eosinophilic asthma (CALIMA): a randomised, double-blind,
placebo-controlled phase 3 trial. Lancet.2016;388(10056):2128-2141.
53. Bleecker ER, FitzGerald JM,
Chanez P, et al. Efficacy and safety of benralizumab for patients with
severe asthma uncontrolled with high-dosage inhaled corticosteroids and
long-acting beta(2)-agonists (SIROCCO): a randomised, multicentre,
placebo-controlled phase 3 trial. Lancet.2016;388(10056):2115-2127.
54. Wenzel S, Ford L, Pearlman D, et
al. Dupilumab in persistent asthma with elevated eosinophil levels.N Engl J Med. 2013;368(26):2455-2466.
55. Busse WW, Holgate S, Kerwin E, et
al. Randomized, double-blind, placebo-controlled study of brodalumab, a
human anti-IL-17 receptor monoclonal antibody, in moderate to severe
asthma. Am J Respir Crit Care Med. 2013;188(11):1294-1302.
56. ClinicalTrials.govhttps://www.clinicaltrials.gov/ct2/show/NCT01478360.
Accessed 3/4, 2024.
57. Peng J, Yang XO, Chang SH, Yang
J, Dong C. IL-23 signaling enhances Th2 polarization and regulates
allergic airway inflammation. Cell Res. 2010;20(1):62-71.
58. Wakashin H, Hirose K, Maezawa Y,
et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic
airway inflammation in mice. Am J Respir Crit Care Med.2008;178(10):1023-1032.
59. Brightling CE, Nair P, Cousins
DJ, Louis R, Singh D. Risankizumab in Severe Asthma - A Phase 2a,
Placebo-Controlled Trial. N Engl J Med. 2021;385(18):1669-1679.
60. Oyoshi MK, He R, Li Y, et al.
Leukotriene B4-driven neutrophil recruitment to the skin is essential
for allergic skin inflammation. Immunity. 2012;37(4):747-758.
61. Weber FC, Nemeth T, Csepregi JZ,
et al. Neutrophils are required for both the sensitization and
elicitation phase of contact hypersensitivity. J Exp Med.2015;212(1):15-22.
62. Lv J, Zou L, Zhao L, et al.
Leukotriene B4 -leukotriene B4 receptor axis promotes oxazolone-induced
contact dermatitis by directing skin homing of neutrophils and CD8(+) T
cells. Immunology. 2015;146(1):50-58.
63. Jonsson F, Mancardi DA, Kita Y,
et al. Mouse and human neutrophils induce anaphylaxis. The Journal
of clinical investigation. 2011;121(4):1484-1496.
64. Hosoki K, Boldogh I,
Aguilera-Aguirre L, et al. Myeloid differentiation protein 2 facilitates
pollen- and cat dander-induced innate and allergic airway inflammation.J Allergy Clin Immunol. 2016;137(5):1506-1513 e1502.
65. Fu H, Bylund J, Karlsson A,
Pellme S, Dahlgren C. The mechanism for activation of the neutrophil
NADPH-oxidase by the peptides formyl-Met-Leu-Phe and
Trp-Lys-Tyr-Met-Val-Met differs from that for interleukin-8.Immunology. 2004;112(2):201-210.
66. Citro A, Valle A, Cantarelli E,
et al. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice.Diabetes. 2015;64(4):1329-1340.
67. Piro G, Carbone C, Agostini A, et
al. CXCR1/2 dual-inhibitor ladarixin reduces tumour burden and promotes
immunotherapy response in pancreatic cancer. Br J Cancer. 2022.
68. Piemonti L, Keymeulen B, Gillard
P, et al. Ladarixin, an inhibitor of the interleukin-8 receptors CXCR1
and CXCR2, in new-onset type 1 diabetes: A multicentre, randomized,
double-blind, placebo-controlled trial. Diabetes Obes Metab.2022.