References
Alif, Ž., Dunning, J., Chik, H. Y. J., Burke, T., & Schroeder, J. (2022). What is the best fitness measure in wild populations? A case study on the power of short-term fitness proxies to predict reproductive value. PLOS ONE , 17 (4), e0260905. https://doi.org/10.1371/journal.pone.0260905
Angelier, F., Vleck, C. M., Holberton, R. L., & Marra, P. P. (2013). Telomere length, non‐breeding habitat and return rate in male American redstarts. Functional Ecology , 27 (2), 342–350. https://doi.org/10.1111/1365-2435.12041
Angelier, F., Weimerskirch, H., Barbraud, C., & Chastel, O. (2019). Is telomere length a molecular marker of individual quality? Insights from a long-lived bird. Functional Ecology , 33 (6), 1076–1087. https://doi.org/10.1111/1365-2435.13307
Bakaysa, S. L., Mucci, L. A., Slagboom, P. E., Boomsma, D. I., McClearn, G. E., Johansson, B., & Pedersen, N. L. (2007). Telomere length predicts survival independent of genetic influences: Telomere length predicts survival,S.L.Bakaysa et al. Aging Cell , 6 (6), 769–774. https://doi.org/10.1111/j.1474-9726.2007.00340.x
Barrett, E. L. B., Burke, T. A., Hammers, M., Komdeur, J., & Richardson, D. S. (2013). Telomere length and dynamics predict mortality in a wild longitudinal study. Molecular Ecology , 22 (1), 249–259. https://doi.org/10.1111/mec.12110
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4 . Journal of Statistical Software , 67 (1). https://doi.org/10.18637/jss.v067.i01
Bauch, C., Becker, P. H., & Verhulst, S. (2013). Telomere length reflects phenotypic quality and costs of reproduction in a long-lived seabird. Proceedings of the Royal Society B: Biological Sciences ,280 (1752), 20122540. https://doi.org/10.1098/rspb.2012.2540
Bauch, C., Gatt, M. C., Granadeiro, J. P., Verhulst, S., & Catry, P. (2020). Sex‐specific telomere length and dynamics in relation to age and reproductive success in Cory’s shearwaters. Molecular Ecology ,29 (7), 1344–1357. https://doi.org/10.1111/mec.15399
Bichet, C., Bouwhuis, S., Bauch, C., Verhulst, S., Becker, P. H., & Vedder, O. (2020). Telomere length is repeatable, shortens with age and reproductive success, and predicts remaining lifespan in a long‐lived seabird. Molecular Ecology , 29 (2), 429–441. https://doi.org/10.1111/mec.15331
Blackburn, E. H. (1991). Structure and function of telomeres .350 .
Blackburn, E. H., Epel, E. S., & Lin, J. (2015). Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science , 350 (6265), 1193–1198. https://doi.org/10.1126/science.aab3389
Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds. Proceedings of the Royal Society B: Biological Sciences ,281 (1785), 20133287. https://doi.org/10.1098/rspb.2013.3287
Boonekamp, J. J., Simons, M. J. P., Hemerik, L., & Verhulst, S. (2013). Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell , 12 (2), 330–332. https://doi.org/10.1111/acel.12050
Brown, T. J., Spurgin, L. G., Dugdale, H. L., Komdeur, J., Burke, T., & Richardson, D. S. (2022). Causes and consequences of telomere lengthening in a wild vertebrate population. Molecular Ecology ,31 (23), 5933–5945. https://doi.org/10.1111/mec.16059
Campisi, J. (2005). Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell , 120 (4), 513–522. https://doi.org/10.1016/j.cell.2005.02.003
Cawthon, R. M. (2009). Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Research ,37 (3), 1–7. https://doi.org/10.1093/nar/gkn1027
Chik, H. Y. J., Sibma, A., Mannarelli, M.-E., Remedios, N. dos, Simons, M. J. P., Burke, T., Dugdale, H. L., & Schroeder, J. (2023).Heritability and age-dependent changes in genetic variation of telomere length in a wild house sparrow population . https://ecoevorxiv.org/repository/view/5035/
Dawson, D. A., Horsburgh, G. J., Krupa, A. P., Stewart, I. R. K., Skjelseth, S., Jensen, H., Ball, A. D., Spurgin, L. G., Mannarelli, M., Nakagawa, S., Schroeder, J., Vangestel, C., Hinten, G. N., & Burke, T. (2012). Microsatellite resources for Passeridae species: A predicted microsatellite map of the house sparrow Passer domesticus .Molecular Ecology Resources , 12 (3), 501–523. https://doi.org/10.1111/j.1755-0998.2012.03115.x
Drake, E. D., & Simons, M. J. P. (2023). Stochasticity Explains Nongenetic Inheritance of Lifespan and Apparent Trade-Offs between Reproduction and Aging. Aging Biology , 1 (1), 20230012. https://doi.org/10.59368/agingbio.20230012
Eastwood, J. R., Hall, M. L., Teunissen, N., Kingma, S. A., Hidalgo Aranzamendi, N., Fan, M., Roast, M., Verhulst, S., & Peters, A. (2019). Early‐life telomere length predicts lifespan and lifetime reproductive success in a wild bird. Molecular Ecology , 28 (5), 1127–1137. https://doi.org/10.1111/mec.15002
Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M., Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell ,15 (1), 140–148. https://doi.org/10.1111/acel.12417
Froy, H., Underwood, S. L., Dorrens, J., Seeker, L. A., Watt, K., Wilbourn, R. V., Pilkington, J. G., Harrington, L., Pemberton, J. M., & Nussey, D. H. (2021). Heritable variation in telomere length predicts mortality in Soay sheep. Proceedings of the National Academy of Sciences , 118 (15), e2020563118. https://doi.org/10.1073/pnas.2020563118
Hadfield, J. D. (2010). MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package.Journal of Statistical Software , 33 (2). https://doi.org/10.18637/jss.v033.i02
Haussmann, M. F., Winkler, D. W., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2007). Telomerase activity is maintained throughout the lifespan of long-lived birds. Experimental Gerontology ,42 (7), 610–618. https://doi.org/10.1016/j.exger.2007.03.004
Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2012). Telomere length in early life predicts lifespan. Proceedings of the National Academy of Sciences ,109 (5), 1743–1748. https://doi.org/10.1073/pnas.1113306109
Heidinger, B. J., Kucera, A. C., Kittilson, J. D., & Westneat, D. F. (2021). Longer telomeres during early life predict higher lifetime reproductive success in females but not males. Proceedings of the Royal Society B: Biological Sciences , 288 (1951), 20210560. https://doi.org/10.1098/rspb.2021.0560
Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology ,16 (5), 1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x
Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., & Harley, C. B. (1992). Telomere end-replication problem and cell aging.Journal of Molecular Biology , 225 (4), 951–960. https://doi.org/10.1016/0022-2836(92)90096-3
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell , 153 (6), 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039
Monaghan, P. (2010). Telomeres and life histories: The long and the short of it: Telomeres and life histories. Annals of the New York Academy of Sciences , 1206 (1), 130–142. https://doi.org/10.1111/j.1749-6632.2010.05705.x
Monaghan, P., & Ozanne, S. E. (2018). Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms and consequences.Philosophical Transactions of the Royal Society B: Biological Sciences , 373 (1741), 20160446. https://doi.org/10.1098/rstb.2016.0446
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2013).Introduction to linear regression analysis (Fifth edition). Wiley.
Olovnikov, A. M. (1973). A theory of marginotomy. Journal of Theoretical Biology , 41 (1), 181–190. https://doi.org/10.1016/0022-5193(73)90198-7
Pepke, M. L., Kvalnes, T., Ranke, P. S., Araya‐Ajoy, Y. G., Wright, J., Sæther, B., Jensen, H., & Ringsby, T. H. (2022). Causes and consequences of variation in early‐life telomere length in a bird metapopulation. Ecology and Evolution , 12 (8). https://doi.org/10.1002/ece3.9144
Pepke, M. L., Kvalnes, T., Wright, J., Araya-Ajoy, Y. G., Ranke, P. S., Boner, W., Monaghan, P., Sæther, B.-E., Jensen, H., & Ringsby, T. H. (2023). Longitudinal telomere dynamics within natural lifespans of a wild bird. Scientific Reports , 13 (1), 4272. https://doi.org/10.1038/s41598-023-31435-9
R Core Team. (2021). R: A language and environment for statistical computing. (4.1.2) [Computer software]. R Foundation for Statistical Computing.
Ravindran, S., Froy, H., Underwood, S. L., Dorrens, J., Seeker, L. A., Watt, K., Wilbourn, R. V., Pilkington, J. G., Harrington, L., Pemberton, J. M., & Nussey, D. H. (2022). The association between female reproductive performance and leukocyte telomere length in wild Soay sheep. Molecular Ecology , 31 (23), 6184–6196. https://doi.org/10.1111/mec.16175
Reichert, S., Stier, A., Zahn, S., Arrivé, M., Bize, P., Massemin, S., & Criscuolo, F. (2014). Increased brood size leads to persistent eroded telomeres. Frontiers in Ecology and Evolution , 2 . https://doi.org/10.3389/fevo.2014.00009
Remot, F., Ronget, V., Froy, H., Rey, B., Gaillard, J., Nussey, D. H., & Lemaitre, J. (2022). Decline in telomere length with increasing age across nonhuman vertebrates: A meta‐analysis. Molecular Ecology ,31 (23), 5917–5932. https://doi.org/10.1111/mec.16145
Richardson, D. S., Jury, F. L., Blaakmeer, K., Komdeur, J., & Burke, T. (2001). Parentage assignment and extra-group paternity in a cooperative breeder: The Seychelles warbler (Acrocephalus sechellensis).Molecular Ecology , 10 (9), 2263–2273. https://doi.org/10.1046/j.0962-1083.2001.01355.x
Sahin, E., Colla, S., Liesa, M., Moslehi, J., Müller, F. L., Guo, M., Cooper, M., Kotton, D., Fabian, A. J., Walkey, C., Maser, R. S., Tonon, G., Foerster, F., Xiong, R., Wang, Y. A., Shukla, S. A., Jaskelioff, M., Martin, E. S., Heffernan, T. P., … DePinho, R. A. (2011). Telomere dysfunction induces metabolic and mitochondrial compromise.Nature , 470 (7334), 359–365. https://doi.org/10.1038/nature09787
Schroeder, J., Nakagawa, S., Rees, M., Mannarelli, M.-E., & Burke, T. (2015). Reduced fitness in progeny from old parents in a natural population. Proceedings of the National Academy of Sciences ,112 (13), 4021–4025. https://doi.org/10.1073/pnas.1422715112
Sheldon, E. L., Eastwood, J. R., Teunissen, N., Roast, M. J., Aranzamendi, N. H., Fan, M., Louise Hall, M., Kingma, S. A., Verhulst, S., & Peters, A. (2022). Telomere dynamics in the first year of life, but not later in life, predict lifespan in a wild bird. Molecular Ecology , 31 (23), 6008–6017. https://doi.org/10.1111/mec.16296
Sibma, A. (2021). A longitudinal analysis of telomeres in an insular house sparrow population [PhD thesis]. University of Sheffield.
Simons, M. J. P. (2015). Questioning causal involvement of telomeres in aging. Ageing Research Reviews , 24 , 191–196. https://doi.org/10.1016/j.arr.2015.08.002
Simons, M. J. P., Winney, I., Girndt, A., Rees, M., Nakagawa, S., Schroeder, J., & Burke, T. (2019). Ageing in house sparrows is insensitive to environmental effects [Preprint]. Evolutionary Biology. https://doi.org/10.1101/598284
Spurgin, L. G., Bebbington, K., Fairfield, E. A., Hammers, M., Komdeur, J., Burke, T., Dugdale, H. L., & Richardson, D. S. (2018). Spatio‐temporal variation in lifelong telomere dynamics in a long‐term ecological study. Journal of Animal Ecology , 87 (1), 187–198. https://doi.org/10.1111/1365-2656.12741
Stier, A., Metcalfe, N. B., & Monaghan, P. (2020). Pace and stability of embryonic development affect telomere dynamics: An experimental study in a precocial bird model. Proceedings of the Royal Society B: Biological Sciences , 287 (1933), 20201378. https://doi.org/10.1098/rspb.2020.1378
Sudyka, J. (2019). Does Reproduction Shorten Telomeres? Towards Integrating Individual Quality with Life‐History Strategies in Telomere Biology. BioEssays , 41 (11), 1900095. https://doi.org/10.1002/bies.201900095
Sudyka, J., Arct, A., Drobniak, S., Dubiec, A., Gustafsson, L., & Cichoń, M. (2014). Experimentally increased reproductive effort alters telomere length in the blue tit ( Cyanistes caeruleus ).Journal of Evolutionary Biology , 27 (10), 2258–2264. https://doi.org/10.1111/jeb.12479
Sudyka, J., Arct, A., Drobniak, S. M., Gustafsson, L., & Cichoń, M. (2019). Birds with high lifetime reproductive success experience increased telomere loss. Biology Letters , 15 (1), 20180637. https://doi.org/10.1098/rsbl.2018.0637
Therneau, T. M. (2022). Mixed Effects Cox Models (2.2-18.1) [Computer software].
Tricola, G. M., Simons, M. J. P., Atema, E., Boughton, R. K., Brown, J. L., Dearborn, D. C., Divoky, G., Eimes, J. A., Huntington, C. E., Kitaysky, A. S., Juola, F. A., Lank, D. B., Litwa, H. P., Mulder, E. G. A., Nisbet, I. C. T., Okanoya, K., Safran, R. J., Schoech, S. J., Schreiber, E. A., … Haussmann, M. F. (2018). The rate of telomere loss is related to maximum lifespan in birds. Philosophical Transactions of the Royal Society B: Biological Sciences ,373 (1741), 20160445. https://doi.org/10.1098/rstb.2016.0445
van Lieshout, S. H. J., Bretman, A., Newman, C., Buesching, C. D., Macdonald, D. W., & Dugdale, H. L. (2019). Individual variation in early-life telomere length and survival in a wild mammal.Molecular Ecology , 28 (18), 4152–4165. https://doi.org/10.1111/mec.15212
van Lieshout, S. H. J., Froy, H., Schroeder, J., Burke, T., Simons, M. J. P., & Dugdale, H. L. (2020). Slicing: A sustainable approach to structuring samples for analysis in long‐term studies. Methods in Ecology and Evolution , 11 (3), 418–430. https://doi.org/10.1111/2041-210X.13352
Vedder, O., Moiron, M., Bichet, C., Bauch, C., Verhulst, S., Becker, P. H., & Bouwhuis, S. (2022). Telomere length is heritable and genetically correlated with lifespan in a wild bird. Molecular Ecology ,31 (23), 6297–6307. https://doi.org/10.1111/mec.15807
Verhulst, S. (2020). Improving comparability between qPCR‐based telomere studies. Molecular Ecology Resources , 20 (1), 11–13. https://doi.org/10.1111/1755-0998.13114
von Zglinicki, T. (2002). Oxidative stress shortens telomeres.Trends in Biochemical Sciences , 27 (7), 339–344. https://doi.org/10.1016/S0968-0004(02)02110-2
Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere shortening rate predicts species life span.Proceedings of the National Academy of Sciences , 116 (30), 15122–15127. https://doi.org/10.1073/pnas.1902452116
Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J. (2018). The relationship between telomere length and mortality risk in non-model vertebrate systems: A meta-analysis.Philosophical Transactions of the Royal Society B: Biological Sciences , 373 (1741), 20160447. https://doi.org/10.1098/rstb.2016.0447
Winder, L. A., Simons, M. J. P., & Burke, T. (2022). The optimal clutch size revisited: Separating individual quality from the costs of reproduction . bioRxiv.
Wood, E. M., & Young, A. J. (2019). Telomere attrition predicts reduced survival in a wild social bird, but short telomeres do not.Molecular Ecology , 28 (16), 3669–3680. https://doi.org/10.1111/mec.15181
Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences ,373 (1741), 20160452. https://doi.org/10.1098/rstb.2016.0452