Reference
1. Chu S, Majumdar A. Opportunities and Challenges for a Sustainable
Energy Future. Nature 488 , 294-304 (2012).
2. Chen JG, et al. Beyond fossil fuel-driven nitrogen
transformations. Science 360 , eaar6611-eaar6633 (2018).
3. Rodriguez MM, Bill E, Brennessel WW, Holland PL. N2reduction and hydrogenation to ammonia by a molecular iron-potassium
complex. Science 334 , 780-789 (2011).
4. van der Ham CJ, Koper MT, Hetterscheid DG. Challenges in reduction of
dinitrogen by proton and electron transfer. Chem. Soc. Rev.43 , 5183-5193 (2014).
5. Smith C, Hill AK, Torrente-Murciano L. Current and future role of
Haber–Bosch ammonia in a carbon-free energy landscape. Energ.
Environ. Sci. 13 , 331-344 (2020).
6. Martín AJ, Shinagawa T, Pérez-Ramírez J. Electrocatalytic Reduction
of Nitrogen: From Haber-Bosch to Ammonia Artificial Leaf. Chem5 , 263-284 (2019).
7. Suryanto BHR, Du H-L, Wang D, Chen J, Simonov AN, MacFarlane DR.
Challenges and prospects in the catalysis of electroreduction of
nitrogen to ammonia. Nat. Catal. 2 , 290-297 (2019).
8. Zhang L, et al. Electrochemical Ammonia Synthesis via Nitrogen
Reduction Reaction on a MoS2 Catalyst: Theoretical and
Experimental Studies. Adv. Mater. 30 , 1800191-1800197
(2018).
9. Tong W, Huang B, Wang P, Li L, Shao Q, Huang X.
Crystal-Phase-Engineered PdCu Electrocatalyst for Enhanced Ammonia
Synthesis. Angew. Chem. Int. Ed. Engl. 59 , 2649-2653
(2020).
10. Lv X, Kou L, Frauenheim T. Hydroxyl-Boosted Nitrogen Reduction
Reaction: The Essential Role of Surface Hydrogen in Functionalized
MXenes. ACS Appl. Mater. Interfaces 13 , 14283-14290
(2021).
11. Liu JC, Ma XL, Li Y, Wang YG, Xiao H, Li J. Heterogeneous
Fe3 single-cluster catalyst for ammonia synthesis via an
associative mechanism. Nat. Commun. 9 , 1610-1619 (2018).
12. Niu H, Wang X, Shao C, Zhang Z, Guo Y. Computational Screening
Single-Atom Catalysts Supported on g-CN for N2Reduction: High Activity and Selectivity. ACS Sustain. Chem. Eng.8 , 13749-13759 (2020).
13. Xue Z, Zhang X, Qin J, Liu R. Anchoring Mo on
C9N4 monolayers as an efficient single
atom catalyst for nitrogen fixation. J. Energy Chem. 57 ,
443-450 (2021).
14. Ma D, Zeng Z, Liu L, Jia Y. Theoretical screening of the transition
metal heteronuclear dimer anchored graphdiyne for electrocatalytic
nitrogen reduction. J. Energy Chem. 54 , 501-509 (2021).
15. Zhao S, Lu X, Wang L, Gale J, Amal R. Carbon-Based Metal-Free
Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of
Ammonia at Ambient Conditions. Adv. Mater. 31 ,
1805367-1805376 (2019).
16. Xu L, Yang LM, Ganz E. Electrocatalytic Reduction of
N2 Using Metal-Doped Borophene. ACS Appl. Mater.
Interfaces 13 , 14091-14101 (2021).
17. Lv SY, Li G, Yang LM. Transition Metals Embedded Two-Dimensional
Square Tetrafluorotetracyanoquinodimethane Monolayers as a Class of
Novel Electrocatalysts for Nitrogen Reduction Reaction. ACS Appl.
Mater. Interfaces 14 , 25317-25325 (2022).
18. Zhang Z, Xu X. Mechanistic Study on Enhanced Electrocatalytic
Nitrogen Reduction Reaction by Mo Single Clusters Supported on MoS2.ACS Appl. Mater. Interfaces 14 , 28900-28910 (2022).
19. Wu Y, He C, Zhang W. ”Capture-Backdonation-Recapture” Mechanism for
Promoting N2 Reduction by Heteronuclear Metal-Free
Double-Atom Catalysts. J. Am. Chem. Soc. 1 , 1-10 (2022).
20. Wang J, et al. Advanced electrocatalysts with Dual-metal
doped carbon Materials: Achievements and challenges. Chem. Eng.
J. 428 , 132558-132572 (2022).
21. Jiao J, et al. Copper atom-pair catalyst anchored on alloy
nanowires for selective and efficient electrochemical reduction of
CO2. Nat. Chem. 11 , 222-228 (2019).
22. Li F, Liu X, Chen Z. 1 + 1′ > 2: Heteronuclear Biatom
Catalyst Outperforms Its Homonuclear Counterparts for CO Oxidation.Small Methods 3 , 1800480-1800489 (2019).
23. Wei B, et al. Rational Design of Highly Stable and Active
MXene-Based Bifunctional ORR/OER Double-Atom Catalysts. Adv.
Mater. 33 , e2102595-e2102518 (2021).
24. Wu J, Li JH, Yu YX. Single Nb or W Atom-Embedded BP Monolayers as
Highly Selective and Stable Electrocatalysts for Nitrogen Fixation with
Low-Onset Potentials. ACS Appl. Mater. Interfaces 13 ,
10026-10036 (2021).
25. Liu H, Huang Q, An W, Wang Y, Men Y, Liu S. Dual-atom active sites
embedded in two-dimensional C2N for efficient
CO2 electroreduction: A computational study. J.
Energy Chem. 61 , 507-516 (2021).
26. Wu Y, He C, Zhang W. Building Up a General Selection Strategy and
Catalytic Performance Prediction Expressions of Heteronuclear
Double-Atom Catalysts for N2 Reduction. J. Energy
Chem. 82 , 375-386 (2023).
27. Wu Y, He C, Zhang W. Novel Design Strategy of High Activity
Electrocatalysts toward Nitrogen Reduction Reaction via
Boron-Transition-Metal Hybrid Double-Atom Catalysts. ACS Appl.
Mater. Interfaces 13 , 47520-47530 (2021).
28. Hu R, et al. Rational design of bimetallic atoms supported on
C3N monolayer to break the linear relations for
efficient electrochemical nitrogen reduction. Nano Research15 , 8656-8664 (2022).
29. Liang X-M, Wang H-J, Zhang C, Zhong D-C, Lu T-B. Controlled
synthesis of a Ni2 dual-atom catalyst for synergistic
CO2 electroreduction. Appl. Catal B-Environ.322 , 122073-122081 (2023).
30. Jitwatanasirikul T, Roongcharoen T, Sikam P, Takahashi K,
Rungrotmongkol T, Namuangruk S. The Screening of Homo- and Hetero-Dual
Atoms Anchored Graphdiyne for Boosting Electrochemical
CO2 Reduction. Adv. Mater. Interfaces10 , 2201904-2202006 (2023).
31. Hai X, et al. Geminal-atom catalysis for cross-coupling.Nature 1 , 1-7 (2023).
32. Gong YN, et al. Modulating the Electronic Structures of
Dual-Atom Catalysts via Coordination Environment Engineering for
Boosting CO2 Electroreduction. Angew. Chem. Int.
Ed. Engl. 61 , e202215187-e202215194 (2022).
33. Guo J, et al. Nitrogen‐Doped Porous Carbon Supported
Nonprecious Metal Single‐Atom Electrocatalysts: from Synthesis to
Application. Small Methods 3 , 1900159-1900192 (2019).
34. Yang M, et al. Efficient Electron Transfer from an
Electron‐Reservoir Polyoxometalate to Dual‐Metal‐Site Metal‐Organic
Frameworks for Highly Efficient Electroreduction of Nitrogen. Adv.
Funct. Mater. 33 , 2214495-2214509 (2023).
35. Kresse G, Furthmüller J. Efficiency of ab-initio total energy
calculations for metals and semiconductors using a plane-wave basis set.Comp. Mater. Sci. 6 , 15-50 (1996).
36. Kresse G. From ultrasoft pseudopotentials to the projector augmented
wave method. Phys. Rev. B 59 , 1758-1775 (1999).
37. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation
Made Simple. Phys. Rev. Lett. 77 , 3865-3868 (1996).
38. Grimme S, Antony J, Ehrlich S, Krieg H. A consistent and accurate ab
initio parametrization of density functional dispersion correction
(DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132 ,
154104-154124 (2010).
39. Tang W, Sanville E, Henkelman G. A grid-based Bader analysis
algorithm without lattice bias. J. Phys. Condens. Matter.21 , 084204-084212 (2009).
40. Deringer VL, Tchougreeff AL, Dronskowski R. Crystal orbital Hamilton
population (COHP) analysis as projected from plane-wave basis sets.J. Phys. Chem. A 115 , 5461-5467 (2011).
41. Nelson R, Ertural C, George J, Deringer VL, Hautier G, Dronskowski
R. LOBSTER: Local orbital projections, atomic charges, and
chemical-bonding analysis from projector-augmented-wave-based
density-functional theory. J. Comput. Chem. 41 ,
1931-1940 (2020).
42. Glenn J. Martyna MLKaMT. Nose-Hoover chains: The canonical ensemble
via continuous dynamics. J. Phys. Chem. 97 , 2635-2643
(1992).
43. Kiran Mathew RS, Kendra Letchworth-Weaver, T. A. Arias, Richard G.
Hennig. Implicit Solvation Model for Density-Functional Study of
Nanocrystal Surfaces and Reaction Pathways. J Chem Phys140 , 084106-084115 (2014).
44. Wang V, Xu N, Liu J-C, Tang G, Geng W-T. VASPKIT: A user-friendly
interface facilitating high-throughput computing and analysis using VASP
code. Comp Phys Commun 267 , 108033-108052 (2021).
45. J. K. Nørskov JR, A. Logadottir, and L. Lindqvist. Origin of the
Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J Phys
Chem B 108 , 17886-17892 (2004).
46. Liu X, et al. Transition Metal and N Doping on AlP Monolayers
for Bifunctional Oxygen Electrocatalysts: Density Functional Theory
Study Assisted by Machine Learning Description. ACS Appl Mater
Interfaces 14 , 1249-1260 (2022).
47. Niu H, Wan, X., Wang, X., Shao, C., John Robertson, Zhang, Z. and
Guo, Y. Single-Atom Rhodium on Defective
g‑C3N4: A Promising Bifunctional Oxygen
Electrocatalyst. ACS Sustain Chem Eng 9 , 3590-3600
(2021).
48. Lin G, et al. Intrinsic Electron Localization of Metastable
MoS2 Boosts Electrocatalytic Nitrogen Reduction to
Ammonia. Adv Mater 33 , 2007509-2007517 (2021).
49. Liu X, et al. Rational design synergistic metal-free
dual-atom electrocatalyst for N2 to NH3reaction on g-CN: A first principle study. Appl Surf Sci605 , 154831-154841 (2022).
50. Zeng Y, Zhang X, Ai C, Wang C, Liu Y, Lin S. Orbital engineering of
C3N monolayer to design efficient synergistic sites
electrocatalyst for boosting alkaline hydrogen evolution. Appl
Surf Sci 582 , 152474-1524982 (2022).
51. Wang X, Niu H, Wan X, Wang A, Wang FR, Guo Y. Impact of Coordination
Environment on Single-Atom-Embedded C3N for Oxygen
Electrocatalysis. ACS Sustain Chem Eng 10 , 7692-7701
(2022).
52. Özçelik VO, Gurel HH, Ciraci S. Self-Healing of Vacancy Defects in
Single-Layer Graphene and Silicene. Phys Rev B 88 ,
045440-045451 (2013).
53. Nong W, et al. Designing C3N-supported single
atom catalysts for efficient nitrogen reduction based on descriptor of
catalytic activity. Carbon 182 , 297-306 (2021).
54. Niu H, Zhang Z, Wang X, Wan X, Shao C, Guo Y. Theoretical Insights
into the Mechanism of Selective Nitrate‐to‐Ammonia Electroreduction on
Single‐Atom Catalysts. Adv Funct Mater 31 ,
2008533-2008541 (2020).
55. Zhu Y, Sokolowski J, Song X, He Y, Mei Y, Wu G. Engineering Local
Coordination Environments of Atomically Dispersed and
Heteroatom‐Coordinated Single Metal Site Electrocatalysts for Clean
Energy‐Conversion. Adv Energy Mater 10 , 1902844-1902873
(2019).
56. Gong H, et al. Low-Coordinated Co-N-C on Oxygenated Graphene
for Efficient Electrocatalytic H2O2Production. Adv Funct Mater 32 , 2106886-2106896 (2021).
57. Yanyang Qin YL, Wenshan Zhao, Shenghua Chen, Tiantian Wu, and
Yaqiong Su. Computational study of transition metal single-atom
catalysts supported on nitrogenated carbon nanotubes for
electrocatalytic nitrogen reduction. Nano Research 16 ,
325-333 (2022).
58. Lv X, Wei W, Li F, Huang B, Dai Y. Metal-Free B@g-CN:
Visible/Infrared Light-Driven Single Atom Photocatalyst Enables
Spontaneous Dinitrogen Reduction to Ammonia. Nano letters19 , 6391-6325 (2019).
59. Zhong W, et al. Electronic Spin Moment As a Catalytic
Descriptor for Fe Single-Atom Catalysts Supported on
C2N. J. Am. Chem. Soc. 143 , 4405-4413
(2021).
60. Li Z, et al. Tuning the Spin Density of Cobalt Single-Atom
Catalysts for Efficient Oxygen Evolution. ACS Nano 15 ,
7105-7113 (2021).
61. Zhang Y, et al. High spin polarization ultrafine Rh
nanoparticles on CNT for efficient electrochemical N2fixation to ammonia. Appl. Catal B-Environ. 298 ,
120592-120601 (2021).
62. Dang Q, et al. Regulating Electronic Spin Moments of
Single-Atom Catalyst Sites via Single-Atom Promoter Tuning on S-Vacancy
MoS2 for Efficient Nitrogen Fixation. J. Phys.
Chem. Lett. 12 , 8355-8362 (2021).
63. Sun Z, et al. Regulating the Spin State of
FeIII Enhances the Magnetic Effect of the Molecular
Catalysis Mechanism. J. Am. Chem. Soc. 144 , 8204-8213
(2022).
64. Fang L, Gou G, Shang J, Liu M, Gu Q, Li L. Regulating the spin state
of single-atom doped covalent triazine frameworks for efficient nitrogen
fixation. J. Colloid Interface Sci. 627 , 931-941 (2022).
65. Zhang Y, et al. Charge and spin communication between dual
metal single-atom sites on C2N sheets: regulating
electronic spin moments of Fe atoms for N2 activation
and reduction. J. Mater. Chem. A 10 , 23704-23711 (2022).
66. Li N, et al. Regulating the spin order of transition metal
embedded-MXenes for boosting electrocatalytic nitrogen reduction to
ammonia. J. Mater. Chem. A 10 , 22760-22770 (2022).
67. Gao S, et al. Spin regulation for efficient electrocatalytic
N2 reduction over diatomic Fe-Mo catalyst. J.
Colloid Interface Sci. 630 , 215-223 (2023).
68. H. Xu, D. Cheng, D. Cao, Zeng X. A universal principle for a
rational design of single-atom electrocatalysts. Nat. Catal.1 , 339-348 (2018).
69. Zhao MR, Song B, Yang LM. Two-Dimensional Single-Atom Catalyst
TM3(HAB)2 Monolayers for
Electrocatalytic Dinitrogen Reduction Using Hierarchical High-Throughput
Screening. ACS Appl. Mater. Interfaces 13 , 26109-26123
(2021).
70. Guo X, Lin S, Gu J, Zhang S, Chen Z, Huang S. Establishing a
Theoretical Landscape for Identifying Basal Plane Active 2D Metal
Borides (MBenes) toward Nitrogen Electroreduct. Adv. Funct.
Mater. 31 , 2008056-2008066 (2020).
71. J. K. Nørskov TB, A. Logadottir, J. R. Kitchin, J. G. Chen, S.
Pandelov, U. Stimmingc. Trends in the Exchange Current for Hydrogen
Evolution. J. Electrochem. Soc. 152 , 23-26 (2005).
72. Lv SY, Huang CX, Li G, Yang LM. Unveiling the Underlying Mechanism
of Transition Metal Atoms Anchored Square Tetracyanoquinodimethane
Monolayers as Electrocatalysts for N2 Fixation.Energ. Environ. Mater. 5 , 533-542 (2022).
73. Lv SY, Li G, Yang LM. Prognostication of two-dimensional
transition-metal atoms embedded rectangular
tetrafluorotetracyanoquinodimethane single-atom catalysts for
high-efficiency electrochemical nitrogen reduction. J. Colloid
Interface Sci. 621 , 24-32 (2022).