Reference
1. Chu S, Majumdar A. Opportunities and Challenges for a Sustainable Energy Future. Nature 488 , 294-304 (2012).
2. Chen JG, et al. Beyond fossil fuel-driven nitrogen transformations. Science 360 , eaar6611-eaar6633 (2018).
3. Rodriguez MM, Bill E, Brennessel WW, Holland PL. N2reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334 , 780-789 (2011).
4. van der Ham CJ, Koper MT, Hetterscheid DG. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev.43 , 5183-5193 (2014).
5. Smith C, Hill AK, Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energ. Environ. Sci. 13 , 331-344 (2020).
6. Martín AJ, Shinagawa T, Pérez-Ramírez J. Electrocatalytic Reduction of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf. Chem5 , 263-284 (2019).
7. Suryanto BHR, Du H-L, Wang D, Chen J, Simonov AN, MacFarlane DR. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2 , 290-297 (2019).
8. Zhang L, et al. Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies. Adv. Mater. 30 , 1800191-1800197 (2018).
9. Tong W, Huang B, Wang P, Li L, Shao Q, Huang X. Crystal-Phase-Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angew. Chem. Int. Ed. Engl. 59 , 2649-2653 (2020).
10. Lv X, Kou L, Frauenheim T. Hydroxyl-Boosted Nitrogen Reduction Reaction: The Essential Role of Surface Hydrogen in Functionalized MXenes. ACS Appl. Mater. Interfaces 13 , 14283-14290 (2021).
11. Liu JC, Ma XL, Li Y, Wang YG, Xiao H, Li J. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis via an associative mechanism. Nat. Commun. 9 , 1610-1619 (2018).
12. Niu H, Wang X, Shao C, Zhang Z, Guo Y. Computational Screening Single-Atom Catalysts Supported on g-CN for N2Reduction: High Activity and Selectivity. ACS Sustain. Chem. Eng.8 , 13749-13759 (2020).
13. Xue Z, Zhang X, Qin J, Liu R. Anchoring Mo on C9N4 monolayers as an efficient single atom catalyst for nitrogen fixation. J. Energy Chem. 57 , 443-450 (2021).
14. Ma D, Zeng Z, Liu L, Jia Y. Theoretical screening of the transition metal heteronuclear dimer anchored graphdiyne for electrocatalytic nitrogen reduction. J. Energy Chem. 54 , 501-509 (2021).
15. Zhao S, Lu X, Wang L, Gale J, Amal R. Carbon-Based Metal-Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Adv. Mater. 31 , 1805367-1805376 (2019).
16. Xu L, Yang LM, Ganz E. Electrocatalytic Reduction of N2 Using Metal-Doped Borophene. ACS Appl. Mater. Interfaces 13 , 14091-14101 (2021).
17. Lv SY, Li G, Yang LM. Transition Metals Embedded Two-Dimensional Square Tetrafluorotetracyanoquinodimethane Monolayers as a Class of Novel Electrocatalysts for Nitrogen Reduction Reaction. ACS Appl. Mater. Interfaces 14 , 25317-25325 (2022).
18. Zhang Z, Xu X. Mechanistic Study on Enhanced Electrocatalytic Nitrogen Reduction Reaction by Mo Single Clusters Supported on MoS2.ACS Appl. Mater. Interfaces 14 , 28900-28910 (2022).
19. Wu Y, He C, Zhang W. ”Capture-Backdonation-Recapture” Mechanism for Promoting N2 Reduction by Heteronuclear Metal-Free Double-Atom Catalysts. J. Am. Chem. Soc. 1 , 1-10 (2022).
20. Wang J, et al. Advanced electrocatalysts with Dual-metal doped carbon Materials: Achievements and challenges. Chem. Eng. J. 428 , 132558-132572 (2022).
21. Jiao J, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 11 , 222-228 (2019).
22. Li F, Liu X, Chen Z. 1 + 1′ > 2: Heteronuclear Biatom Catalyst Outperforms Its Homonuclear Counterparts for CO Oxidation.Small Methods 3 , 1800480-1800489 (2019).
23. Wei B, et al. Rational Design of Highly Stable and Active MXene-Based Bifunctional ORR/OER Double-Atom Catalysts. Adv. Mater. 33 , e2102595-e2102518 (2021).
24. Wu J, Li JH, Yu YX. Single Nb or W Atom-Embedded BP Monolayers as Highly Selective and Stable Electrocatalysts for Nitrogen Fixation with Low-Onset Potentials. ACS Appl. Mater. Interfaces 13 , 10026-10036 (2021).
25. Liu H, Huang Q, An W, Wang Y, Men Y, Liu S. Dual-atom active sites embedded in two-dimensional C2N for efficient CO2 electroreduction: A computational study. J. Energy Chem. 61 , 507-516 (2021).
26. Wu Y, He C, Zhang W. Building Up a General Selection Strategy and Catalytic Performance Prediction Expressions of Heteronuclear Double-Atom Catalysts for N2 Reduction. J. Energy Chem. 82 , 375-386 (2023).
27. Wu Y, He C, Zhang W. Novel Design Strategy of High Activity Electrocatalysts toward Nitrogen Reduction Reaction via Boron-Transition-Metal Hybrid Double-Atom Catalysts. ACS Appl. Mater. Interfaces 13 , 47520-47530 (2021).
28. Hu R, et al. Rational design of bimetallic atoms supported on C3N monolayer to break the linear relations for efficient electrochemical nitrogen reduction. Nano Research15 , 8656-8664 (2022).
29. Liang X-M, Wang H-J, Zhang C, Zhong D-C, Lu T-B. Controlled synthesis of a Ni2 dual-atom catalyst for synergistic CO2 electroreduction. Appl. Catal B-Environ.322 , 122073-122081 (2023).
30. Jitwatanasirikul T, Roongcharoen T, Sikam P, Takahashi K, Rungrotmongkol T, Namuangruk S. The Screening of Homo- and Hetero-Dual Atoms Anchored Graphdiyne for Boosting Electrochemical CO2 Reduction. Adv. Mater. Interfaces10 , 2201904-2202006 (2023).
31. Hai X, et al. Geminal-atom catalysis for cross-coupling.Nature 1 , 1-7 (2023).
32. Gong YN, et al. Modulating the Electronic Structures of Dual-Atom Catalysts via Coordination Environment Engineering for Boosting CO2 Electroreduction. Angew. Chem. Int. Ed. Engl. 61 , e202215187-e202215194 (2022).
33. Guo J, et al. Nitrogen‐Doped Porous Carbon Supported Nonprecious Metal Single‐Atom Electrocatalysts: from Synthesis to Application. Small Methods 3 , 1900159-1900192 (2019).
34. Yang M, et al. Efficient Electron Transfer from an Electron‐Reservoir Polyoxometalate to Dual‐Metal‐Site Metal‐Organic Frameworks for Highly Efficient Electroreduction of Nitrogen. Adv. Funct. Mater. 33 , 2214495-2214509 (2023).
35. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set.Comp. Mater. Sci. 6 , 15-50 (1996).
36. Kresse G. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B 59 , 1758-1775 (1999).
37. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77 , 3865-3868 (1996).
38. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 , 154104-154124 (2010).
39. Tang W, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter.21 , 084204-084212 (2009).
40. Deringer VL, Tchougreeff AL, Dronskowski R. Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets.J. Phys. Chem. A 115 , 5461-5467 (2011).
41. Nelson R, Ertural C, George J, Deringer VL, Hautier G, Dronskowski R. LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41 , 1931-1940 (2020).
42. Glenn J. Martyna MLKaMT. Nose-Hoover chains: The canonical ensemble via continuous dynamics. J. Phys. Chem. 97 , 2635-2643 (1992).
43. Kiran Mathew RS, Kendra Letchworth-Weaver, T. A. Arias, Richard G. Hennig. Implicit Solvation Model for Density-Functional Study of Nanocrystal Surfaces and Reaction Pathways. J Chem Phys140 , 084106-084115 (2014).
44. Wang V, Xu N, Liu J-C, Tang G, Geng W-T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comp Phys Commun 267 , 108033-108052 (2021).
45. J. K. Nørskov JR, A. Logadottir, and L. Lindqvist. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys Chem B 108 , 17886-17892 (2004).
46. Liu X, et al. Transition Metal and N Doping on AlP Monolayers for Bifunctional Oxygen Electrocatalysts: Density Functional Theory Study Assisted by Machine Learning Description. ACS Appl Mater Interfaces 14 , 1249-1260 (2022).
47. Niu H, Wan, X., Wang, X., Shao, C., John Robertson, Zhang, Z. and Guo, Y. Single-Atom Rhodium on Defective g‑C3N4: A Promising Bifunctional Oxygen Electrocatalyst. ACS Sustain Chem Eng 9 , 3590-3600 (2021).
48. Lin G, et al. Intrinsic Electron Localization of Metastable MoS2 Boosts Electrocatalytic Nitrogen Reduction to Ammonia. Adv Mater 33 , 2007509-2007517 (2021).
49. Liu X, et al. Rational design synergistic metal-free dual-atom electrocatalyst for N2 to NH3reaction on g-CN: A first principle study. Appl Surf Sci605 , 154831-154841 (2022).
50. Zeng Y, Zhang X, Ai C, Wang C, Liu Y, Lin S. Orbital engineering of C3N monolayer to design efficient synergistic sites electrocatalyst for boosting alkaline hydrogen evolution. Appl Surf Sci 582 , 152474-1524982 (2022).
51. Wang X, Niu H, Wan X, Wang A, Wang FR, Guo Y. Impact of Coordination Environment on Single-Atom-Embedded C3N for Oxygen Electrocatalysis. ACS Sustain Chem Eng 10 , 7692-7701 (2022).
52. Özçelik VO, Gurel HH, Ciraci S. Self-Healing of Vacancy Defects in Single-Layer Graphene and Silicene. Phys Rev B 88 , 045440-045451 (2013).
53. Nong W, et al. Designing C3N-supported single atom catalysts for efficient nitrogen reduction based on descriptor of catalytic activity. Carbon 182 , 297-306 (2021).
54. Niu H, Zhang Z, Wang X, Wan X, Shao C, Guo Y. Theoretical Insights into the Mechanism of Selective Nitrate‐to‐Ammonia Electroreduction on Single‐Atom Catalysts. Adv Funct Mater 31 , 2008533-2008541 (2020).
55. Zhu Y, Sokolowski J, Song X, He Y, Mei Y, Wu G. Engineering Local Coordination Environments of Atomically Dispersed and Heteroatom‐Coordinated Single Metal Site Electrocatalysts for Clean Energy‐Conversion. Adv Energy Mater 10 , 1902844-1902873 (2019).
56. Gong H, et al. Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H2O2Production. Adv Funct Mater 32 , 2106886-2106896 (2021).
57. Yanyang Qin YL, Wenshan Zhao, Shenghua Chen, Tiantian Wu, and Yaqiong Su. Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction. Nano Research 16 , 325-333 (2022).
58. Lv X, Wei W, Li F, Huang B, Dai Y. Metal-Free B@g-CN: Visible/Infrared Light-Driven Single Atom Photocatalyst Enables Spontaneous Dinitrogen Reduction to Ammonia. Nano letters19 , 6391-6325 (2019).
59. Zhong W, et al. Electronic Spin Moment As a Catalytic Descriptor for Fe Single-Atom Catalysts Supported on C2N. J. Am. Chem. Soc. 143 , 4405-4413 (2021).
60. Li Z, et al. Tuning the Spin Density of Cobalt Single-Atom Catalysts for Efficient Oxygen Evolution. ACS Nano 15 , 7105-7113 (2021).
61. Zhang Y, et al. High spin polarization ultrafine Rh nanoparticles on CNT for efficient electrochemical N2fixation to ammonia. Appl. Catal B-Environ. 298 , 120592-120601 (2021).
62. Dang Q, et al. Regulating Electronic Spin Moments of Single-Atom Catalyst Sites via Single-Atom Promoter Tuning on S-Vacancy MoS2 for Efficient Nitrogen Fixation. J. Phys. Chem. Lett. 12 , 8355-8362 (2021).
63. Sun Z, et al. Regulating the Spin State of FeIII Enhances the Magnetic Effect of the Molecular Catalysis Mechanism. J. Am. Chem. Soc. 144 , 8204-8213 (2022).
64. Fang L, Gou G, Shang J, Liu M, Gu Q, Li L. Regulating the spin state of single-atom doped covalent triazine frameworks for efficient nitrogen fixation. J. Colloid Interface Sci. 627 , 931-941 (2022).
65. Zhang Y, et al. Charge and spin communication between dual metal single-atom sites on C2N sheets: regulating electronic spin moments of Fe atoms for N2 activation and reduction. J. Mater. Chem. A 10 , 23704-23711 (2022).
66. Li N, et al. Regulating the spin order of transition metal embedded-MXenes for boosting electrocatalytic nitrogen reduction to ammonia. J. Mater. Chem. A 10 , 22760-22770 (2022).
67. Gao S, et al. Spin regulation for efficient electrocatalytic N2 reduction over diatomic Fe-Mo catalyst. J. Colloid Interface Sci. 630 , 215-223 (2023).
68. H. Xu, D. Cheng, D. Cao, Zeng X. A universal principle for a rational design of single-atom electrocatalysts. Nat. Catal.1 , 339-348 (2018).
69. Zhao MR, Song B, Yang LM. Two-Dimensional Single-Atom Catalyst TM3(HAB)2 Monolayers for Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput Screening. ACS Appl. Mater. Interfaces 13 , 26109-26123 (2021).
70. Guo X, Lin S, Gu J, Zhang S, Chen Z, Huang S. Establishing a Theoretical Landscape for Identifying Basal Plane Active 2D Metal Borides (MBenes) toward Nitrogen Electroreduct. Adv. Funct. Mater. 31 , 2008056-2008066 (2020).
71. J. K. Nørskov TB, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimmingc. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 152 , 23-26 (2005).
72. Lv SY, Huang CX, Li G, Yang LM. Unveiling the Underlying Mechanism of Transition Metal Atoms Anchored Square Tetracyanoquinodimethane Monolayers as Electrocatalysts for N2 Fixation.Energ. Environ. Mater. 5 , 533-542 (2022).
73. Lv SY, Li G, Yang LM. Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction. J. Colloid Interface Sci. 621 , 24-32 (2022).